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Abstract
The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental
equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a
motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the
KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to
solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of
Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role
in this study. We make a careful study of some connection between pseudo-differential operators, symplectic
structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other
connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg
and Virasoro algebras are given.
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1. Introduction
Korteweg and de Vries have established a nonlinear partial differential equation describing the gravitational wave propagating
in a shallow channel [1] and possessing remarkable mathematical properties :

∂u
∂ t
−6u

∂u
∂x

+
∂ 3u
∂x3 = 0, (1.1)

where u(x, t) is the amplitude of the wave at the point x and the time t. The equation thus bearing their name (abbreviated KdV)
admits a solution: the soliton or solitary wave. In fact, this model was obtained from Euler’s equations (assuming irrotational
flow) by Boussinesq around 1877 (see [2], p. 360) and rediscovered by Korteweg and de Vries in 1890. The solution to this
equation was obtained and interpreted rigorously only in the early 1970s while a solitary wave was already observed in 1834 by
engineer Scott Russell riding on the Edinburgh Glasgow Canal in Scotland; he described his observation of a hydrodynamic
phenomenon as follows : ” I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped - not so the mass of watering the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still
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rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the wave of translation ”. Fascinated by this phenomenon, Scott-Russell built a wave pool in his garden and
worked to generate and study these waves more carefully. This led to a paper [3] dubbed ”The report on waves” published in
1844 by the British Association for the Advancement of Science.

A little later, Boussinesq, then Korteweg and de Vries proposed equation (1.1) to explain this phenomenon. The KdV
equation preserves mass, momentum, energy, and many other quantities. Many experiments have uncovered the astonishing
properties of the solutions of this equation satisfying zero boundary conditions : when |t| −→∞, these solutions are decomposed
into solitons, i.e., in waves of defined forms progressing at different speeds. These waves propagate over long distances
without deformation and one of the remarkable characteristics of solitons is that they are exceptionally stable with respect to

disturbances; the term u
∂u
∂x

leads to shock waves while the term
∂ 3u
∂x3 produces a scattering effect. Everyone can contemplate

solitons where the tide comes to die on the beaches. In the field of hydrodynamics for example, tsunamis (tidal waves) are
manifestations of solitons. Generally, we group together under the term soliton solutions of nonlinear wave equations presenting
the following characteristic properties : they are localized in space, last indefinitely and retain their amplitude and velocity even
at the end of several collisions with other solitons. Solitons have become indispensable for the study of several phenomena.
In particular, the study of wave propagation in hydrodynamics, the study of localized waves in astrophysical plasmas, They
are involved in the study of signals in optical fibers, charge transport phenomena in conductive polymers, localized modes in
magnetic crystals, etc. Industrialized societies have developed, after soliton studies, what may be called solitary lasers. The
latter play an important role in the field of telecommunications. Ultra-short light signals sent in certain optical fibers made
from a specific material can travel long distances without lengthening or fading. The construction of memories with ultra-fast
communication time and low energy consumption, is based on the movement of magnetic vortices in the dielectric junction
between two superconductors. At the molecular level, the theory of solitons can elucidate the contraction mechanism of striated
muscles, the dynamics of biological macromolecules such as DNA and proteins. In the peptide and hydrogen chain of proteins,
solitons arise from the marriage of dispersion due to intrapeptide vibrations and the non-linearity due to the interaction of
these vibrations with the displacements of peptide groups around their position balanced. But also the theory of solitons had
an impact on pure mathematics; for example, it provides the answer to the famous Schottky problem, posited a century ago,
on the relations between the periods coming from a Riemann surface. Roughly, it is a question of finding criteria so that a
matrix of the periods belonging to the Siegel half-space is the matrix of the periods of a Riemann surface. Geometrically,
Schottky’s problem consists in characterizing the Jacobians among all the Abelian mainly polarized varieties. In addition to
the KdV equation, examples that may be mentioned among the nonlinear equations having soliton-type solutions are: the
non-linear equation of Kadomtsev-Petviashvili, the nonlinear Schrödinger equation, the Sine Gordon equation, the Boussinesq
equation, the Camassa-Holm equation, the Toda lattice consisting of vibrating masses arranged on a circle and interconnected
by springs whose return force is exponential, the non-linear Klein Gordon equation, the Zabusky-Kruskal equation for the
Fermi-Pasta-Ulam model of phonons in anharmonic lattice, and so on.

2. Stationary Schrödinger equation and integral Gelfand-Levitan equation
Since the method (discussed later) of solving the KdV equation is based on the idea of studying it in the form of an equation of
a certain operator and using the analogy with quantum mechanic, we will expose certain mathematical notions of this mechanic.
The terminology of the physicists will be used to describe the properties of the solutions of the stationary Schrödinger’s
equation,

h̄
2m

ψ
′′+(λ −u(x))ψ = 0, ′ ≡ d

dx
,

without stopping on the physical motivations of the introduced notions. We will see that the method of the inverse diffusion is
reduced to the solution of a linear integral equation (Gelfand-Levitan equation). In the following, we will simplify the notation

by using a system of units in which the Planck constant is h̄ = 1 and the mass of the particle is m =
1
2

. So consider the equation

ψ
′′+(λ −u(x))ψ = 0, −∞ < x < ∞ (2.1)

where ψ (unknown) is the wave function of the particle, the spectral parameter λ is the energy of the particle, the function u(x)
is the potential or potential energy of the particle. This potential is assumed to have a compact support, i.e., is different from
zero only in some domain. When the particle is free (i.e., u = 0) and has a positive energy (i.e., λ = k2), then equation (2.1) is
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reduced to

ψ
′′(x)+ k2

ψ = 0, (2.2)

and admits two linearly independent solutions eikx (describing the particle moving to the right) and e−ikx (describing the particle
moving to the left).

Let us denote by Esr
(2) (resp. Esc

(2)) the space of real (or complex) solutions of equation (2.1) and by Esr
(3) (resp. Esc

(3)) the
space of the real (or complex) solutions of equation (2.2). The space Esr

(3) (resp. Esc
(3)) is provided with the base (coskx,sinkx)

(resp. (eikx,e−ikx)). Let [α,β ] be the bounded support of u. The monodromy operator of equation (2.1) is a linear operator
defined by

M : Esr
(2) −→ Esr

(2), acoskx+bsinkx 7−→
{

acoskx+bsinkx si x < α

ccoskx+d sinkx si x > β ,

where a, b are constants and (c,d) = Mu(a,b). This means that for each solution of equation (2.2) is associated : (i) the
solution of (2.1) which is to the left of α; in this region the solution of (2.2) coincides with that of (2.1). (ii) the solution of
(2.1) which is to the right of β . Similarly, the complex monodromy operator of equation (2.1) is defined by

M : Esc
(2) −→ Esc

(2), aeikx +be−ikx 7−→
{

aeikx +be−ikx si x < α

ceikx +de−ikx si x > β .

Recall that a particle propagating from x =−∞, crosses a potential barrier with a transmission coefficient T and a reflection
coefficient R if the equation (2.1) where λ = k2 admits a solution ψ such that :

ψ =

{
Teikx, to the right of the barrier,

eikx +Re−ikx, to the left of the barrier.

Theorem 2.1. a) Let W be the phase plane formed by the representative points (ψ,ψ ′). Let

Bx1
(2) : Esr

(2) −→W, ψ 7−→Bx1
(2)ψ = (ψ(x1),ψ

′(x1)),

be an operator with ψ a solution of equation (2.1) whose initial conditions for x = x1 ∈ R are (ψ(x1),ψ
′(x1)). Then the space

Esr
(2) is isomorphic to W and the phase application of x1 to x2 defined by

gx2
x1
≡Bx2

(2)

(
Bx1

(2)

)−1
: W −→W, (ψ(x1),ψ

′(x1)) 7−→ (ψ(x2),ψ
′(x2)),

is a linear isomorphism.
b) If equation (2.1) where λ = k2, has a confounded solution with aeikx for x� 0 and with be−ikx for x� 0, then this

solution is null. In addition, for all k > 0 the ψ , T and R defined above exist and are unique.

Proof. a) Bx1
(2) is linear and for any representative point (ψ,ψ ′) ∈W , there exists from the existence theorem (differential

equations) a solution ψ satisfying the initial condition (ψ(x1),ψ
′(x1)). Then Im Bx1

(2) ≡ {B
x1
(2)ψ : ψ ∈ Esr

(2)} = W . Finally
Ker Bx1

(2) ≡ {ψ : ψ ∈ Esr
(2),B

x1
(2)ψ = 0}= 0, follows from the uniqueness theorem because the solution satisfying the initial

condition at the point x1 is equal to zero. The result follows from the fact that the inverse of an isomorphism is one. If ψ1 and
ψ2 are two solutions of equation (2.1), then (ψ(x1),ψ

′(x1)) = Bx1
(2)ψ1 +Bx1

(2)ψ2 = (ψ1(x1),ψ
′
1(x1))+(ψ2(x1),ψ

′
2(x1)), and

this is equivalent to(
Bx1

(2)

)−1
((ψ1(x1),ψ

′
1(x1))+(ψ2(x1),ψ

′
2(x1))) =

(
Bx1

(2)

)−1
(ψ1(x1),ψ

′
1(x1))+

(
Bx1

(2)

)−1
(ψ2(x1),ψ

′
2(x1)).

b) Let be 〈aeikx,aeikx〉, 〈be−ikx,be−ikx〉 and 〈aeikx,ae−ikx〉 the hermitian forms in the space Esc
(2). Let’s designate by [., .] the

left scalar product, then

〈aeikx,aeikx〉= i
2
[aeikx,ae−ikx] =

i
2

∣∣∣∣ a ia
a −ia

∣∣∣∣= |a|2.
Similarly, we have 〈be−ikx,be−ikx〉 = −|b|2 et 〈aeikx,ae−ikx〉 = 0. By setting z = z1eikx + z2e−ikx where z1 and z2 are the
coordinates of the vector z in the basis (eikx,e−ikx), we obtain 〈z,z〉 = |z1|2− |z2|2, i.e., 〈., .〉 is of type (1,1). Since the
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monodromy operator retains this hermitian form, we deduce that |a|2 =−|b|2 and so a = b = 0. Consider now a particle going
to +∞ and let eikx be a solution to the right of the barrier. To the left of the barrier this solution becomes

eikx y aeikx +be−ikx. (2.3)

From what precedes, the coefficient a is nonzero. So to have the solution in question, simply divide the two members of (2.3)

by a,
1
a

eikx y eikx +
b
a

e−ikx. Taking T =
1
a

and R =
b
a

, this shows that T and R are uniquely defined.

In the same way, we can define an operator Bx1
(3) of Esr

(3) in W that associates with each solution of equation (2.2), its initial
condition at the point x1. In this case, instead of ”phase application”, there will be ”phase point”.

We will now demonstrate a theorem that will be useful later.

Theorem 2.2. (Liouville). Let
dx
dt

= f (x), x = (x1, ...,xn), be a system of ordinary differential equations whose solutions extend

to the whole time axis. Let {gt} be the corresponding group of transformations : gtx = x+ f (x)t +o(t2), for t small. We denote

by D a domain in phase space, D(t)≡ gtD(0) and by v(t) the volume of D(t). If div f =
n

∑
j=1

∂ f j

∂x j
= 0, then v(t) = v(0), i.e., gt

preserves the volume of any domain.

Proof. We have v(t) =
∫

D(t)
dx =

∫
D(0)

∂gtx
∂x

dx, where
∂gtx
∂x

is the Jacobian matrix,
∂gtx
∂x

= I +
∂ f
∂x

t +o(t2). The determinant

of the operator I +
∂ f
∂x

t is equal to the product of the eigenvalues. These (taking into account their multiplicities) are equal to

1+ t
∂ f j

∂x j
where

∂ f j

∂x j
are the eigenvalues of

∂ f
∂x

. Then

det
∂gtx
∂x

= 1+ t
n

∑
j=1

∂ f j

∂x j
+o(t2) = 1+ t div f +o(t2).

Therefore, v(t) =
∫

D(0)
(1+ t div f +o(t2))dx, and

dv(t)
dt

∣∣∣∣
t=0

=
∫

D(0)
div f dx. Since t = t0 is not worse than t = 0, we also

have

dv(t)
dt

∣∣∣∣
t=t0

=
∫

D(t0)
div f dx,

and the proof of the theorem follows.

Note that the Liouville’s theorem is easily generalized to the case of non autonomous systems ( f = f (x, t)). Indeed, the

terms of first degree in the expression of
∂gtx
∂x

remain the same. But the terms of degree greater than one do not intervene in the
proof. In other words, Liouville’s theorem is a first order theorem.

