Available online: June 25, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 2026–2036 (2019) DOI: 10.31801/cfsuasmas.582163 ISSN 1303-5991 E-ISSN 2618-6470

 $http://communications.science.ankara.edu.tr/index.php?series{=}A1$

A NEW SUBCLASS OF UNIFORMLY SPIRALLIKE FUNCTIONS WITH FIXED COEFFICIENTS

GEETHA BALACHANDAR

ABSTRACT. In this paper a new subclass of uniformly spirallike functions is defined and several properties like coefficient estimate, closure theorems, distortion theorems, radii of starlikeness and convexity are studied.

1. INTRODUCTION AND DEFINITIONS

Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic and univalent in the open unit disc $U = \{z \in \mathbb{C} : |z| \leq 1\}$. Also let S^* and \mathcal{C} denote the subclasses of S that are respectively, starlike and convex. Motivated by certain geometric conditions, Goodman [2, 3] introduced an interesting subclass of starlike functions called uniformly starlike functions denoted by UST and an analogous subclass of convex functions called uniformly convex functions, denoted by UCV. From [6, 8] we have

$$f \in UCV \Leftrightarrow Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|, z \in U.$$

In [8], Ronning introduced a new class S_p of starlike functions which has more manageable properties. The classes UCV and S_p were further extended by Kanas and Wisniowska in [4, 5] as $k - UCV(\alpha)$ and $k - ST(\alpha)$. The classes of uniformly spirallike and uniformly convex spirallike were introduced by Ravichandran et al [7]. This was further generalized in [11] as $UCSP(\alpha, \beta)$. In [12], Herb Silverman introduced the subclass T of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

©2019 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: February 05, 2018; Accepted: May 25, 2019.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, univalent functions, uniformly convex functions, uniformly spirallike functions.

Submitted via International Conference on Current Scenario in Pure and Applied Mathematics [ICCSPAM 2018].

which are analytic and univalent in the unit disc U. Motivated by [13], new subclasses with negative coefficients $UCSPT(\alpha, \beta)$ and $SP_pT(\alpha, \beta)$ were introduced and studied in [10]. A function f(z) defined by (1.1) is in $UCSPT(\alpha, \beta)$ if

$$Re\left\{e^{-i\alpha}\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right| + \beta,$$
(1.2)

 $|\alpha| < \frac{\pi}{2}, 0 \le \beta < 1$. For the class $UCSPT(\alpha, \beta)$, [10] proved the following lemma.

Lemma 1.1. A function $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$ is in $UCSPT(\alpha, \beta)$ if and only if

$$\sum_{n=2}^{\infty} (2n - \cos \alpha - \beta) n \, a_n \le \cos \alpha - \beta.$$
(1.3)

Using (1.1), the functions $f(z) \in UCSPT(\alpha, \beta)$ will satisfy

$$a_2 \le \frac{(\cos\alpha - \beta)}{2(4 - \cos\alpha - \beta)}.\tag{1.4}$$

The subclass $UCSPT_c(\alpha, \beta)$ is the class of functions in $UCSPT(\alpha, \beta)$ of the form

$$f(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(4 - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} a_n z^n,$$
 (1.5)

 $(a_n \ge 0)$, where $0 \le c \le 1$ was studied in [1]. When c = 1 we get

$$UCSPT_1(\alpha,\beta) = UCSPT(\alpha,\beta).$$

As an extension of $UCSPT_c(\alpha, \beta)$ a new class of functions $k - UCSPT_c(\alpha, \beta)$ is defined and studied in this paper. Let $k - UCSPT_c(\alpha, \beta)$ be the class of functions of the form

$$f(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} a_n z^n,$$
 (1.6)

 $(a_n \ge 0)$, where $0 \le c \le 1$ and $0 < k \le 1$.

2. Coefficient Estimate

Theorem 2.1. The function f(z) defined by (1.5) belongs to $k - UCSPT_c(\alpha, \beta)$ if and only if

$$\sum_{n=3}^{\infty} ((k+1)n - \cos\alpha - \beta)na_n \le (1-c)(\cos\alpha - \beta).$$
(2.1)

The result is sharp.