Let SL(2,R) be the real unimodular group, i.e., the set of all real 2× 2 matrices with determinant one. In other words,
SL(2,R) is the group of all linear transformations of R2 that preserve oriented area [., .] (see the notation used in the proof of
theorem 2.1). Consider the group SU(1,1) of (1,1)-unitary unimodular matrices. This is the set of all complex 2×2 matrices
with determinant one preserving the hermitian form |z1|2−|z2|2 (see again the notation used in the proof of theorem 2.1). In

other words, they are matrices of the form
(

a b
c d

)
for which |a|2−|b|2 = |c|2−|d|2 = 1, ac−bd = 0, ad−bc = 1.

Theorem 2.3. The matrix of the monodromy operator M in the basis (coskx,sinkx) (resp. (eikx,e−ikx)) belongs to the group
SL(2,R) (resp. SU(1,1)).

Proof. We show that the determinant of the monodromy operator of the Schrödinger equation is equal to one. Note that
(coskx,sinkx) is a basis on the space Esr

(3). As Bx
(3) coskx = (coskx,−k sinkx) and Bx

(3) sinkx = (sinkx,k coskx), so W is
provided with a basis in which the matrix of the operator (we use here the same notation for the operator and the matrix) is
written

Bx
(3) =

(
coskx sinkx
−k sinkx k coskx

)
,
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hence detBx
(3) = k, independent of x. Let us denote by x+ the point x to the left of the support of the potential and by x− the

one on the right. We have the following situation :

M : Esr
(3) −→ Esr

(3), acoskx+bsinkx 7−→ ccoskx+d sinkx, (c,d) = Mu(a,b),

Bx−
(3) : Esr

(3) −→W, acoskx+bsinkx 7−→ (acoskx−+bsinkx−,−ak sinkx−+bk coskx−),

Bx+
(3) : Esr

(3) −→W, ccoskx+d sinkx 7−→ (acoskx++bsinkx+,−ak sinkx++bk coskx+),

gx+
x− : W −→W, (acoskx−+bsinkx−,−ak sinkx−+bk coskx−) 7−→ (acoskx++bsinkx+,−ak sinkx++bk coskx+).

We verify directly that : gx+
x−oBx−

(3) = Bx+
(3)oM , and since detBx+

(3) = Bx−
(3), so we have detM = detgx+

x− . Now gx preserves the
areas according to Liouville’s theorem (indeed, by putting ψ1 = ψ , ψ2 = ψ ′, we rewrite equation (2.1) under form

ψ
′
1 = ψ2 ≡ f1, ψ

′
2 = (u(x)−λ )ψ1 ≡ f2.

Here we have f = ( f1, f2), t = x and div f =
∂ψ2

∂ψ1
+

∂ (u(x)−λ )ψ1

∂ψ2
= 0). Therefore, detgx+

x− = 1 and consequently detM = 1.

For the case of SU(1,1), we will show that the matrix (also denoted M ) of an operator is real and unimodular in the basis
(coskx,sinkx) if and only if it is special (1,1)-unitary in complex conjugate basis (eikx,e−ikx). By setting as in the proof
of theorem 1, z = z1eikx + z2e−ikx where z1 and z2 are the coordinates of the vector z in the basis (eikx,e−ikx), we obtain
〈z,z〉= |z1|2−|z2|2, i.e., 〈., .〉 is of type (1,1). The monodromy operator conserves this hermitian form. Say that M is real and
unimodular in the basis (coskx,sinkx) is equivalent to M ∈ GL(2,R)∩SL(2,C) or what amounts to the same M ∈ SU(1,1)
or what is equivalent M is (1,1)-unitary and unimodular in the basis (eikx,e−ikx).

Define the solutions ψ1(x,λ ) and ψ2(x,λ ) of equation (2.1) by the initial conditions : ψ1(0,λ ) = 1, ψ ′1(0,λ ) = 0,
ψ2(0,λ ) = 0, ψ ′2(0,λ ) = 1. For the simple case u(x) = 0, we obviously have

ψ1(x,λ ) = cos
√

λx = 1+
(
−1

2
λ

)
x2 +

(
1
24

λ
2
)

x4 +O
(

x6
)
, (2.4)

ψ2(x,λ ) =
1√
λ

sin
√

λx = x+
(
−1

6
λ

)
x3 +

(
1

120
λ

2
)

x5 +O
(
x7) .

For
√

λ , we can choose for example the determination
√

λ =
√

rei θ
2 where λ = reiθ with r > 0 and −π < θ < π . Let α be an

arbitrary real number. The function ψ(x,λ ) = ψ1(x,λ )+αψ2(x,λ ) is also solution of equation (2.1) and satisfies the boundary
condition ψ ′(0,λ )−αψ(0,λ ) = 0. For α = 0, we have ψ(x,λ ) = ψ1(x,λ ) and for α = ∞, we put ψ(x,λ ) = ψ2(x,λ ). We
assume that for λ ∈ C and x≥ 0, we have

ψ(x,λ ) = cos
√

λx+
∫ x

0
K(x, t)cos

√
λ tdt, (2.5)

where K is a function to be determined, subject to the condition of having partial derivatives of order one and order two
continuous in the set of real pairs (x, t) such that : 0≤ t ≤ x. In other words, we look for ψ(x, .) as a perturbation of the function
x 7→ψ(x,λ ) = cos

√
λx and precisely, as a transform (I+K)ψ1(x, .) where K is a Volterra operator in [0,+∞[. We will look for

the conditions that K(x, t) must satisfy for the function (2.5) to be a solution of the differential equation (2.1). From equation
(2.5), we get

∂ 2ψ

∂x2 (x,λ )=−λ cos
√

λx+
dK(x,x)

dx
cos
√

λx−
√

λK(x,x)sin
√

λx+
∂K(x, t)

∂x

∣∣∣∣
t=x

cos
√

λx+
∫ x

0

∂ 2K(x, t)
∂x2 cos

√
λ tdt. (2.6)

Let’s calculate the expression λ

∫ x

0
K(x, t)cos

√
λ tdt, by doing two integrations in parts, we get

λ

∫ x

0
K(x, t)cos

√
λ tdt =

√
λK(x,x)sin

√
λx+

∂K(x, t)
∂ t

∣∣∣∣
t=x

cos
√

λx− ∂K(x, t)
∂ t

∣∣∣∣
t=0
−
∫ x

0

∂ 2K(x, t)
∂ t2 cos

√
λ tdt. (2.7)
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To calculate expression (2.1), substitute (2.6) and (2.7),

0 = ψ
′′+(λ −u(x))ψ

=
dK(x,x)

dx
cos
√

λx+
(

∂K(x, t)
∂ t

+
∂K(x, t)

∂x

)
x=t

cos
√

λx− ∂K(x, t)
∂ t

∣∣∣∣
t=0
−u(x)cos

√
λx

+
∫ x

0

(
∂ 2K(x, t)

∂x2 − ∂ 2K(x, t)
∂ t2 −u(x)K(x, t)

)
cos
√

λ tdt.

We have

∂ 2K(x, t)
∂x2 −u(x)K(x, t) =

∂ 2K(x, t)
∂ t2 , (2.8)

with the boundary conditions

∂K(x, t)
∂ t

∣∣∣∣
t=0

= 0, (2.9)

dK(x,x)
dx

=
1
2

u(x). (2.10)

For the initial conditions, we have ψ(0,λ ) = 1 and ψ ′(0,λ ) = K(0,0). As ψ ′(0,λ )−αψ(0,λ ) = 0, then K(0,0) = α .
Therefore,

K(x,x) = α +
1
2

∫ x

0
u(t)dt. (2.11)

If u(x) has a continuous derivative, then there exists a unique solution of (2.8), satisfying conditions (2.9) and (2.11). Hence,
there exists a satisfying function K(x, t) (2.5). Let’s solve equation (2.5) as an equation of Volterra, we get

cos
√

λx = ψ(x,λ )−
∫ x

0
K1(x, t)ψ(t,λ )dt, (2.12)

and in the same way as before, we show that K1(x, t) is solution of the equation

∂ 2K1(x, t)
∂x2 =

∂ 2K1(x, t)
∂ t2 −u(t)K1(x, t),

with the conditions
(

∂K1

∂ t
−αK1

)
t=0

= 0, K1(x,x) = α +
1
2

∫ x

0
u(t)dt.

For the case α = ∞, we look for ψ(x,λ ) as a perturbation of the function x 7−→ ψ(x,λ ) =
1√
λ

sin
√

λx (see expression

(2.4)) or what is equivalent as a transform (I +K)ψ1(x, .) where K is a Volterra operator in [0,+∞[. In other words, we set
λ ∈ C and x≥ 0,

ψ(x,λ ) =
sin
√

λx√
λ

+
∫ x

0
L(x, t)

sin
√

λx√
λ t

dt, (2.13)

where L is a function to be determined, subject to the condition of having partial derivatives of order one and order two
continuous in the set of real pairs (x, t) such that : 0≤ t ≤ x. By reasoning as before, we obtain the relation

∂ 2L(x, t)
∂x2 −u(x)L(x, t) =

∂ 2L(x, t)
∂ t2 ,

with the conditions L(x,x) = 0, L(x,x) =
1
2

∫ x

0
u(t)dt. By solving equation (2.13), we obtain

sin
√

λx√
λ

= ψ(x,λ )+
∫ x

0
L1(x, t)ψ(t,λ )dt. (2.14)
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The functions L(x, t) and L1(x, t) have the same properties as the functions K(x, t) and K1(x, t) previously obtained.

Recall that for every function f ∈ L2(R), we have the Parseval identity
∫

∞

0
f 2(x)dx =

∫
∞

−∞

F2(λ ).dρ(λ ) where F{ f (x)} ≡

F(λ ) =
∫

∞

0
f (x)ψ(x,λ )dx is the Fourier transform of f (x) and ρ(λ ) a monotone function, bounded on any finite interval. The

sequence of functions Fn(λ ) =
∫ n

0
f (x)ψ(x,λ )dx, converges in quadratic mean (with respect to the spectral measure ρ(λ )) to

F(λ ), i.e., lim
n→∞

∫
∞

−∞

(F(λ )−Fn(λ ))
2dρ(λ ) = 0. We choose ρ(λ ) in the following form : ρ(λ ) =

2
π

√
λ +σ(λ ) if λ > 0 and

ρ(λ ) = σ(λ ) if λ < 0, where σ(λ ) is a measure with compact support satisfying the condition :
∫

∞

−∞

|λ |.|dσ(λ )|<+∞. For

0 < b < y < a < x, the functions
∫ x

a
ψ(t,λ )dt and

∫ y

b
cos
√

λ tdt are orthogonal with respect to ρ(λ ). In other words, we have

the orthogonality relation :

I ≡
∫

∞

−∞

(∫ x

a
ψ(t,λ )dt

)(∫ y

b
cos
√

λ tdt
)

dρ(λ ) = 0.

Indeed, by integrating equation (2.12) from b to y, we obtain∫ y

b
cos
√

λ tdt =
∫ y

b
ψ(t,λ )dt−

∫ y

b
dt
∫ t

0
K1(t,s)ψ(s,λ )ds,

=
∫ y

b
ψ(t,λ )dt−

∫ b

0
ψ(s,λ )ds

∫ y

b
K1(t,s)dt−

∫ y

b
ψ(s,λ )dt

∫ y

s
K1(t,s)dt.

By definition, this function is expressed using the transform (in ψ(t,λ )) of a null function outside the interval ]b,y[. Since
]b,y[∩]a,x[= /0, we deduce from Parseval’s equality that we have I = 0.

To obtain the Gelfand-Levitan integral equation [4, 5], we proceed as follows: according to equation (2.5), we have∫ x

a
ψ(t,λ )dt =

∫ x

a
cos
√

λ tdt +
∫ x

a
dt
∫ t

0
K(t,s)cos

√
λ sds,

=
∫ x

a
cos
√

λ tdt +
∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt,

by virtue of Lebesgue-Fubini’s theorem. Therefore,

I =
∫

∞

−∞

(∫ x

a
cos
√

λ tdt
)(∫ y

b
cos
√

λ tdt
)

dρ(λ )

+
∫

∞

−∞

(∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt
)

dρ(λ ) = 0.

This expression can be written using the definition of ρ(λ ), in the form

I =
∫

∞

−∞

(∫ x

a
cos
√

λ tdt
)(∫ y

b
cos
√

λ tdt
)

dσ(λ )

+
∫

∞

−∞

(∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt
)

dσ(λ )

+
2
π

∫
∞

−∞

(∫ x

a
cos
√

λ tdt
)(∫ y

b
cos
√

λ tdt
)

dσ(λ )

+
2
π

∫
∞

−∞

(∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt
)

dσ(λ ) = 0.

Since b < y < a < x, then given the Parseval identity, the third term is equal to zero while the fourth is equal to

∫ y

b

(∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt

)
ds =

∫ y

b
ds
∫ x

a
K(t,s)dt.
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Therefore,

I =
∫

∞

−∞

(sin
√

λx− sin
√

λa)(sin
√

λy− sin
√

λb)
λ

dσ(s)

+
∫

∞

−∞

(∫ a

0
cos
√

λ sds
∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds
∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ sds
)

dσ(λ )

+
∫ y

b
ds
∫ x

a
K(t,s)dt = 0.

By setting

F(x,y)≡
∫

∞

−∞

sin
√

λxsin
√

λy
λ

dσ(λ ),

and

G(x,s)≡


∫ x

a K(t,s)dt, 0≤ s≤ a∫ x
s K(t,s)dt, a≤ s≤ x

0, s > x

the equation above becomes

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds
∫ x

a
K(t,s)dt +

∫
∞

−∞

(∫ x

0
G(x,s)cos

√
λ sds

)(∫ y

b
cos
√

λ sds
)

dσ(λ ) = 0.

This last equation can still be written, doing an integration by parts and noticing that G(x,x) = 0,

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds
∫ x

a
K(t,s)dt+

∫
∞

−∞

(∫ x

0

∂G(x,s)
∂ s

sin
√

λ s√
λ

ds

)(
sin
√

λy− sin
√

λb√
λ

)
dσ(λ )= 0.

(2.15)

But ∫
∞

−∞

(∫ x

0

∂G(x,s)
∂ s

sin
√

λ s√
λ

ds

)(
sin
√

λy− sin
√

λb√
λ

)
dσ(λ ),

=
∫ x

0

∂G(x,s)
∂ s

(∫
∞

−∞

(
sin
√

λ ssin
√

λy− sin
√

λ ssin
√

λb
λ

)
dσ(λ )

)
ds,

=
∫ x

0

∂G(x,s)
∂ s

(F(s,y)−F(s,b))ds,

=−
∫ x

0
G(x,s)

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds,

=−
∫ a

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds
(∫ x

a
K(t,s)dt

)
−
∫ x

a

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds
(∫ x

s
K(t,s)dt

)
,

=
∫ x

a
dt
∫ t

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds,

so equation (2.15) becomes

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds
∫ x

a
K(t,s)dt +

∫ x

a
dt
∫ t

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds = 0.

Deriving this expression with respect to y and then with respect to x (the support of the measure σ is compact), we obtain

∂ 2F
∂x∂y

+
∫ x

0
K(x,s)

∂ 2F(s,y)
∂ s∂y

+K(x,y) = 0.
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By setting f (x,y) ≡ ∂ 2F
∂x∂y

, we finally obtain the Gelfand-Levitan integral equation for the function x 7−→ K(x,y) valid for

0 < y < x,

f (x,y)+K(x,y)+
∫ x

0
K(x,s) f (s,y)ds = 0, y≤ x. (2.16)

For the case α = ∞, i.e., ψ(x,λ ) = ψ2(x,λ ), just integrate the two members of equation (2.14) from 0 to x and use a similar
reasoning. Under the continuity assumption of K, equation (2.16) must be checked for x = 0 and x = y. Note also that if we set
x in the previous equation, then we will obtain the so called Fredholm’s linear integral equation. We can prove that, conversely,
equation (2.16) admits a single continuous solution in the set of pairs of real numbers such that : 0≤ t ≤ x. We will not look
for the solution at this level, it will be done later (in the next section) when we treat the Korteweg-de-Vries equation.

3. KdV equation and the inverse diffusion method

Let us first examine some particular solutions of the equation of KdV (1.1), of the kind of progressive waves u(x, t) = s(x− ct),

where c is the phase velocity. By replacing this expression in (1.1), we obtain −c
∂ s
∂x
−6s

∂ s
∂x

+
∂ 3s
∂x3 = 0. By integrating

this equation with respect to x and imposing the boundary condition that s and its derivatives decrease for |x| −→ ∞, we get

−cs−3s2 +
∂ 2s
∂x2 = 0, hence −cs−2s3 +

(
∂ s
∂x

)2

= 0, and the exact expression of the solution s requires the use of elliptic

functions. Suppose that
∂ s
∂x

(0) = 0, in which case the solution of this last equation is s(x− ct) =− c
2

sech2
√

c
2

(x− ct), where

sech denotes the hyperbolic secant, i.e.,
1

cosh
. Therefore u(x,0) = u0 sech2 x

l
, where u0 ≡ −

c
2

et l2 ≡ 4
c

. This expression
shows that u removes infinitely long time in the position u ' 0, then it reaches the value u0, is reflected on this point and
returns again in the position of u' 0. This solution is called soliton. To obtain this solution, we can use the so-called Bäcklund
transformations for the Korteweg de Vries equation.

When solitons collide, dimensions and speeds of solutions do not change after collision. This phenomenon has suggested
the idea of conservation laws. And indeed, Kruskal, Zabusky, Lax, Gardner, Green and Miura [6, 7, 8, 9, 10, 11, 12, 13, 14]

have been able to find a whole series of first integrals for the KdV equation. These integrals are of the form
∫

Pn

(
u, ...,u(n)

)
dx,

where Pn is a polynomial. Indeed, the conservation equations that can be deduced from the KdV equation take the following

general form :
∂Pn

∂ t
+

∂Qn

∂x
= 0, where Pn and Qn form a series of functions of which here are the first three:

(i) The KdV equation can be written in the form

∂u
∂ t

+
∂

∂x

(
−3u2 +

∂ 2u
∂x2

)
= 0 =⇒ P1 = u, Q1 =−3u2 +

∂ 2u
∂x2 .

(ii) Multiply the KdV equation by u, this gives

u
∂u
∂ t
−6u2 ∂u

∂x
+u

∂ 3u
∂x3 = 0,

∂

∂ t

(
u2

2

)
+

∂

∂x

(
−2u3 +u

∂ 2u
∂x2 −

1
2

(
∂u
∂x

)2
)

= 0.

Hence,

P2 =
u2

2
, Q2 =−2u3 +u

∂ 2u
∂x2 −

1
2

(
∂u
∂x

)2

.

(iii) We have(
3u2− ∂ 2u

∂x2

)(
∂u
∂ t
−6u

∂u
∂x

+
∂ 3u
∂x3

)
= 0,

(
3u2 ∂u

∂ t
+

∂u
∂x

∂ 2u
∂x∂ t

)
+

(
−18u3 ∂u

∂x
+3u2 ∂ 3u

∂ t3 +6u
∂u
∂x

∂ 2u
∂x2 −

∂ 2u
∂x2

∂ 3u
∂x3 −

∂ 2u
∂x2

∂u
∂ t
− ∂u

∂x
∂ 2u
∂x∂ t

)
= 0.

Therefore,

∂

∂ t

(
u3 +

1
2

(
∂u
∂x

)2
)
+

∂

∂ t

(
−9

2
u4 +3u2 ∂ 2u

∂x2 −
1
2

(
∂ 2u
∂x2

)2

− ∂u
∂x

∂u
∂ t

)
= 0.
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Consequently,

P3 = u3 +
1
2

(
∂u
∂x

)2

, Q3 =−
9
2

u4 +3u2 ∂ 2u
∂x2 −

1
2

(
∂ 2u
∂x2

)2

− ∂u
∂x

∂u
∂ t

.

If u vanishes for x→ ∞, we get
∂

∂ t

∫
Pndx = 0, then

∫
Pndx are first integrals of the KdV equation. Let u(x, t) =

∂y
∂x

(x, t) and

suppose that
∂y
∂ t

,
∂y
∂x

,
∂ 3y
∂ t3 decay when |x| → ∞. The KdV equation, is written

∂y
∂ t
−3
(

∂y
∂x

)2

+
∂ 3y
∂ t3 = 0.

Hence,

∂

∂ t

∫
∞

−∞

y(x, t)dx = 3
∫

∞

−∞

(
∂y
∂x

)2

(x, t)dx = 3
∫

∞

−∞

u2(x, t)dx = constant.

Since u =
∂y
∂x

, we have also

∂

∂ t

∫
∞

−∞

y(x, t)dx =
∂

∂ t

∫
∞

−∞

∫ x

−∞

u(z, t)dzdx = x
∂

∂ t

∫ x

−∞

u(z, t)dz
∣∣∣∣∞
−∞

− ∂

∂ t

∫
∞

−∞

u(z, t)dx =− ∂

∂ t

∫
∞

−∞

xu(x, t)dx,

because by hypothesis u2 and
∂ 2u
∂x2 tend to 0 when |x| → ∞. Comparing the two expressions obtained, we obtain a new first

integral

∂

∂ t

∫
∞

−∞

xu(x, t)dx = constante.

Lax [7] showed that the equation of KdV is equivalent to the equation :
dA
dt

= [A,B], where

A =− ∂ 2

∂x2 +u(x, t), B = 4
∂ 3

∂x3 −3
(

u
∂

∂x
+

∂u
∂x

)
.

We deduce that the spectrum of A is conserved : if A is a symmetric operator (A> = A) and T an orthogonal transformation
(T> = T−1), then the spectrum of T−1AT coincides with that of A. The appearance of an infinite series of first integrals is
easily explained by the Lax equation.
The Sturm-Liouville equation Aψ = λψ , where λ is a real parameter, can be written in the form

∂ 2ψ

∂x2 +(λ −u(x, t))ψ = 0. (3.1)

This equation reminds us the stationary Schrödinger equation. We will see that the complete solution of the KdV equation
is closely related to the solution of this equation. We will look at solutions for which u decreases fast enough for x−→±∞.
There are other interesting conditions to know: the case where u(x, t) tends to different constants for |x| −→ ∞ and the one
where u(x, t) is periodic in x. So consider equation (3.1) where u(x, t) is the solution of the KdV equation (1.1). It is assumed
that after a certain time equation (3.1) has N bound states with energy λn =−k2

n, n = 1,2, ...,N and continuous states with for
energy λ = k2. We draw u from equation (3.1) and replace it in equation (1.1). After a long calculation, after multiplying by
ψ2, we get the expression

∂λ

∂ t
.ψ2 +

∂

∂x

(
ψ

∂ϒ

∂x
− ∂ψ

∂x
ϒ

)
= 0, (3.2)

where ϒ≡ ∂ψ

∂ t
+

∂ 3ψ

∂x3 −3(u+λ )
∂ψ

∂x
.
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Theorem 3.1. a) For the study of the discrete part of the spectrum λn(t) =−k2
n(t), we consider ψn (measurable and square

integrable function) and we show that if ψn and
∂ψn

∂x
tend to zeros when |x| goes to infinity, then λn(t) = constant and the

solution of equation (3.1) is given by ψn(t) = cn(0)ekn(x−4k2
nt), where cn(0) is determined by the initial condition u(x,0) = u0(x)

of the KdV equation.
b) For the study of the continuous part of the spectrum λ (t) = k2(t), we assume that a stationary plane wave propagates

from x =−∞ and meets a potential u(x, t) with a transmission coefficient T and a reflection coefficient R. In this case equation
(3.1) admits a solution ψ such that :

ψ =

{
T (k, t)eikx, x→+∞ (i.e., to the right of the potential barrier)

eikx +R(k, t)e−ikx, x→+−∞ (i.e., to the left of the potential barrier)

where |R|2 + |T |2 = 1. If u ' 0 for |x| → ∞, then we have T (k, t) = T (k,0) and R(k, t) = R(k,0)e−8ik3t where R(k,0) and
T (k,0) are determined by the initial condition u(x,0) = u0(x) of the KdV equation.

Proof. a) Just integrate equation (3.2), this gives

∂λn

∂ t
.
∫

∞

−∞

ψ
2
n dx+ψn

∂ϒ

∂x
− ∂ψn

∂x
ϒ = 0.