Proof. Taking

$$a_{2} = \frac{c(\cos \alpha - \beta)}{2(2(k+1) - \cos \alpha - \beta)}, 0 \le c \le 1,$$
(2.2)

in (1.3) we get the required result. Also the result is sharp for the function

$$f(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)z^n}{n((k+1)n - \cos\alpha - \beta)}, (n \ge 3).$$
(2.3)

Corollary 2.1.1. If f(z) defined by (1.5) is in the class $k - UCSPT_c(\alpha, \beta)$ then,

$$a_n \le \frac{(1-c)(\cos \alpha - \beta)}{n((k+1)n - \cos \alpha - \beta)}, (n \ge 3).$$
 (2.4)

The result is sharp for the function f(z) given in (2.3).

3. CLOSURE THEOREMS

Theorem 3.1. The class $k - UCSPT_c(\alpha, \beta)$ is closed under convex linear combination.

Proof. Let f(z) defined by (1.5) be in $k - UCSPT_c(\alpha, \beta)$. Now define g(z) by

$$g(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \sum_{n=3}^{\infty} b_n z^n, (b_n \ge 0).$$
(3.1)

If f(z) and g(z) belong to $k - UCSPT_c(\alpha, \beta)$ then it is enough to prove that the function H(z) defined by

$$H(z) = \lambda f(z) + (1 - \lambda)g(z), (0 \le \lambda \le 1)$$
(3.2)

is also in $k - UCSPT_c(\alpha, \beta)$.

$$H(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} (\lambda a_n + (1-\lambda)b_n)z^n.$$
(3.3)

Using theorem (2.1) we get

$$\sum_{n=3}^{\infty} ((k+1)n - \cos\alpha - \beta)n(\lambda a_n + (1-\lambda)b_n) \le (1-c)(\cos\alpha - \beta).$$
(3.4)

Hence H(z) is in $k - UCSPT_c(\alpha, \beta)$. Thus $k - UCSPT_c(\alpha, \beta)$ is closed under convex linear combination.

Theorem 3.2. Let the functions

$$f_j(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \sum_{n=3}^{\infty} a_{n,j} z^n, (a_{n,j} \ge 0),$$
(3.5)

be in the class $k = UCSPT_c(\alpha, \beta)$ for every j = 1, 2, ...m. Then the function F(z) defined by

$$F(z) = \sum_{j=1}^{m} d_j f_j(z), (d_j \ge 0),$$
(3.6)

is also in the same class $k - UCSPT_c(\alpha, \beta)$ where

$$\sum_{j=1}^{m} d_j = 1. (3.7)$$

Proof. Using (3.5) and (3.7) in (3.6) we have

$$F(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \sum_{n=3}^{\infty} \left[\sum_{j=1}^{m} d_j a_n, j\right] z^n.$$
 (3.8)

Each $f_j(z) \in k - UCSPT_c(\alpha, \beta)$ for j = 1,2,...m, theorem (2.1) gives

$$\sum_{n=3}^{\infty} ((k+1)n - \cos \alpha - \beta) n a_{n,j} \le (1-c)(\cos \alpha - \beta),$$
(3.9)

for $j = 1, 2, \dots$. Hence we get

$$\sum_{n=3}^{\infty} n((k+1)n - \cos\alpha - \beta) \left[\sum_{j=1}^{m} d_j a_{n,j} \right] = \sum_{j=1}^{m} d_j \left[\sum_{n=3}^{\infty} n((k+1)n - \cos\alpha - \beta) a_{n,j} \right]$$
$$\leq (1-c)(\cos\alpha - \beta).$$

This implies $F(z) \in k - UCSPT_c(\alpha, \beta)$, by theorem(2.1).

Theorem 3.3. Let

$$f_2(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)}$$
(3.10)

and

$$f_n(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)z^n}{n((k+1)n - \cos\alpha - \beta)},$$
(3.11)

for $n = 3, 4, \dots$ Then f(z) is in $k - UCSPT_c(\alpha, \beta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z)$$
(3.12)

where $\lambda_n \ge 0$ and $\sum_{n=2}^{\infty} \lambda_n = 1$.