By hypothesis, ψn ∈ L2 and ψn,
∂ψn

∂x
tend to zeros when |x| goes to infinity, so ψn

∂ϒ

∂x
− ∂ψn

∂x
ϒ tends to 0 for |x| → ∞ and

we deduce that λn(t) = constant. Now, since
∂λ

∂ t
= 0, then equation (3.2) becomes

∂

∂x

(
ψ

∂ϒ

∂x
− ∂ψ

∂x
ϒ

)
= 0. Let’s integrate

this expression twice,

(
ψ

∂ϒ

∂x −
∂ψ

∂x ϒ

)
ψ2 =

A
ψ2 , i.e.,

(
ϒ

ψ

)′
=

A
ψ2 , hence, ϒ = ψ

∫ A(t)
ψ2 dx+B(t)ψ , where A(t) and B(t) are

integration constants. So we have

∂ψn

∂ t
+

∂ 3ψn

∂x3 −3(u+λn)
∂ψn

∂x
= ψn

∫ An

ψ2
n

dx+Bnψn. (3.3)

Note that An(t) = 0 because ψn satisfies (3.3) and decreases to zeros for t→−∞. Let’s consider u∼= 0 for x→−∞ because
otherwise ψn would not have the decay assumption. Multiply (3.3) by ψn and integrate∫

∞

−∞

ψn
∂ψn

∂ t
dx+

∫
∞

−∞

(
ψn

∂ 3ψn

∂x3 −3λnψn
∂ψn

∂x

)
dx = Bn

∫
∞

−∞

ψ
2
n dx.

This expression can be written, by adding and subtracting
∂ψn

∂x
∂ 2ψn

∂x2 ,

∫
∞

−∞

1
2

∂ψ2
n

∂ t
dx+

∫
∞

−∞

∂

∂x

(
ψn

∂ 2ψn

∂x2 −
3
2

λnψ
2
n −

1
2

(
∂ψn

∂x

)2
)

dx = Bn

∫
∞

−∞

ψndx.

We have Bn(t) = 0 because ψn ∈ L2 and decreases to zeros when x→−∞. Since u∼= 0 for x→−∞, then from equation (3.2),

it comes ψn(x, t) = cn(t)eknx, x→−∞. By replacing the latter in equation (3.3), we obtain
(

∂cn

∂ t
+4cnk3

n

)
eknx = 0, hence

cn(t) = cn(0)e−4k3
nt . Consequently, ψn(x, t) = cn(0)ekn(x−4k2

nt).
b) Choose λ = constant since the spectrum for λ > 0 is continuous. So equation (3.3) remains valid,

∂ψ

∂ t
+

∂ 3ψ

∂x3 −3(u+λ )
∂ψ

∂x
= ψ

∫ A
ψ2 dx+Bψ. (3.4)

For u∼= 0, when x→+∞, we replace ψ = T (k, t)eikx, λ = k2 in equation (3.4) and we get
∂T
∂ t
−4ik3T =

A
T

∫
e−2ikxdx+BT .

For this equation to preserve meaning when x→+∞, we must have A = 0, hence

∂T
∂ t
− (4ik3 +B)T = 0. (3.5)
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Similarly, for u∼= 0, when x→−∞, we replace ψ = eikx +R(k, t)e−ikx, λ = k2 in equation (3.4) and we get(
∂R
∂ t

+4ik3R−BR
)

e−ikx− (4ik3 +B)eikx = A(eikx +Re−ikx)
∫ dx

e2ikx +R2e−2ikx +2R
.

For x→+∞, the equation above preserves a sense if A = 0 and is written(
∂R
∂ t

+4ik3R−BR
)

e−ikx− (4ik3 +B)eikx = 0.

For 4ik3 +B = 0, equation (3.5) implies that T (k, t) = T (k,0) while the condition
∂R
∂ t

+4ik3R−BR = 0, gives us R(k, t) =

R(k,0)e−8ik3t .

The knowledge of cn(t), kn(t), n = 1,2, ...,N and R(k, t) allows to express u(x, t) for any time; it is the problem of the
inverse diffusion. The latter is reduced to the solution K(x,y; t) (to simplify the notations, the reader can obviously use K(x,y)
instead of K(x,y; t)), of the Gelfand-Levitan linear integral equation :

K(x,y; t)+ I(x+ y, t)+
∫ x

−∞

I(y+ z, t)K(x,z; t)dz = 0, y≤ x (3.6)

where

I(x+ y, t) =
1

2π

∫
∞

−∞

R(k, t)e−ik(x+y)dk+
N

∑
n=1

c2
n(t)e

kn(t)(x+y).

The solution u(x, t) of the KdV equation is then given (see (2.10)) by

u(x, t) = 2
d
dx

K(x,x; t). (3.7)

The nonlinear KdV equation is transformed into the linear Gelfand-Levitan equation. The initial problem is thus completely
solved. This method presents two major simplifications. First, in the analytical approach of the solution of the KdV equation,
it suffices at each stage to solve only linear equations. Then t only appears parametrically and more than for all t the
Gelfand-Levitan equation seems superficially to be an integral equation of two variables, actually x intervenes as a parameter
and so we have to do to a family of integral equations for the functions K(x,y) of a single variable y. Before dealing
with the general case, i.e., the case of distinct N solitons, let us return first to the case of a soliton and therefore consider

the solution u(x, t) =− c
2

sech2
√

c
2

(x− ct) of the KdV equation obtained previously with the following initial condition :

u(x,0) =−2 sech2x, where by convention we put c = 4. The Schrödinger equation (3.1) is written

∂ 2ψ

∂x2 +(2 sech2x+λ )ψ = 0. (3.8)

To study equation (3.8), one poses

ψ = A sechα x.w(x), (3.9)

where A is an arbitrary amplitude, α2 =−λ and w satisfies the equation

∂ 2w
∂x2 −2α tanhx

∂w
∂x

+(2+α−α
2) sech2x.w = 0.

By doing the substitution u =
1
2
(1− tanhx), the last equation comes down to a hypergeometric differential equation or Gaussian

equation :

u(1−u)
∂ 2w
∂u2 +(c− (a+b+1)u)

∂w
∂u
−abw = 0,
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where a,b,c denote constants and are equal to a = 2+α , b =−1+α , c = 1+α . This equation presents three regular singular
points : u = 0, u = 1, u = ∞. The solution of this equation for u = 0 is

w≡ F(a,b,c,u) = 1+
ab
c
.

u
1!

+
a(a+1)b(b+1)

c(c+1)
.
u2

2!
+

a(a+1)...(a+n−1)b(b+1)...(b+n−1)
c(c+1)...(c+n−1)

.
un

n!
+ · · · (3.10)

For x→ ∞ (i.e., when u→ 0), we have w→ 1. According to (3.9), we have ψ = A2α(ex + e−x)−α .w(x) and this one tends to
Ae2α e−αx when x→ ∞. To represent a plane wave Aeikx going to +∞, we will put α =−ik. The asymptotic form of the wave
function for x→−∞ (u→ 1) is obtained by transforming the hypergeometric function using the well-known functional relation
:

F(a,b,c,u)=
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

F(a,b,a+b−c+1,1−u)+(1−u)c−a−b Γ(c)Γ(a+b− c)
Γ(a)Γ(b)

F(c−a,c−b,c−a−b+1,1−u),

where Γ(z) =
∫

∞

0
e−tez−1dt, Re z > 0, is the Euler Gamma function. Taking into account (3.10) and the expression above, the

relation (3.9) becomes

ψ = A sechα x
[

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(
1+

ab
a+b− c+1

(1−u)+ · · ·
)

+ (1−u)c−a−b Γ(c)Γ(a+b− c)
Γ(a)Γ(b)

(
1+

(c−a)(c−b)
c−a−b+1

(1−u)+ · · ·
)]

.

When u→ 1 (x→−∞), we have (1−u)c−a−b→ e−2αx and since α =−ik, then

ψ −→ Aeα Γ(c)Γ(a+b− c)
Γ(a)Γ(b)

(
eikx +

Γ(c−a−b)Γ(a)Γ(b)
Γ(c−a)Γ(c−b)Γ(a+b− c)

)
.

This expression combined with the fact that ψ tends to Ae2α e−α , x→∞, give us the transmission coefficient T and the reflection
coefficient R,

T =
Γ(a)Γ(b)

Γ(c)Γ(a+b− c)
, R =

Γ(c−a−b)Γ(a)Γ(b)
Γ(c−a)Γ(c−b)Γ(a+b− c)

.

We have k1 = 1, c(0) =
√

2, R(k,0) = 0. For an individual soliton, equation (1.1) has a precise solution. It turns out that the
soliton of amplitude u0 has only one discrete level with eigenvalue λ =

u0

2
, while the next level corresponds to the point λ = 0

(with the respective eigenfunction ψ = tanhx) and already belongs to the continuous spectrum. The Gelfand-Levitan equation
(3.6) where I(µ, t) = c2

1(t)e
k1µ = c2

1(0)e
−8k1tek1t = 2e−8t+µ is written

K(x,y; t)+2e−8t+x+y +2e−8t+y
∫ x

−∞

ezK(x,z; t)dz = 0.

By putting K(x,y, t) = f (x)ey, we obtain f (x) + 2e−8t+x + e−8t+2x f (x) = 0, hence, f (x) =−2
e−x

1+ e8t−2x . Therefore, the

solution (3.7) of the KdV equation in the case of a solitary wave is

u(x, t) = 2
d
dx

K(x,x, t) =− 2
cosh2(x−4t)

=−2 sech2(x−4t).

We will now look at the case of N-solitons through the procedure suggested by Gardner, Green, Kruskal, Miura [8] and to
use the results of [15]. In order to solve the Gelfand-Levitan equation (3.6), where R(k, t) = 0, one poses

K(x,y) =
N

∑
n=1

wn(x, t)ekny, (3.11)

where wn are functions to be determined. By replacing this expression in the Gelfand-Levitan equation, we obtain the following
system of linear algebraic equations for wn, n = 1, ...,N :

w1(x, t)+ c2
1(t)e

k1x +∑
N
m=1 c2

1(t)
e(k1+km)x

k1+km
wm(x, t) = 0,

...
wN(x, t)+ c2

N(t)e
kN x +∑

N
m=1 c2

N(t)
e(kN+km)x

kN+km
wm(x, t) = 0.
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Define the following notations : A =
(

c2
n(t)e

(kn+km)x
)

, W = (w1 · · ·wN)
>, G =

(
c2

1(t)e
k1x · · ·c2

N(t)e
kN x
)>,

P≡ (Pnm) =

(
δnm + c2

n(t)
e(kn+km)x

kn + km

)
= I +A, (3.12)

where I is the unit matrix. With these notations, the system above is written PW = −G, and it is easy to show that it has a
unique solution. From equation (3.11), we draw K(x,x) = h>w =−h>P−1G, h≡

(
ek1x · · ·ekN x

)>. Or

d
dx

Pnm = c2
meknx.ekmx, detP =

N

∑
n=1

(
δnm + c2

n(t)
e(kn+km)x

kn + km

)
αnm,

and P−1 =
αnm

detP
, where αnm is the cofactor of P, so

K(x,x) =−∑
n,m

αnm

detP
d
dx

Pnm =− 1
detP

d
dx

(detP) =− d
dx

lndetP,

and according to (3.7), we have u = 2
d
dx

K(x,x) =−2
d2

dx2 lndetP. Therefore,

Theorem 3.2. The solution of the KdV equation is given by the function

u =−2
d2

dx2 lndetP,

where P is defined by (3.12) and whose cn(t) = cn(0)e−4k3
nt , with kn > 0 distinct.

The function obtained in the this theorem is negative for all x, continuous and behaves like the exponential when |x| → ∞.
To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose that k1 < k2 < ... < kN−1 < kN .
We will need the following result :

∆≡

∣∣∣∣∣∣∣∣∣∣

1
a1−b1

1
a1−b2

. . . 1
a1−bn

1
a2−b1

1
a2−b2

. . . 1
a2−bn

...
. . .

1
an−b1

1
an−b2

. . . 1
an−bn

∣∣∣∣∣∣∣∣∣∣
= (−1)

n(n−1)
2

∏ j<k(a j−ak)∏ j<k(b j−bk)

∏ j,k(a j−bk)
.

Consider the following determinant :

∆ =

∣∣∣∣∣∣
1+ c2

1b11 c2
1b12 c2

1b13
c2

2b21 1+ c2
2b22 c2

2b23
c2

3b31 c2
3b32 1+ c2

3b33

∣∣∣∣∣∣ ,
where c1c2c3 6= 0. If we divide the 1st line by c1, the 2nd line by c2 and the 3nd line by c3, we will have

∆ = c1c2c3

∣∣∣∣∣∣∣∣
1+c2

1b11
c1

c1b12 c1b13

c2b21
1+c2

2b22
c2

c2b23

c3b31 c3b32
1+c2

3b33
c3

∣∣∣∣∣∣∣∣ .
Multiply the 1st column by c1, the 2nd column by c2 and the 3nd column by c3, we get

∆ =

∣∣∣∣∣∣
1+ c2

1b11 c1c2b12 c1c3b13
c2c1b21 1+ c2

2b22 c2c3b23
c3c1b31 c3c2b32 1+ c2

3b33

∣∣∣∣∣∣ .
So for the determinant of order N, just use the same procedure, i.e., by dividing the jnd row by c j and multiply the jnd column
by c j
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Theorem 3.3. The explicit solution of N-solitons of the KdV equation is given by

u(x, t) =


−2

N

∑
n=1

k2
n sech2(knξn +δ

+
n ), t→+∞

−2
N

∑
n=1

k2
n sech2(knξn +δ

−
n ), t→−∞

where the phase changes are given by

δ
+
n ≡

1
2

ln
c2

n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2

, δ
−
n ≡

1
2

ln
c2

n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2

.

Proof. The determinant of the matrix P is written explicitly in the form

detP =

∣∣∣∣∣∣∣∣∣∣∣∣

1+ c2
1(t)
2k1

e2k1x c2
1(t)

k1+k2
e(k1+k2)x . . .

c2
1(t)

k1+k j
e(k1+k j)x . . .

c2
1(t)

k1+kN
e(k1+kN)x

c2
2(t)

k2+k1
e(k2+k1)x 1+ c2

2(t)
2k2

e2k2x c2
2(t)

k2+k j
e(k2+k j)x . . .

c2
2(t)

k2+kN
e(k2+kN)x

...
. . .

c2
N(t)

kN+k1
e(kN+k1)x c2

N(t)
kN+k2

e(kN+k2)x . . .
c2

N(t)
kN+k j

e(kN+k j)x 1+ c2
N(t)
2kN

e2kN x

∣∣∣∣∣∣∣∣∣∣∣∣
Applying the previous remark to the determinant detP above, we obtain

detP =

∣∣∣∣∣∣∣∣∣∣∣

1+ c2
1(t)
2k1

e2k1x c1(t)c2(t)
k1+k2

e(k1+k2)x . . . c1(t)cN(t)
k1+kN

e(k1+kN)x

c2(t)c1(t)
k2+k1

e(k2+k1)x 1+ c2
2(t)
2k2

e2k2x . . . c2(t)cN(t)
k2+kN

e(k2+kN)x

...
. . .

cN(t)c1(t)
kN+k1

e(kN+k1)x cN(t)c2(t)
kN+k2

e(kN+k2)x . . . 1+ c2
N(t)
2kN

e2kN x

∣∣∣∣∣∣∣∣∣∣∣
Since c j(t) = c j(0)e

−4k3
j t , then

detP =

∣∣∣∣∣∣∣∣∣∣∣

1+ c2
1(0)
2k1

e2k1ξ1 c1(0)c2(0)
k1+k2

ek1ξ1+k2ξ2 . . . c1(0)cN(0)
k1+kN

ek1ξ1+kN ξn

c2(0)c1(0)
k2+k1

ek2ξ2+k1ξ1 1+ c2
2(0)
2k2

e2k2ξ2 . . . c2(0)cN(0)
k2+kN

ek2ξ2+kN ξN

...
. . .

cN(0)c1(0)
kN+k1

ekN ξN+k1ξ1 cN(0)c2(0)
kN+k2

ekN ξN+k2ξ2 . . . 1+ c2
N(0)
2kN

e2kN ξN

∣∣∣∣∣∣∣∣∣∣∣
where ξn ≡ x−4k2

j t, 1≤ j ≤ N. To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose
that k1 < k2 < ... < kN−1 < kN . For t� 0 let’s write ξ j in the form ξ j ≡ ξn−ε jnt, 1≤ j≤N with ε jn ≡ 4k2

j−4k2
n and c j(0)≡ c j.

Note that ε jn < 0 if 1≤ j < n, εnn = 0, ε jn > 0 if n < j ≤ N, and ε jn =−εn j. We have also εnm > ε(n−1)m > ... > ε(m+1)n > 0
if n > m, and εnm < εn(m−1) < ... < εn(m+1) < 0 if n < m. Replace these expressions in the determinant above and approximate
the elements of the diagonal (for j < n) :

1+
c2

j

2k j
e2k j(ξn−ε jnt) ∼=

c2
j

2k j
e2k j(ξn−ε jnt), j < n, t→ ∞

(we can do it because for j < n, we have ε jn < 0 and 1+ ex ∼= ex for x→ ∞). Then, we put in factor the following common
expressions : e2k1(ξn−ε1nt), e2k2(ξn−ε2nt),...,e2kn−1(ξn−ε(n−1)nt). By turning t to infinity, we have (since ε jn > 0 for n≤ j ≤ N) the
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following situation :

detP =C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2
1

2k1

c1c2
k1+k2

. . .
c1cn−1

k1+kn−1

c1cn
k1+kn

eknξn 0 . . . 0
c2c1

k2+k1

c2
2

2k2
. . .

c2cn−1
k2+kn−1

c2cn
k2+kn

eknξn 0 . . . 0
...

. . .
...

... . . .
...

cn−1c1
kn−1+k1

cn−1c2
kn−1+k2

. . .
c2

n−1
2kn−1

cn−1cn
kn−1+kn

eknξn 0 . . . 0
cnc1

kn+k1
eknξn cnc2

kn+k2
eknξn . . .

cncn−1
kn+kn−1

eknξn 1+ c2
n

2kn
e2knξn 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where C ≡

n−1

∏
j=1

e2k j(ξn−ε jn). Obviously, we have

detP =C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2
1

2k1

c1c2
k1+k2

. . .
c1cn−1

k1+kn−1

c1cn
k1+kn

eknξn

c2c1
k2+k1

c2
2

2k2
. . .

c2cn−1
k2+kn−1

c2cn
k2+kn

eknξn

...
. . .

...
cn−1c1

kn−1+k1

cn−1c2
kn−1+k2

. . .
c2

n−1
2kn−1

cn−1cn
kn−1+kn

eknξn

cnc1
kn+k1

eknξn cnc2
kn+k2

eknξn . . .
cncn−1

kn+kn−1
eknξn 1+ c2

n
2kn

e2knξn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This determinant is still written in the form

detP =C
n−1

∏
l=1

c2
l

∣∣∣∣∣∣∣∣∣∣

1
2k1

1
k1+k2

. . . 1
k1+kn−1

1
k2+k1

1
2k2

. . . 1
k2+kn−1

...
. . .

...
1

kn−1+k1
1

kn−1+k2
. . . 1

2kn−1

∣∣∣∣∣∣∣∣∣∣
+C

n

∏
l=1

c2
l

∣∣∣∣∣∣∣∣∣∣∣∣

1
2k1

1
k1+k2

. . . 1
k1+kn−1

1
k1+kn

1
k2+k1

1
2k2

. . . 1
k2+kn−1

1
k2+kn

...
. . .

...
1

kn−1+k1
1

kn−1+k2
. . . 1

2kn−1
1

kn−1+kn
1

kn+k1
1

kn+k2
. . . 1

kn+kn−1
1

2kn

∣∣∣∣∣∣∣∣∣∣∣∣
,

for n≥ 2, while for n = 1, it equals to 1+ c2
1

2k1
e2k1ξ1 . Using the previous lemma, we get for t� 0,

detP =
n−1

∏
i=1

e2ki(ξn−εint)

(
n−1

∏
j=1

c2
j
(∏i< j(ki− k j))

2

∏i, j(ki + k j)
+

n−1

∏
j=1

c2
j
(∏i< j(ki− k j))

2

∏i, j(ki + k j)
e2knξn

)
.

By replacing this expression in the solution obtained in the last theorem, we obtain the explicit solution of N-solitons :

u(x, t) =−2
N

∑
n=1

k2
n sech2

knξn +
1
2

ln
c2

n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2
 , t→+∞.

Similarly, it is shown that for t� 0

u(x, t) =−2
N

∑
n=1

k2
n sech2

knξn +
1
2

ln
c2

n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2
 , t→−∞.

This completes the demonstration.

This result can be interpreted as follows: for example for t→ ∞, we have

lim
t→∞

u(x, t) = lim
t→∞

u(x− ct) =
{
−2k2

n sech2 (kn(x−4k2
nt)+δ+

n
)

if c = 4k2
n

0 if c 6= 4k2
n
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This is the form of a solitary wave of amplitude 2k2
n, propagating on the right with a constant velocity equal to 4k2

n. The solution
of the KdV equation actually splits into N-solitons at the limit for |t| → ∞. This indicates that each soliton preserves its shape
after collisions. These are analyzed by the phase changes δ+

n and δ−n . The relative phase change is determined by

δ
+
n −δ

−
n =

1
2

ln
c2

n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2

− 1
2

ln
c2

n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2

=
n−1

∑
j=1

ln
k j− kn

k j + kn
−

N

∑
j=n+1

ln
k j− kn

k j + kn
,

and it is expressed in terms of k j (1≤ j ≤ N). Since k j are invariant with respect to time, then the δ+
n −δ−n are also invariant.

Recall that we assumed k1 < k2 < ... < kN , then

δ
+
1 −δ

−
1 =−

N

∑
j=2

ln
k j− k1

k j + k1
> 0, δ

+
N −δ

−
N =

N−1

∑
j=1

ln
kN− k1

kN + k1
< 0.

In addition, it is easy to show that
N

∑
n=1

δ
+
n =

N

∑
n=1

δ
−
n .

We could not finish this section without indicating some results related to the KdV equation. The KdV equation (1.1) is
written in the form

∂u
∂ t

=
∂

∂x

(
3u2− ∂ 2u

∂x2

)
=

∂

∂x
δH
δu

,

where

H =
∫

∞

−∞

P3dx =
∫

∞

−∞

(
u3 +

1
2

(
∂u
∂x

)2
)

dx,

is the first integral (Hamiltonian) obtained previously and
δH

δu(x)
denotes the gradient (Fréchet derivative) of the function H.

This equation forms an infinite dimensional Hamiltonian system, completely integrable and the Hamiltonian structure is defined

by the Poisson bracket : {F,H}=
∫

δF
δu(x)

∂

∂x
δH

δu(x)
dx. We check that the latter satisfies the Jacobi identity. We will discuss

further (in the following sections) the problem of studying the KdV equation via symplectic structures on operator algebra,
the relation with the KP hierarchy [16], the Sato theory [17] τ functions and the work of Jimbo-Miwa-Kashiwara [18, 19].
The study of the periodic problem for the KdV equation allowed some authors to discover an interesting class of completely
integrable systems. The obtained solutions are endowed with remarkable properties : they define functions u(x) for which
equation (2.1) with periodic coefficients has a finite number of zones of parametric resonance on the axis λ . The spectrum of
the Schrödinger operator is invariant by the Hamiltonian flow defined by the KdV equation. And as we have already pointed
out, this spectrum provides an infinity first integrals or invariants. The isospectral sets related to invariant manifolds defined
by putting these invariants equal to generic constants are compact, connected, and infinite-dimensional tori. Each of these
isospectral sets is isomorphic to the real part of a Jacobi variety associated with a hyperelliptic curve of finite or infinite genus.
The periods of this torus can be expressed using hyperelliptic integrals; in short, the explicit linearization of the flow of the
KdV equation is made on this Jacobian variety using the Abel application, the Jacobi inversion problem and the theta functions.
For other interesting integrable systems that will not be discussed here, the solutions blow up after a finite time as Laurent
series depending on many parameters (see for example [20, 21]).

4. Pseudo-differential operators
Let L be a pseudo-differential operator with holomorphic coefficients. The set of these operators form a Lie algebra that we
note A . The algebra A decomposes in two sub-algebras A+ and A− : A = A+⊕A−, where A+ is the algebra of differential

operators of the form ζ = ∑
k≥0

uk(x)∂ k, finite sum, ∂ =
∂

∂x
, and A− is the algebra of strictly pseudo-differential operators of the

form

η = ∑
k>0

u−k(x)∂−k = ∂
−1v0 +∂

−2v1 + · · · , ∂ =
∂

∂x
,
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The algebra A is an associative algebra for the product of two pseudo-differential operators L and L′,

L.L′ =
∞

∑
k=0

1
k!