Proof. First assume that f(z) can be expressed in the form (3.12). Then we have

$$f(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \sum_{n=3}^{\infty} \frac{(1-c)(\cos \alpha - \beta)}{n((k+1)n - \cos \alpha - \beta)} \lambda_n z^n.$$
 (3.13)

But

$$\sum_{n=3}^{\infty} \frac{(1-c)(\cos\alpha - \beta)}{n((k+1)n - \cos\alpha - \beta)} \lambda_n n((k+1)n - \cos\alpha - \beta) = (1-c)(\cos\alpha - \beta)(1-\lambda_2)$$
$$\leq (1-c)(\cos\alpha - \beta).$$
(3.14)

Hence from (2.1) it follows that $f(z) \in k - UCSPT_c(\alpha, \beta)$. Conversely, we assume that f(z) defined by (1.6) is in the class $k - UCSPT_c(\alpha, \beta)$. Then by using (2.4), we get

$$a_n \le \frac{(1-c)(\cos \alpha - \beta)}{n((k+1)n - \cos \alpha - \beta)}, (n = 3, 4, ...).$$

Taking $\lambda_n = \frac{n((k+1)n - \cos \alpha - \beta)a_n}{(1-c)(\cos \alpha - \beta)}$, (n = 3, 4, ...) and $\lambda_2 = 1 - \sum_{n=3}^{\infty} \lambda_n$, we have (3.12). Hence the proof of theorem (3.3) is complete.

Corollary 3.3.1. The extreme points of the class $k - UCSPT_c(\alpha, \beta)$ are the functions

 $f_n(z), (n \ge 2)$ given by theorem (3.3).

4. DISTORTION THEOREMS

In order to obtain the distortion bounds for the function $f(z) \in k-UCSPT_c(\alpha, \beta)$, we need the following lemmas.

Lemma 4.1. Let the function $f_3(z)$ be defined by

$$f_3(z) = z - \frac{c(\cos\alpha - \beta)z^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)z^3}{3(3(k+1) - \cos\alpha - \beta)}.$$
 (4.1)

Then, for $0 \leq r < 1$ and $0 \leq c \leq 1$,

$$|f_3(re^{i\theta})| \ge r - \frac{c(\cos\alpha - \beta)r^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^3}{3(3(k+1) - \cos\alpha - \beta)}, \tag{4.2}$$

with equality for $\theta = 0$. For either $0 \le c < c_0$ and $0 \le r \le r_0$ or $c_0 \le c \le 1$,

$$|f_3(re^{i\theta})| \le r + \frac{c(\cos\alpha - \beta)r^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^3}{3(3(k+1) - \cos\alpha - \beta)},$$
(4.3)

with equality for $\theta = \pi$. Further, for $0 \le c < c_0$ and $r_0 \le r < 1$,

$$\begin{split} |f_3(re^{i\theta})| &\leq r \left[[1 + \frac{9c^2(\cos\alpha - \beta)(3(k+1) - \cos\alpha - \beta)}{16(1-c)(2(k+1) - \cos\alpha - \beta)^2}] \\ &+ r^2(\cos\alpha - \beta)[\frac{2(1-c)}{3(3(k+1) - \cos\alpha - \beta)^2}] \\ &- \frac{c^2(\cos\alpha - \beta)}{8(2(k+1) - \cos\alpha - \beta)^2}] \\ &+ \frac{r^4(1-c)(\cos\alpha - \beta)^2}{(3(k+1) - \cos\alpha - \beta)}[\frac{(1-c)}{9(3(k+1) - \cos\alpha - \beta)}] \\ &+ \frac{c^2(\cos\alpha - \beta)}{16(2(k+1) - \cos\alpha - \beta)^2}] \right]^{1/2}, \end{split}$$

with equality for
$$\theta = \cos^{-1} \left[\frac{c(\cos \alpha - \beta)(1-c)r^2 - 3c(3(k+1) - \cos \alpha - \beta)}{8(1-c)(2(k+1) - \cos \alpha - \beta)r} \right]$$
, where

$$c_0 = \frac{1}{2(\cos \alpha - \beta)} \left[(12\cos \alpha + 10\beta - 25(k+1)) + \sqrt{(12\cos \alpha + 10\beta - 25(k+1))^2 + 32(\cos \alpha - \beta)(2(k+1) - \cos \alpha - \beta))} \right]$$
(4.4)

and

$$r_{0} = \frac{1}{c(1-c)(\cos\alpha - \beta)} \left[-4(1-c)(2(k+1) - \cos\alpha - \beta) + \sqrt{16(1-c)^{2}(2(k+1) - \cos\alpha - \beta)^{2} + 3c^{2}(1-c)(3(k+1) - \cos\alpha - \beta)(\cos\alpha - \beta)} \right]$$