:∂ k
∂
(L).∂ k

x (L
′):,

where ∂ =
∂

∂x
and the symbol :: denotes the normal order, i.e., it means that the derivatives always appear on the right

independently of the commutation relations.
For m,n ∈ N∗, we have for all functions u, v,

u∂
m.v∂

n =
m

∑
k=0

m!
k!(m− k)!

uv(k)∂ m+n−k =
m

∑
k=0

1
k!

:∂ k
∂
(u∂

m).∂ k
x (v∂

n): (4.1)

and

∂
−1u = u∂

−1−u′∂−2 +u′′∂−3 + · · ·=
∞

∑
k=0

:∂ k
∂
(∂−1).∂ k

x (u): (4.2)

where ∂−1 is a formal inverse of ∂ , i.e., ∂−1.∂ = ∂ .∂−1 = 1.
We define a coupling between A+ and A− as follows : Let Res(ζ η) be the coefficient of ∂−1 in ζ η . We have

〈ζ ,η〉=

〈
∑
k≥0

uk∂
k, ∑

k>0
u−k∂

−k

〉
=
〈
u0∂

0 +u1∂
1 + · · · ,∂−1v0 +∂

−2v1 + · · ·
〉

i.e., 〈ζ ,η〉=
∫

∞

−∞

Res(ζ η)dx =
∫

∞

−∞
∑
k≥0

ukvkdx. Therefore, the Volterra group (I +A−) acts on A− by the adjoint action and

on A+ by the coadjoint action. Let ζ ∈A+ and ηk ∈A−. We obtain from [22],

〈ad∗η1
(ζ ),η2〉= 〈ζ ,adη1(η2)〉 = 〈ζ , [η1,η2]〉,

=
∫ (

∂
−1− term of (ζ η1η2−ζ η2η1)

)
dx,

=
∫ (

∂
−1− term of (ζ η1−η1ζ )+ η2

)
dx,

= 〈[ζ ,η1]+ ,η2〉.

So the set O∗A+
(L) of the differential operators of the form

L = ∂
N +

N−2

∑
k=0

uk(x)∂ k, N fixed, (4.3)

is a coadjoint orbit in A+.
Let f be a function of class C ∞ in x and dependent on a finite number of derivatives u(l)k of the coefficients uk of L. Let

∇H(L) =
N−1

∑
k=0

∂
−k−1

∑
l
(−1)l

(
d
dx

)l
∂ f

∂ p(l)k

=
N−1

∑
k=0

∂
−k−1 δH

δuk
,

be the gradient of the functional, H(L) =
∫

∞

−∞

f (x, ...,u(l)k , ...)dx defined on A+ and such that :

dH =
∫

∞

−∞

δH
δuk

duk =

〈
N

∑
k=0

duk.∂
k,∇H

〉
= 〈dL,∇H〉,

where dL =
N

∑
k=0

duk.∂
k. We recall that the scalar product between two pseudo-differential operators L and L′ is defined by

〈L,L′〉=−
∫

∞

−∞

(LL′)−dx =
∫

∞

−∞

(L′L)−dx). According to the Adler-Kostant-Symes [20, 22, 23, 24, 25, 26, 27, 28, 29], the

Hamiltonian vector fields on the coadjoint orbit O∗A+
, define commutative flows and are given by

dL
dt

= ad∗
∇H(L)(L) = [L,∇H(L)]+ , (4.4)
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where H(L) is the Hamiltonian on A+. The operator L does not contain the coefficient uN−1. Since the vector field (4.4)

applied to the operator L (4.3) imposes the condition Res [L,∇H(L)] = 0, we can replace the gradient
δH

δ pN−1
by any expression

satisfying this condition. A first Poisson bracket is given by

{H,F}1 = 〈L, [∇F,∇H]〉=
∫

Res(∇H[L,∇F ]+)dx =
∫

Res(∇H[L,∇F ])dx =
∫

Res([∇H,L]∇F)dx. (4.5)

Consider the Hamiltonians Hk+N =
N

k+N

∫ (
Rés L

k+N
N

)
dx, k ∈ N∗. We have ∇H(L)

k+N =
(

L
k
N

)
−

, and the vector fields (4.4)

applied to these Hamiltonians, provide the integrable equations; N-reduction of Gel’fand Dickey equations of KP hierarchy
(see below for definition) :

dL
dt

= [L,∇Hk+N(L)]+ =−
[
(L

k
N )−,L

]
+
=
[
(L

k
N )+,L

]
. (4.6)

Note that since
[
(L

k
N )+,L

]
+
=
[
L

k
N − (L

k
N )−,L

]
+
=−

[
(L

k
N )−,L

]
∈A −, then equations (4.6) determine an infinite number

of commutative vector fields (see below) on A ++A −.
We will now study [22, 30, 31, 32, 33] the existence of a second symplectic structure. Let L̃ = L+ z where L is a differential

operator of order n. We have

dL
dt

=
(

L̃∇H
)
+

L̃− L̃
(

∇HL̃
)
+
. (4.7)

Note that (4.7) is a Hamiltonian vector field generalizing (4.4). Indeed, let J : A−/A−∞,N−1 −→ D0,N−1, be the function
defined by

J(ζ ) =
(

L̃ζ

)
+

L̃− L̃
(

ζ L̃
)
+
=−

(
L̃ζ

)
−

L̃+ L̃
(

ζ L̃
)
−
, ζ ∈A−/A−∞,N−1.

Hence,
dL
dt

= ∂J(ζ )(L)≡
(

L̃ζ

)
+

L̃− L̃
(

ζ L̃
)
+

, which shows that it is indeed a vector field on the differential operators L of

order n. Similarly, we have
dL
dt

=−
(

L̃∇H
)
−

L̃+ L̃
(

∇HL̃
)
−

, and the same conclusion remains valid. We also have the

relation
dL
dt

= (L∇H)+ L−L(∇HL)++ z [∇H,L]+, which shows that this vector field is an interpolation between (4.4) for
z = ∞ and a new vector field for z = 0. Consider the 2-differential form

ω
(
∂J(ζ ),∂J(η)

)
= 〈J(ζ ),η〉=

∫
Res (J(ζ )η)dx.

This form is closed (dω = 0) and is antisymmetric 〈J(ζ ),η〉=−〈ζ ,J(η)〉, and furthermore
[
∂J(ζ ),∂J(η)

]
= ∂J(ξ ), where

ξ =
(
−ζ

(
L̃η

)
+
+
(

ζ L̃
)
−

η

)
−

(
−η

(
L̃ζ

)
+
+
(

η L̃
)
−

ζ

)
−
+∂J(ζ )η−∂J(η)ζ .

The functional algebra on the operator space of the form (4.3) for this symplectic form is the so called W algebra.

Theorem 4.1. The Hamiltonians Hk,Hk+N ,Hk+2N , ..., defined in (4.6) are all in involution for the bracket (4.5).

Proof. Indeed, let J = J1 if z = ∞ and J = J2 if z = 0, where the Poisson brackets {., .}1, {., .}2 are given by {H j,Hk}1 =∫
Res (∇H jJ1(∇Hk)) and

{H j,Hk}2 = 〈∇H,J2(∇F)〉=
∫

Res (∇H((L∇F)+L−L(∇FL)+))dx =
∫

Res (L∇H(L∇F)+−∇HL(∇FL)+)dx.

We deduce from the relation(
L
(

L
r
n−1
)
−

)
+

L−L
((

L
r
n−1
)
−

L
)
+
+
[(

L
r
n

)
−
,L
]
+
= 0,
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the expression {H j,Hk}1 =
∫

Res (∇H jJ2∇Hk−N). Since the form ω is anti-symmetric, we have

{H j,Hk}1 =−
∫

Res (∇Hk−NJ2(∇H j)) =−
∫

Res (∇Hk−NJ1(∇H j+N)) ,

{H j,Hk}1 =−
∫

Res (∇H j+NJ1(∇Hk−N)) ,

{H j,Hk}1 =
{

H j+N ,Hk−N
}

1 = {H j,Hk}1 =
{

H j+αN ,Hk−αN
}

1 ,

for α large enough with J1 (∇Hk−αN) = 0, i.e., Hk−αN is trivial for α large enough and we get {H j,Hk}1 = 0, so H j,Hk are in
involution.

5. KdV equation, Heisenberg and Virasoro algebras

Theorem 5.1. a) The operator L = ∂ 2 +q, corresponding to the case N = 2 with q≡ u0, is related to the KdV equation and

the Poisson bracket is provided in this case by {q(x),q(y)}1 =
d
dx

δ (x− y).

b) By replacing in a), q(x) by the Fourier series

q(x) = α

∞

∑
n=−∞

e−inx
ϕn +β , −iα−2 = 1, (5.1)

where (ϕk)k∈Z are new coordinates (Fourier coefficients), one obtains the Heisenberg algebra and the Poisson bracket is
provided by {ϕn,ϕm}1 = nδm+n,0.

c) In the case N = 2 one obtains the Virasoro algebra and its structure is given by

{ϕm,ϕn}2 = (m−n)ϕm+n +
c

12
(m3−m)δm+n,0.

Proof. a) Indeed, since

∇H(L) = ∂
−1 δH

δq
+∂

−2 1
2

(
δH
δq

)′
,

then the vector fields applied to the Hamiltonian H =
∫ (

q3− 1
2

q′2
)

dx, provide the KdV equation

dq
dt

=
dL
dt

=
1
2
[L,∇H]+ =

d
dx

δH
δq

=
dq
dt

=
∂ 3q
∂x3 +6q

∂q
∂x

. (5.2)

The Poisson bracket is in this case is {H,F}1 =
∫

δH
δq

d
dx

δF
δq

, and therefore, {q(x),q(y)}1 =
d
dx

δ (x− y).

b) Let M be the set of matrices (akl), (k, l ∈ Z), with complex coefficients and

N = {(akl) ∈M : there is at least r such that akl = 0 for |k− l|> r},

the C-algebra, i.e., the set of infinite matrices with support in a band around the diagonal. The product of two matrices belonging
respectively to N and M is defined in the usual way. Note that N is a Lie algebra and M is a N -module. Their extensions
Ñ and M̃ are defined by

0−→ Cc−→ Ñ −→N −→ 0, 0−→ Cc−→ M̃ −→M −→ 0,

with Ñ = N ⊕Cc, M̃ = M ⊕Cc, where c is a central element, i.e., we have [c,A] = [c,B] = 0, ∀A ∈ Ñ , ∀B ∈ M̃ . We
notice ei, j = (δki.δl j)kl the elementary matrices, i.e., the matrices whose coefficients are all zero except the one of the line i and
the column j which is equal to 1. Since a Jacobi matrix has no trace, then we consider the matrix A[J,B] where A ∈N , B ∈M
and J is the matrix defined by J = ∑

i∈Z
ε(i)ei,i, where ε(i) = +1 if i < 0 and −1 if i≥ 0. The elements of the matrix A[J,B] are

null except for a finite number, so it is a finite matrix and we define the cocycle of A ∈N and B ∈M using the formula

ρ(A,B) =
1
2

Tr(A[J,B]) =
1
2 ∑

i, j
(ε(i)− ε( j))ai jb ji.
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Therefore, the bracket [̃, ] of A ∈N and B ∈M is defined by

[̃A,B] = [A+αc,B+βc] = [A,B]+ρ(A,B)c.

We note that the Ñ algebra is a non-trivial central extension of N while the subalgebra M̃ f = M f ⊕Cc, is a trivial central
extension of

M f = {(ai j) ∈M : (i, j) 7−→ (ai j) with finished support}.

Let’s put Ei = ∑
n∈Z

en,n+i, where ei,i = (δki.δi j)kl are the elementary matrices defined above. The subspace E =
⊕

i∈ZCEi, is a

commutative subalgebra of N . The subalgebra of N defined by setting Ẽ = E⊕Cc is called Heisenberg subalgebra. We have

[̃Ei,E j] = iδi,− jc. (5.3)

We now reconsider the previous example and replace q(x) with the Fourier series (5.1). Let H be a functional of q. Its Fréchet
derivative in terms of the coordinates ϕk is written

δH
δq

=
∞

∑
k=−∞

δH
δϕk

.
∂ϕk

∂q
= α

−1
∞

∑
k=−∞

δH
δϕk

eikx. (5.4)

We substitute (5.3) and (5.1) in equation (5.2) and we specify the Fourier coefficients; we get the relation α
∂ϕn

∂ t
=−iα−1n

∂H
∂ϕn

.

Moreover, since the symplectic structure is given by the matrix of the Poisson brackets, we also have

∂ϕn

∂ t
=

∞

∑
m=−∞

{ϕn,ϕm}1
∂H
∂ϕm

.

Therefore, {ϕn,ϕm}1 =−iα−2nδm+n,0. By putting −iα−2 = 1, we obtain the Heisenberg algebra (where {,} plays the role
here of the bracket [̃, ] (5.3) above).

c) Let Diff(S1) be the group of diffeomorphisms of the unit circle : S1 = {z ∈ C : |z|= 1}. Let

F =

{
f (z)

d
dz

: f (z) ∈ C[z,
1
z
]

}
,

be the set of vector fields (Laurent’s polynomials). Note that F can be seen as the tangent space Diff(S1) at its unit point, so F

is a Lie algebra with respect to the bracket [, ]. By setting ϕm =−zm+1 d
dz

, we obtain

[ϕm,ϕn] =
(
(n+1)zm+n+1− (m+1)m+n+1) d

dz
=−(m+n)zm+n+1 d

dz
,

i.e., [ϕm,ϕn] = (m− n)ϕm+n. We show that H2(F,C) ∼= C and ρ(ϕm,ϕn) =
1

12
(m3−m)δm,−n. The vector space F ⊕Cc is

called Virasoro algebra, it is a central extension of the algebra of complex vector fields on the circle. The bracket is given by
the formula

[ϕm,ϕn] = (m−n)ϕm+n +
c

12
(m3−m)δm,−n. (5.5)

Let us now consider the example of the KdV equation. We have N = 2 and

dq
dt

=
dL
dt

= (L∇H)+−L(∇HL)+ =
(
∂

3 +2(∂q+q∂ )
) δH

δq
.

The (Poisson) bracket is written in this case

{H,F}2 =
∫

δH
δq

(
∂

3 +2(∂q+q∂ )
) δF

δq
,
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and we have {q(x),q(y)}2 =
(
∂ 3 +2(∂q+q∂ )

)
δ (x− y). By reasoning as before (while taking into account the Fréchet

derivative (5.4)), we obtain

α
∂ϕm

∂ t
= i∑

n
(n−m)ϕm+n

δH
δϕn

+
i

2α
(m3−4βm)

δH
δϕ−m

,

where (ϕk)k∈Z are the Fourier coefficients of q. By setting 4β = 1, α =
6i
c

and taking into account the Fourier series (5.1), we
obtain

∂

∂ t


...

ϕm
...

=

 −nth column nth column
↓ ↓

mth line −→ c
12 (m

3−m) ... (m−n)ϕm+n




...
δH
δϕm

...

 .

Consequently, we have {ϕm,ϕn}2 = (m−n)ϕm+n +
c

12
(m3−m)δm+n,0, i.e., the Virasoro structure [19] (where {,}2 plays the

role here of the bracket [, ] (5.5) above). This establishes the theorem.

For N = 3, u≡ u2, v≡ u3, L = ∂
3 +u∂ + v, and L

2
3 = ∂

3 +
2
3

u, the flow (5.2) takes the form

∂u
∂ t2

=−∂ 2u
∂x2 +2

∂v
∂x

,
∂v
∂ t2

=
∂ 2v
∂x2 −

2
3

∂ 3u
∂x3 −

2
3

u
∂u
∂x

.

Eliminating v from these equations yields the Boussinesq equation

3
(

∂u
∂ t2

)2

+
∂ 2

∂x2

(
∂ 2u
∂x2 +2u2

)
= 0.

6. KP hierarchy and vertex operators

Consider the pseudo-differential operator of infinite order

L = ∂ +u1∂
−1 +u2∂

−2 + ..., ∂ ≡ ∂

∂x
(6.1)

where u1,u2, ... are functions of class C ∞ depending on an infinity of independent variables x ≡ t1, t2, .... The compound
operator Ln is calculated according to the rules (4.1) and (4.2). We obtain

Ln = ∂
n + pn,2∂

n−2 + ...+ pn,n + pn,n+1∂
−1 + ...= ∂

n +
n

∑
j=2

pn, j∂
n− j +

∞

∑
j=1

pn,n+ j∂
− j,

where pn, j are polynomials in u j and their derivatives in relation to x. The differential part Ln
+ of Ln being equal to Ln

+ =

∂
n +

n

∑
j=2

pn, j∂
n− j, we have

L1
+ = ∂ , L2

+ = ∂
2 +2u2, L3

+ = ∂
3 +3u2∂ +3(u3 +∂u2), ... (6.2)

The dependency between the functions u1,u2, ... and the variables x = t1, t2, ... is provided by the following system of partial
differential equations :

∂L
∂ tn

= [Ln
+,L], n ∈ N∗ (6.3)

The set of these equations is called Kadomtsev-Petviashvili hierarchy (abbreviated KP hierarchy). It is a hierarchy of isospectral
deformations of the pseudo-differential operator (6.1). We prove (see [34]) the following result :
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Theorem 6.1. There is an equivalence between (6.3) and the equations

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
+ = [Ln

+,L
m
+], (6.4)

as well as their dual forms

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
− =−[Ln

−,L
m
−], (6.5)

where Ln
− = Ln−Ln

+. Equations (6.3) determine an infinite number of commutative vector fields on algebra A = A+⊕A−.

Proof. Note that since Ln = Ln
++Ln

−, then
∂L
∂ tn

= [Ln
+,L] =−[Ln

−,L] ∈A−. Equation (6.3) defines an infinite number of vector

fields on A . Since
∂

∂ tn
and [Ln

+, .] are derivations, then

∂Lm

∂ tn
= [Ln

+,L
m
+]+ [Ln

+,L
m
−],

= −[Ln
−,L

m
+]− [Ln

−,L
m
−],

=
1
2
(
[Ln

+,L
m
+]− [Ln

−,L
m
+]
)
+

1
2
(
−[Ln

−,L
m
−]+ [Ln

+,L
m
−]
)
,

=
1
2
(
[Ln

+,L
m
+]− [Ln

−,L
m
−]
)
+

1
2
(
[Lm

+,L
n
−]− [Lm

−,L
n
+]
)
.

Similarly, we have (just swap n and m)

∂Ln

∂ tm
=

1
2
(
[Lm

+,L
n
+]− [Lm

−,L
n
−]
)
+

1
2
(
[Ln

+,L
m
−]− [Ln

−,L
m
+]
)
.

Hence,
∂Lm

∂ tn
− ∂Ln

∂ tm
= [Ln

+,L
m
+]− [Ln

−,L
m
−]. Or

∂Lm

∂ tn
− ∂Ln

∂ tm
=

∂

∂ tn
Lm
++

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
+−

∂

∂ tm
Ln
− =

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
++

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
−,

then

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
+− [Ln

+,L
m
+] =−

∂

∂ tn
Lm
−+

∂

∂ tm
Ln
−− [Ln

−,L
m
−].

Since the expression on the left belongs to A+ and the one on the right belongs to A−, then the result comes from the
decomposition A = A+⊕A− since obviously A+ ∩A− = /0. To show that the vector fields defined by these equations
commute, we put X(L) = [Lm

+,L] and Y (L) = [Ln
+,L]. Hence,

[X ,Y ](L) = (XY −Y X)(L),

= X
(
[Ln

+,L]
)
−Y

(
[Lm

+,L]
)
,

=
[
X(Ln

+)−Y (Lm
+),L

]
+
[
Ln
+,X(L)

]
−
[
Lm
+,Y (L)

]
,

=
[
X(Ln

+)−Y (Lm
+),L

]
+
[
Ln
+, [L

m
+,L]

]
−
[
Lm
+, [L

n
+,L]

]
,

=
[
X(Ln

+)−Y (Lm
+)− [Lm

+,L
n
+],L

]
,

according to Jacobi’s identity and taking into account (6.4), we deduce that the vector fields in question commute.

By specifying the quantifiers of ∂ k in (6.4), one obtains an infinity of nonlinear partial differential equations [5] forming the
Kadomtsev-Petviashvili hierarchy. These equations connect infinitely many functions u j to infinitely many variables t j. For
example, for m = 2, n = 3, relations (6.4) and (6.2) determine two expressions based on u2 and u3. After eliminating u3, we
immediately obtain the Kadomtsev-Petviashvili equation (KP equation) :

3
∂ 2u2

∂ t2
2
− ∂

∂ t1

(
4

∂u2

∂ t3
−12u2

∂u2

∂ t1
− ∂ 3u2

∂ t3
1

)
= 0. (6.6)



KP-KdV Hierarchy and Pseudo-Differential Operators — 98/104

We can obtain particular solutions of this equation by solving the equations :

∂u2

∂ t2
= 0, 4

∂u2

∂ t3
−12u2

∂u2

∂ t1
− ∂ 3u2

∂ t3
1

= 0.

The second equation is precisely the KdV equation. The KP equation is therefore a generalization of the KdV equation, to

which it is reduced when
∂u2

∂ t2
= 0.

Equations (6.3) and (6.4) (see also (6.5)) imply the existence of the following pseudo-differential operator of degree 0
(wave operator) W ∈I +A− :

W = 1+w1(t)∂−1 +w2(t)∂−2 + · · · (6.7)

with t = (t1, t2, ...) ∈ C∞. The inverse W−1 of W is also a pseudo-differential operator of the form

W−1 = 1+ v1(t)∂−1 + v2(t)∂−2 + · · · ,

and can be calculated term by term. Indeed, by definition, we have WW−1 = 1. So, using the fact that

∂
mu =

∞

∑
k=0

m!
k!(m− k)!

(∂ ku∂
u)∂ m−ku, ∂

m
∂

n = ∂
m+n,

as well as the formulas described above, we specify the quantifiers of ∂−1, ∂−2,... in the equation WW−1 = 1 and we determine
relations between wm et vm. We obtain finally for W−1 the following expression :

W−1 = 1−w1∂
−1 +(−w2 +w2

1)∂
−2 +(w3 +2w1w2−w1∂w1−w3

1)∂
−3 + · · ·

In terms of W , the operator L (6.1) can be written in the form

L =W.∂ .W−1. (6.8)

According to (6.1) and ((6.7), we deduce the relations :

u2 = ∂w2, u3 =−∂w2−w1∂w1, u4 =−∂w3 +w1∂w2 +(∂w1)w2−w2
1∂w1− (∂w1)

2.

We have the following result :

Theorem 6.2. Equations (6.3) or what amounts to the same equations (6.4)) are equivalent to the existence of the wave
operator W (6.7) such that the system of differential equations

LW =W∂ , (6.9)

∂W
∂ tn

=−Ln
−W, (6.10)

has a solution (which can be inductively obtained).

Theorem 6.3. a) Let ξ (t,z) =
∞

∑
j=1

t jz j, z ∈ C be the phase function with ∂ mξ (t,z) = zm and ∂ meξ (t,z) = zmeξ (t,z). There is an

equivalence between (6.6), (6.10) and the following problem : there is a wave function ψ (Baker-Akhiezer function)

Ψ(t,z) =
(
1+w1(t)z−1 +w2(t)z−2 + · · ·

)
eξ (t,z) =Weξ (t,z), z ∈ C (6.11)

where W is identified as (6.7) and such that :

LΨ = zΨ,
∂Ψ

∂ tn
= Ln

+Ψ. (6.12)

b) Introduce the conjugation ∂ ∗ =−∂ and let

L∗ = 1+(−∂ )−1u1 +(−∂ )−2u2 + · · · , W ∗ = 1+(−∂ )−1w1 +(−∂ )−2w2 + · · ·

be the adjoints of L and W such that : L∗ =−(W ∗)−1.∂ .W ∗. The adjoint wave function

Ψ
∗(t,z) = (W ∗(t,∂ ))−1 e−ξ (t,z),

satisfies the following relations : L∗Ψ∗ = zΨ∗,
∂Ψ∗

∂ tn
=−(Ln

+)
∗
Ψ
∗.
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Proof. a) Indeed, we have from (6.11),

∂Ψ

∂ tn
=

∂W
∂ tn

eξ (t,z)+Wzneξ (t,z),

= −Ln
−Weξ (t,z)+ znWeξ (t,z), according to (6.8)

= −Ln
−Ψ+ zn

Ψ, according to (6.9)
= −Ln

−Ψ+Ln
Ψ, according to (6.10)

= Ln
+Ψ.

In other words, Ψ satisfies (6.11) and (6.12) is equivalent to the fact that W satisfies (6.7) and (6.10).
b) Just reason as in the proof of a).