$$(4.5)$$

Proof. We employ the techniques used by Silverman and Silvia[13]. Since

$$\frac{\partial |f_3(re^{i\theta})|^2}{\partial \theta} = \frac{(\cos\alpha - \beta)r^3 \sin\theta}{(2(k+1) - \cos\alpha - \beta)} \left[c + \frac{8(1-c)(2(k+1) - \cos\alpha - \beta)r\cos\theta}{3(3(k+1) - \cos\alpha - \beta)} - \frac{c(1-c)r^2(\cos\alpha - \beta)}{3(3(k+1) - \cos\alpha - \beta)} \right],$$
(4.6)

we see that $\frac{\partial |f_3(re^{i\theta})|^2}{\partial \theta} = 0$, for $\theta_1 = 0$, $\theta_2 = \pi$ and

$$\theta_3 = \cos^{-1} \left[\frac{(\cos \alpha - \beta)c(1-c)r^2 - 3c(3(k+1) - \cos \alpha - \beta)}{8(1-c)(2(k+1) - \cos \alpha - \beta)r} \right],$$
(4.7)

since θ_3 is a valid root only when $-1 \leq \cos \theta_3 \leq 1$. Hence there is a third root if and only if $r_0 \leq r < 1$ and $0 \leq c \leq c_0$. Thus the results of the theorem follow by comparing the extremal values $|f_3(re^{i\theta_k})|$, (k = 1, 2, 3) on the appropriate intervals.

Lemma 4.2. Let the function $f_n(z)$ be defined by (3.11) and $n \ge 4$. Then

$$|f_n(re^{i\theta})| \le |f_n(-r)|. \tag{4.8}$$

Proof. Since $f_n(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \frac{(1-c)(\cos \alpha - \beta)z^n}{n((k+1)n - \cos \alpha - \beta)}$ and $\frac{r^n}{n}$ is a decreasing function of n, we have (4.8)

$$\begin{aligned} |f_n(re^{i\theta})| &\leq r + \frac{c(\cos\alpha - \beta)r^2}{2(2(k+1) - \cos\alpha - \beta)} + \frac{(1-c)(\cos\alpha - \beta)r^n}{n((k+1)n - \cos\alpha - \beta)} \\ &\leq r + \frac{c(\cos\alpha - \beta)r^2}{2(2(k+1) - \cos\alpha - \beta)} + \frac{(1-c)(\cos\alpha - \beta)r^4}{4(4(k+1) - \cos\alpha - \beta)} = -f_4(-r), \end{aligned}$$

hich gives (4.8) .

which gives (4.8).

Theorem 4.3. Let the function f(z) defined by (1.6) belong to the class $k - UCSPT_c(\alpha, \beta)$. Then for $0 \le r < 1$,

$$|f(re^{i\theta})| \ge r - \frac{c(\cos\alpha - \beta)r^2}{2(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^3}{3(3(k+1) - \cos\alpha - \beta)}$$

with equality for $f_3(z)$ at z=r and

$$|f(re^{i\theta})| \le max \{max_{\theta}|f_3(re^{i\theta})|, -f_4(-r)\},\$$

where $max_{\theta}|f_3(re^{i\theta})|$ is given by lemma 4.1.

The proof is obtained by comparing the bounds of lemma 4.1 and lemma 4.2.

Corollary 4.3.1. Let the function f(z) be defined by (1.1) be in the class $k - UCSPT(\alpha, \beta)$. Then for |z| = r < 1, we have

$$r - \frac{(\cos \alpha - \beta)r^2}{2(2(k+1) - \cos \alpha - \beta)} \le |f(z)| \le r + \frac{(\cos \alpha - \beta)r^2}{2(2(k+1) - \cos \alpha - \beta)}.$$

The result is sharp.

Corollary 4.3.2. Let the function f(z) be defined by (1.5) be in the class $k - UCSPT_c(\alpha, \beta)$. Then the disk |z| < 1 is mapped onto a domain that contains the disk

$$|w| < \frac{6(3(k+1) - \cos \alpha - \beta)(2(k+1) - \cos \alpha - \beta) - (\cos \alpha - \beta)(4(k+1) + 5c(k+1) - (c+2)(\cos \alpha - \beta))}{6(2(k+1) - \cos \alpha - \beta)(3(k+1) - \cos \alpha - \beta)}.$$

The result is sharp with the extremal function

$$f_3(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \frac{(1-c)(\cos \alpha - \beta)z^3}{3(3(k+1) - \cos \alpha - \beta)}.$$

,

Proof. The result follows by letting $r \to 1$ in theorem 4.3.