Therefore, the knowledge of Ψ implies the knowledge of W and also of W ∗ and L. Define the following residues :
Res

z ∑akzk = a−1, Res
∂

∑ak∂
k = a−1 and consider the following result [33],

Theorem 6.4. Let P and Q be two pseudo-differential operators. So

Res
z
((Pexz).(Qe−xz)) = Res

∂

PQ∗,

where Q∗ is the adjoint of Q.

Proof. Indeed, we have

Res
z
((Pexz).(Qe−xz)) = Res

z

(
∑ pkzk

∑ql(−z)l
)
= ∑

k+l=−1
(−1)l pkql ,

and

Res
∂

PQ∗ = Res
∂

∑
kl

pk∂
k(−∂ )lql = ∑

k+l=−1
(−1)l pkql ,

hence the result.

Moreover, we have [33, 34] :

Res
z

(∂ k
Ψ).Ψ∗ = Res

z

(
∂

kWeξ (t,z)
)
(W ∗)−1e−ξ (t,z),

= Res
z

(
∂

kWexz
)
(W ∗)−1e−xz, x≡ t−1,

= Res
∂

∂
kW.W−1,

= Res
∂

∂
k,

= 0.

This bilinear identity can be written in the following symbolic form :

Res
z=∞

(
Ψ(t,z).Ψ∗(t ′,z)

)
= 0,

for all t and t ′. Therefore, we have

Theorem 6.5. Ψ(t,z) is a wave function for the KP hierarchy if and only if the residue identity is satisfied :

Res
z=∞

(
Ψ(t,z).Ψ∗(t ′,z)

)
= 0 ∀t, t ′ (6.13)

or what amounts to the same if and only if

1
2π
√
−1

∫
γ

Ψ(t,z).Ψ∗(t ′,z)dz = 0, (6.14)

with γ a closed path around z = ∞ (such that :
∫

γ

dz
2π
√
−1

= 1).
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Recall that a τ(t) function is defined by the Fay differential identity (see next theorem) :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

où y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′.

Theorem 6.6. Let’s put [s] =
(

s, s2

2 ,
s3

3 , ...
)

. The τ function satisfies the following identities :
(i) Fay identity :

F (t,y0,y1,y2,y3) ≡ (y0− y1)(y2− y3)τ(t +[y0]+ [y1])τ(t +[y2]+ [y3])

+(y0− y2)(y3− y1)τ(t +[y0]+ [y2])τ(t +[y2]+ [y1])

+(y0− y3)(y1− y2)τ(t +[y0]+ [y3])τ(t +[y1]+ [y2])

= 0.

(ii) Fay differential identity :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

where y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′. This identity can still be written in the form

∂
−1

ψ(t,λ )ψ∗(t,µ) =
1

µ−λ

τ
(
t− [λ−1]+ [µ−1]

)
τ(t)

e∑
∞
j=1 t j(µ

j−λ j).

The following equation τ̇ = X(t,λ ,µ)τ , determines a vector field on the infinite dimension manifold of the τ functions where
X(t,λ ,µ) is the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation .

Proof. According to Sato theory [35, 36], the functions Ψ and Ψ∗ can be expressed in terms of a tau function as follows :

Ψ(t,z) =Weξ (t,z) =
τ(t− [z−1])

τ(t)
eξ (t,z),

Ψ
∗(t,z) = (W ∗)−1e−ξ (t,z) =

τ(t +[z−1])

τ(t)
e−ξ (t,z).

By replacing these expressions in the residue formula (6.13) or (6.14), we obtain a bilinear relation for the τ functions. Indeed,
the equation (6.14) is written∫

γ

eξ (t−t ′,z)
τ(t− [z−1])τ(t ′− [z−1])dz = 0.

‘Using the following change : t← t + s and t ′← t + s, we obtain∫
γ

eξ (−2s,z)
τ(t− s− [z−1])τ(t + s+[z−1])dz = 0.

Using again the transformation

s← t +
1
2
([y0]+ [y1]+ [y2]+ [y3]), t← 1

2
([y0]− [y1]− [y2]− [y3]),

and taking into account that e∑
∞
1 (ab−1) j . j−1

= 1−ab−1, we obtain via the residue theorem

0 =
∫

γ

1− zy0

∏
3
j=1(1− zy j)

τ(t− s− [z−1])τ(t + s+[z−1])dz,

= 2π
√
−1∑ Res

y−1
1 ,y−1

2 ,y−1
3

(
1− zy0

∏
3
j=1(1− zy j)

τ(t− s− [z−1])τ(t + s+[z−1])

)
,

=
2π
√
−1

(y1− y2)(y2− y3)(y3− y1)
F (t,y0,y1,y2,y3),
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where

F (t,y0,y1,y2,y3) ≡ (y0− y1)(y2− y3)τ(t +[y0]+ [y1])τ(t +[y2]+ [y3])

+(y0− y2)(y3− y1)τ(t +[y0]+ [y2])τ(t +[y2]+ [y1])

+(y0− y3)(y1− y2)τ(t +[y0]+ [y3])τ(t +[y1]+ [y2]).

The relation F (t,y0,y1,y2,y3) = 0 is the Fay identity. By making the transformation in the expression (y1y2)
−1 ∂F

∂y0
|y0=y3=0

and replacing t by t− [y1]− [y2], we obtain the Fay differential identity which allows to define the τ functions :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

where y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′. Consider the Fay differential identity above and replace t with t +[y1].
We obtain

{τ(t),τ(t +[y1]− [y2])}+(y−1
1 − y−1

2 )(τ(t)τ(t +[y1]− [y2])− τ(t)τ(t− [y2])) = 0.

By putting λ = y−1
1 , µ = y−1

2 , we obtain after having multiplied the expression obtained by
1

τ(t)
e∑

∞
1 t j(µ

j−λ j), the following

formula :

τ(t +[λ−1])

τ(t)
e−∑ t jλ

j τ(t− [µ−1])

τ(t)
e∑ t jµ

j
=

1
µ−λ

∂

∂x

(
e∑ t j(µ

j−λ j) τ(t +[λ−1]− [µ−1])

τ(t)

)
.

Let

X(t,λ ,µ) =
1

µ−λ
e∑

∞
1 t j(µ

j−λ j)e
∑

∞
1 j−1(λ− j−µ− j) ∂

∂ t j , λ 6= µ,

be the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation, then X(t,λ ,µ)τ et τ +X(t,λ ,µ)τ are also τ

functions. Therefore, τ̇ = X(t,λ ,µ)τ determines a vector field on the infinite dimension manifold of functions τ . We deduce,

according to [33], that ∂
−1 (Ψ∗(t,λ )Ψ(t,µ)) =

1
τ(t)

X(t,λ ,µ)τ(t).

Let ∆(s1, ...,sn) = ∏
1≤ j<i≤n

(s−1
i − s−1

j ), be the Vandermonde determinant. Fay identities (theorem 6.6) are generalized as

follows. The τ function satisfies identities :

τ

(
t−

n

∑
j=1

[y j]

)
∆(y1, ...,yn)

((
t−

n

∑
j=1

[y j]

)
∆(x1, ...,xn)

)n−1

= det

((
t−

n

∑
j=1

[xk]+ [x j]− [yl ]

)
∆(x1, ...,x j+1,y j,x j+1, ...,xn)

)
1≤ j,l≤n

,

and

{ψ(t,y−1
1 , ...,ψ(t,y−1

n }= e∑
∞
j=1t j(y

− j
1 + · · ·+ y− j

n )
τ(t− [yl ]−·· ·− [yn]

τ(t)
∆(y1, ...,yn),

where {u1, ...,un} is the Wronskian det
((

∂

∂x

) j−1
u j

)
1≤i, j≤n

.

We will see that τ functions characterize the KP hierarchy. Let s j(t) denote the elementary Schur polynomials, i.e.,
polynomials such that :

eξ (t,z) = e∑
∞
j=1 t jz j =

∞

∑
j=1

s j(t)z j = 1+ t1z+
(

1
2

t2
1 + t2

)
z2 +

(
1
6

t3
1 + t1t2 + t3

)
z3 + · · ·
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with s j(t) =
t j
1
j!
+ · · ·+ tn. By setting ∂̃ =

(
∂

∂ t1
,

1
2

∂

∂ t2
,

1
3

∂

∂ t3
, ...

)
, we obtain

Ψ(t,z) =
τ

(
t1− z−1, t2− z−2

2 , t3− z−3

3 , ...
)

τ(t)
eξ (t,z) =

∞

∑
j=0

s j(−∂̃ )τ(t)
τ(t)

∂
− jeξ (t,z) =W (t)eξ (t,z),=

where W (t) =
∞

∑
j=0

s j(−∂̃ )τ(t)
τ(t)

∂
− j, is the wave operator (6.7). Similarly, we have

W−1 =
∞

∑
j=0

∂
− j s j(∂̃ )τ(t)

τ(t)
. (6.15)

It follows from (6.8) that Ln =W.∂ n.W−1 and Ln is expressed in terms of the τ function, Ln =
∞

∑
i, j=0

si(−∂̃ )τ

τ
∂

n−i− j s j(∂̃ )

τ
τ . By

developing this expression, we get

Ln = ∂
n +n(logτ)′′∂ n−2 + · · ·+ ∑

i+ j=n+1

si(∂̃ )τs j(−∂̃ )τ

τ2 + · · ·

The formula (6.10) is written taking into account this last expression of Ln and the relation (6.15) as follows :

∂

∂ tn

(
1− τ ′

τ
∂
−1 + · · ·

)
=

(
− ∑

i+ j=n+1

si(−∂̃ )τs j(−∂̃ )τ

τ2 ∂
−1 + · · ·

)(
1− τ ′

τ
∂
−1 + · · ·

)
.

Using the Hirota symbol1, we have

∑
i+ j=n+1

i, j≥0

(
si(∂̃ )τ

)(
s j(−∂̃ )τ

)
= sn+1(∂̃ )τ.τ,

and we obtain

τ
2 ∂ 2

∂ tn∂ t1
logτ− ∑

i+ j=n+1
i, j≥0

si(∂̃ )τs j(−∂̃ )τ = 0, n ∈ N∗.

These relations are called Hirota bilinear equations. They show that all the functions, j ≥ 2, can be expressed in terms of the τ

function. For example,

u2 =
∂ 2

∂ t2
1

logτ, u3 =
1
2

(
∂ 3

∂ t3
1
+

∂

∂ t1

∂

∂ t3

)
logτ, u4 =

1
6

(
∂ 4

∂ t4
1
−3

∂ 2

∂ t2
1

∂

∂ t2
+2

∂

∂ t1

∂

∂ t2

)
logτ−

(
∂ 2

∂ t2
1

logτ

)
, ...

In particular, these equations provide the KP equation in the following bilinear form :

1
12

τ

(
∂ 4τ

∂ t4
1
−4

∂ 2τ

∂ t1∂ t3
+3

∂ 2τ

∂ t2
2

)
− 1

3
∂τ

∂ t1

(
∂ 3τ

∂ t3
1
− ∂τ

∂ t3

)
+

1
4

(
∂ 2τ

∂ t2
1
+

∂τ

∂ t2

)(
∂ 2τ

∂ t2
1
− ∂τ

∂ t2

)
= 0.

Therefore, we have

Theorem 6.7. The τ functions characterize the KP hierarchy.

The equations of soliton theory play an important role in the characterization of Jacobian varieties. Let

Hg = {Z ∈Mg(C) : Ω = Ω
>, IΩ > 0},

1 p(∂t) f (t).g(t)≡ p
(

∂

∂ s1
, ∂

∂ s2
, ...
)

f (t + s)g(t− s)
∣∣∣
s=0

where p is any polynomial, f (t) and g(t) are two differentiable functions.
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be the Siegel half-space, Λ = Zg⊕ ZZg a lattice in Cg and T = Cg/Λ a principally polarised Abelian variety. We show
[24, 37] that the following three conditions are equivalent : (i) There are vector fields v1,v2,v3 on Cg and a quadratic form

q(t) =
3

∑
k,l=1

qkl(t)tktl , such that : for all z ∈ Cg, the function τ(t) = eq(t)
θ

(
3

∑
k=1

tkvk + z

)
, satisfies the KP equation. The theta

divisor does not contain an Abelian subvariety of T for which the vector v1 is tangent. (ii) T is isomorphic to the Jacobian
variety of a reduced non-singular complete curve of genus g. (iii) There is a matrix V = (v1,v2, ...) of order g×∞, vk ∈ Cg,

of rank g and a quadratic form Q(t) =
∞

∑
k,l=1

qkl(t)tktl , such that: for all z ∈ Cg, τ̃(t) = eQ(t)θ (V t + z), is a τ function for KP

hierarchy.
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