Lemma 4.4. Let the function $f_3(z)$ be defined by (4.1). Then for $0 \le r < 1$ and $0 \le c \le 1$,

$$|f'_{3}(re^{i\theta})| \ge 1 - \frac{c(\cos\alpha - \beta)r}{(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^{2}}{(3(k+1) - \cos\alpha - \beta)}$$

with equality for $\theta = 0$. For either $0 \le c < c_1$ and $o \le r \le r_1$ or $c_1 \le c \le 1$,

$$|f_{3}'(re^{i\theta})| \le 1 + \frac{c(\cos\alpha - \beta)r}{(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^{2}}{(3(k+1) - \cos\alpha - \beta)},$$

with equality for $\theta = \pi$. Further, $0 \le c < c_1$ and $r_1 \le r < 1$,

$$|f'_{3}(re^{i\theta})| \leq \left\{ \left[1 + \frac{c^{2}(\cos\alpha - \beta)(3(k+1) - \cos\alpha - \beta)}{4(1-c)(2(k+1) - \cos\alpha - \beta)^{2}} \right] + (\cos\alpha - \beta) \left[\frac{2(1-c)}{(3(k+1) - \cos\alpha - \beta)} + \frac{c^{2}(\cos\alpha - \beta)}{2(2(k+1) - \cos\alpha - \beta)^{2}} \right] r^{2} + \frac{(1-c)(\cos\alpha - \beta)^{2}}{3(k+1) - \cos\alpha - \beta} \left[\frac{(1-c)}{(3(k+1) - \cos\alpha - \beta)} + \frac{c^{2}(\cos\alpha - \beta)}{4(2(k+1) - \cos\alpha - \beta)^{2}} \right] r^{4} \right\}^{1/2},$$

with equality for

$$\theta = \cos^{-1} \left[\frac{c(1-c)(\cos \alpha - \beta)r^2 - c(3(k+1) - \cos \alpha - \beta)}{4(1-c)r(2(k+1) - \cos \alpha - \beta)} \right],$$

where

$$c_{1} = \frac{-(11(k+1) - 6\cos\alpha - 4\beta)}{2(\cos\alpha - \beta)} + \frac{\sqrt{(11(k+1) - 6\cos\alpha - 4\beta)^{2} + 16(2(k+1) - \cos\alpha - \beta)(\cos\alpha - \beta)}}{2(\cos\alpha - \beta)}$$

and

$$r_1 = \frac{1}{c(1-c)(\cos\alpha - \beta)} \bigg\{ -2(1-c)(2(k+1) - \cos\alpha - \beta) + \sqrt{4(1-c)^2(2(k+1) - \cos\alpha - \beta)^2 + c^2(1-c)(\cos\alpha - \beta)(3(k+1) - \cos\alpha - \beta)} \bigg\}.$$

The proof of lemma(4.4) is given in the same way as lemma(4.1).

Theorem 4.5. Let the function f(z) defined by (1.6) be in the class $k-UCSPT_c(\alpha,\beta)$. Then for $0 \le r < 1$,

$$|f'(re^{i\theta})| \ge 1 - \frac{c(\cos\alpha - \beta)r}{(2(k+1) - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)r^2}{(3(k+1) - \cos\alpha - \beta)},$$

with equality for $f'_3(z)$ at z=r and

$$\left|f'(re^{i\theta})\right| \le \max\{\max_{\theta} \left|f'_{3}(re^{i\theta})\right|, f'_{4}(-r)\},\$$

where $max_{\theta} \left| f'_{3}(re^{i\theta}) \right|$ is given by lemma (4.4).

Remark: For c = 1 in theorem 4.5 we obtain:

Corollary 4.5.1. Let the function f(z) defined by (1.1) be in the class k-UCSPT(α, β). Then for |z| = r < 1, we have

$$1 - \frac{(\cos \alpha - \beta)r}{2(k+1) - \cos \alpha - \beta} \le |f'(z)| \le 1 + \frac{(\cos \alpha - \beta)r}{2(k+1) - \cos \alpha - \beta}$$

the result is sharp.

5. RADII OF STARLIKENESS AND CONVEXITY

Theorem 5.1. Let the function f(z) defined by (1.6) be in the class $k-UCSPT_c(\alpha,\beta)$. Then f(z) is starlike of order $\rho(0 \le \rho < 1)$ in the disc $|z| < r_1(\alpha, \beta, c, k, \rho)$ where $r_1(\alpha, \beta, c, k, \rho)$ is the largest value for which

$$\frac{c(\cos\alpha - \beta)(2 - \rho)r}{2(2(k+1) - \cos\alpha - \beta)} + \frac{(1 - c)(\cos\alpha - \beta)(n - \rho)r^{n-1}}{n((k+1)n - \cos\alpha - \beta)} \le 1 - \rho,$$
(5.1)

for $n \geq 3$. The result is sharp with the extremal function

$$f_n(z) = z - \frac{c(\cos \alpha - \beta)z^2}{2(2(k+1) - \cos \alpha - \beta)} - \frac{(1-c)(\cos \alpha - \beta)z^n}{n((k+1)n - \cos \alpha - \beta)},$$
 (5.2)

for some n.

Proof. It suffices to show that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho, (o \le \rho < 1),$$

for $|z| < r_1(\alpha, \beta, c, k, \rho)$. Note that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\frac{c(\cos\alpha - \beta)r}{2(2(k+1) - \cos\alpha - \beta)} + \sum_{n=3}^{\infty} (n-1)a_n r^{n-1}}{1 - \frac{c(\cos\alpha - \beta)r}{2(2(k+1) - \cos\alpha - \beta)} - \sum_{n=3}^{\infty} a_n r^{n-1}} \le 1 - \rho,$$

for $|z| \leq r$ if and only if

$$\frac{c(\cos\alpha - \beta)(2 - \rho)r}{2(2(k+1) - \cos\alpha - \beta)} + \sum_{n=3}^{\infty} (n - \rho)a_n r^{n-1} \le 1 - \rho.$$

Since f(z) is in $k - UCSPT_c(\alpha, \beta)$ from (2.1) we may take

$$a_n = \frac{(1-c)(\cos\alpha - \beta)\lambda_n}{n((k+1)n - \cos\alpha - \beta)}, (n \ge 3),$$

where $\lambda_n \ge 0 (n \ge 3)$ and $\sum_{n=3}^{\infty} \lambda_n \le 1$. For each fixed r, we choose the positive integer $n_0 = n_0(r)$ for which $\frac{(n-\rho)r^{n-1}}{n}$ is maximal. Then it follows that

$$\sum_{n=3}^{\infty} (n-\rho)a_n r^{n-1} \le \frac{(1-c)(\cos\alpha - \beta)(n_0 - \rho)r^{n_0 - 1}}{n_0((k+1)n_0 - \cos\alpha - \beta)}.$$

Hence f(z) is starlike of order ρ in $|z| < r_1(\alpha, \beta, c, k, \rho)$ provided that

$$\frac{c(\cos\alpha - \beta)(2 - \rho)r}{2(2(k+1) - \cos\alpha - \beta)} + \frac{(1 - c)(\cos\alpha - \beta)(n_0 - \rho)r^{n_0 - 1}}{n_0((k+1)n_0 - \cos\alpha - \beta)} \le 1 - \rho.$$

We find the value $r_0 = r_0(\alpha, \beta, c, k, \rho)$ and the corresponding integer $n_0(r_0)$ so that

$$\frac{c(\cos\alpha - \beta)(2 - \rho)r_0}{2(2(k+1) - \cos\alpha - \beta)} + \frac{(1 - c)(\cos\alpha - \beta)(n_0 - \rho)r_0^{n_0 - 1}}{n_0((k+1)n_0 - \cos\alpha - \beta)} = 1 - \rho.$$

Then this value r_0 is the radius of starlikeness of order ρ for functions f(z) belonging to the class $k - UCSPT_c(\alpha, \beta)$.

We prove the following theorem concerning the radius of convexity of order ρ for functions in the class $k - UCSPT_c(\alpha, \beta)$.

Theorem 5.2. Let the function f(z) be defined by (1.6) be in the class $k - UCSPT_c(\alpha, \beta)$. Then f(z) is convex of order $\rho(0 \le \rho < 1)$ in the disc $|z| < r_2(\alpha, \beta, c, k, \rho)$, where $r_2(\alpha, \beta, c, k, \rho)$ is the largest value for which

$$\frac{c(\cos\alpha - \beta)(2 - \rho)r}{(2(k+1) - \cos\alpha - \beta)} + \frac{(1 - c)(\cos\alpha - \beta)(n - \rho)r^{n-1}}{((k+1)n - \cos\alpha - \beta)} \le 1 - \rho,$$

for $n \ge 3$. The result is sharp for the function f(z) given by (5.2).

6. The class $k - UCSPT_{c_n,N}(\alpha,\beta)$

We now fix finitely many coefficients instead of fixing just the second coefficients. Let $UCSPT_{c_n,N}(\alpha,\beta)$ denote the class of functions in $UCSPT_c(\alpha,\beta)$ of the form

$$f(z) = z - \sum_{n=2}^{N} \frac{c_n(\cos\alpha - \beta)z^n}{n(2n - \cos\alpha - \beta)} - \sum_{n=N+1}^{\infty} a_n z^n,$$

where $0 \leq \sum_{n=2}^{N} c_n = c \leq 1$. Note that $k - UCSPT_{c_n,2}(\alpha,\beta) = k - UCSPT_c(\alpha,\beta)$. **Theorem 6.1.** The extreme points of the class $k - UCSPT_{c_n,N}(\alpha,\beta)$ are

$$z - \sum_{n=1}^{N} \frac{c_n(\cos \alpha - \beta)z^n}{1-c_n(\cos \alpha - \beta)z^n}$$

$$z - \sum_{n=2} \frac{n(k+1)n - \cos \alpha - \beta}{n(k+1)n - \cos \alpha - \beta}$$

and

$$z - \sum_{n=2}^{N} \frac{c_n(\cos\alpha - \beta)z^n}{n((k+1)n - \cos\alpha - \beta)} - \frac{(1-c)(\cos\alpha - \beta)z^n}{n((k+1)n - \cos\alpha - \beta)},$$

for n=N+1,N+2,....

The characterization of the extreme points enables us to solve the standard extremal problems in the same manner as was done in $k - UCSPT_c(\alpha, \beta)$. The details are omitted.

Acknowledgement This research was supported by the National Board for Higher Mathematics.

References

- Balachandar, Geetha, Fixed coefficients for a new subclass of uniformly spirallike functions, Acta Universitatis Apulensis no. 40, (2014),233-243.
- [2] Goodman, A. W., On uniformly convex functions, Ann. Polon. Math. 56 no. 1, (1991), 87–92.
- [3] Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155 no. 2, (1991), 364–370.
- [4] Kanas, S. and Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 no. 1-2, (1999), 327–336.
- [5] Kanas, S. and Wiśniowska, A., Conic domains and starlike functions, *Rev. Roumaine Math. Pures Appl.* 45 (2000), no. 4 (2001), 647–657.
- [6] Wan Cang, Ma and David, Minda, Uniformly convex functions. Ann. Polon. Math. 57no. 2, (1992), 165-175.

GEETHA BALACHANDAR

- [7] Ravichandran, V., Selvaraj, C. and R. Rajagopal, On uniformly convex spiral functions and uniformly spirallike functions, *Soochow J. Math.* 29 no. 4, (2003), 393–405.
- [8] Frode, R., Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118 no. 1, (1993), 189–196.
- Schild, A. and Silverman, H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A 29 (1975), 99–107.
- [10] Selvaraj, C. and Geetha, R., On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, *Int. J. Contemp. Math. Sci.* 5 no. 37-40, (2010), 1845–1854.
- [11] Selvaraj, C. and Geetha, R., On uniformly spirallike functions and a corresponding subclass of spirallike functions, *Glo. J. Sci. Front. Res.*, **10** (2010), 36–41.
- [12] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.
- [13] Silverman, H. and Silvia, E. M., Fixed coefficients for subclasses of starlike functions, *Houston J. Math.* 7 no. 1, (1981), 129–136.

 $Current\ address:$ Geetha Balachandar: Dept. of Mathematics, R.M.K College of Engg. and Technology , Puduvoyal – 601206, Tamil Nadu, India

E-mail address: gbalachandar1989@gmail.com ORCID Address: http://orcid.org/0000-0003-2400-4770