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Abstract
In this article, the consistent Riccati expansion (CRE) method is presented for constructing new exact solutions of
(1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) and mKdV-Burgers equations.
The exact solutions obtained are composed of hyperbolic and exponential functions. The outcomes obtained
confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear
partial differential equations.
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1. Introduction
Nonlinear evolution equations (NLEEs) in mathematical physics play a vital role in different fields, such as fluid mechanics,

plasma physics, optical fibers, solid state physics, chemical kinematic, chemical physics and geochemistry. Since obtaining
exact solutions of NLEEs come into prominence, there become significant improvements in this domain[1]. Many effective and
powerful methods have been established and improved, such as modified simple equation method [2], symmetry reduction
method[3], trial equation method [4], the (G′/G)-expansion method [5], sub equation method [6], exp(−Φ(ξ )) method[7],
functional variable method[8], first integral method[9], modified exp-function method [10] and so on.

The aim of this paper is search new solutions of (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony
(DMBBM) equation and modified Korteweg-de Vries (mKdV)-Burgers equation with consistent Riccati expansion (CRE)
method. In section 2, we give the definition of the method. In section 3, there found solutions of the given equations. In section
4, conslusions are given.

2. Consistent Riccati expansion (CRE) method
Lets assume that we have a nonlinear differential equation, remark in the independent variables x and t and dependent

variable u, given by

F (u,ux,ut ,uxx,utt , ...) = 0, (2.1)

where F is a polynomial of u(x, t) and its various partial derivatives including the highest order derivatives and nonlinear terms.
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According to the algoritm, we can seek for the solutions of Eq. (2.1) in the form

u =
n

∑
i=0

ui (x, t)Ri (w) , (2.2)

where ui (i = 0, ...,n) are functions to be detected later and the positive integer n can be detected by using homogeneous balance
method. Here R(w) is a solution of the Riccati equation

Rw = a0 +a1R+a2R2 (2.3)

where a0,a1,a2 are parameters to be determined and w is an undetermined function of x and t.
The positive integer n can be detected by considering the homogeneous balance between the highest order derivative term

with the highest order nonlinear term appearing in Eq. (2.1). Then by sett ing Eq. (2.2) along with Eq. (2.3) into Eq. (2.1) and
equating the coefficients of all powers of R(w) to zero yields a set of algebraic equations for unknowns ui,a0,a1 and a2[11, 12].

3. Exercises
In this part, we have dealed with two partial differential equations as an application of the CRE method.

3.1 (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation
Firstly, we look at the (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation [13]

ut +ux−αu2ux +uxxx = 0, (3.1)

where where α is a nonzero constant. This equation was first derived to describe an approximation for surface long waves in
nonlinear dispersive media. It can also characterize the hydro magnetic waves in cold plasma, acoustic waves in inharmonic
crystals and acoustic gravity waves in compressible fluids [14].

Here, it is clear from the homogoneous balance principle that the balancing number is 1. From here, we infer from that the
exact solution of Eq. (3.1) is

u(x, t) = u0 (x, t)+u1 (x, t)R(w(x, t)) (3.2)

where u0 (x, t) and u1 (x, t) are functions to be determined later. Setting Eq. (3.2) and its derivatives with the condition Eq. (2.3)
into Eq. (3.1) and gathering all terms with the same power of R(w) ,(i = 0,1, ...,4), we obtain the following system

R4 (w) : 6u1w3
xa3

2−αu3
1wxa2 = 0, (3.3)

R3 (w) : −2αu0u2
1wxa2 +6(u1)x w2

xa2
2 +12u1w3

xa1a2
2 +6u1wxwxxa2

2
−αu2

1 (u1)x−αu3
1wxa1 = 0,

(3.4)

R2 (w) : 9(u1)x w2
xa1a2 +8u1w3

xa0a2
2−αu2

0u1wxa2 +9u1wxwxxa1a2
−αu2

1 (u0)x +u1wxa2−2αu0u2
1wxa1 +u1wta2−αu3

1wxa0
+7u1w3

xa2
1a2 +3(u1)xx wxa2−2αu0u1 (u1)x

+3(u1)x wxxa2 +u1wxxxa2 = 0,

(3.5)

R1 (w) : (u1)xxx +u1wta1 +3(u1)x wxxa1 +3u1wxwxxa2
1

+(u1)t −αu2
0u1wxa1 +8u1w3

xa1a2a0
−2αu0u2

1wxa0−2αu0u1 (u0)x +u1w3
xa3

1 +(u1)x
+6(u1)x w2

xa2a0 +6u1wxwxxa2a0 +u1wxxxa1
+3(u1)xx wxa1 +3(u1)x w2

xa2
1 +u1wxa1−αu2

0 (u1)x = 0,

(3.6)

R0 (w) : 3(u1)x w2
xa1a0 +u1wxxxa0 +3u1wxwxxa1a0

+(u0)x +(u0)t +(u0)xxx +3(u1)xx wxa0 +u1wta0
+3(u1)x wxxa0−αu2

0 (u0)x +u1w3
xa2

1a0
+u1wxa0 +2u1w3

xa2a2
0−αu2

0u1wxa0 = 0.

(3.7)
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From the Eq. (3.3), we get

u1 (x, t) =
√

6

√
1
α

a2wx. (3.8)

If we substitute Eq. (3.8) in Eq. (3.4), we obtain

u0 (x, t) =

√
6
√

1
α

wxx

2wx
+
√

6

√
1
α

a1wx−
1
2

wxα
√

6

√(
1
α

)3

a1. (3.9)

When we substitute Eq. (3.8) and Eq. (3.9) in Eq. (3.5), we get following partial differential equation

wtwx =−
4a2w4

xa0−w4
xa2

1−3w2
xx +2wxwxxx +2w2

x

2
. (3.10)

If we use Eq. (3.10) in Eq. (3.6) and Eq. (3.7), these Eqs. are equal to zero.
If w is a solution of Eq. (3.10), then

u =

√
6
√

1
α

wxx

2wx
+
√

6

√
1
α

a1wx−
1
2

wxα
√

6

√(
1
α

)3

a1 +
√

6

√
1
α

a2wxR (3.11)

is a solution of the DMBBM equation with R≡ R(w) being a solution of the Riccati equation (2.3).
We suppose that w(x, t) be of the form

w(x, t) = acosh(kx+ lt +ξ )+bsinh(kx+ lt +ξ )+ r (3.12)

where a,b,k, l and r are constants to be determined later and ξ is an arbitrary constant. Setting Eq. (3.12) into Eq. (3.10) , we
obtain the following equations

−
k
(
16a2a0a3k3b−4a2

1ak3b3−4a2
1a3k3b+16a2a0ak3b3

)
2

= 0,

−
k
(
−16a2a0a3k3b+4alb+4a2

1a3k3b−2ak3b+4akb
)

2
= 0,

−
k
(
−a2

1a4k3 +24a2a0a2k3b2−a2
1b4k3

)
2

−
k
(
−6a2

1a2k3b2 +4a2a0b4k3 +4a2a0a4k3
)

2
= 0,

−
k
(
2a2

1a4k3 +6a2
1a2k3b2−8a2a0a4k3 +2a2k+2b2k

)
2

−
k
(
−b2k3−a2k3 +2a2l−24a2a0a2k3b2 +2b2l

)
2

= 0,

−
k
(
−a2

1a4k3−2a2k−2a2l−2a2k3 +4a2a0a4k3 +3b2k3
)

2
= 0

Solving above system, we get the following two solutions.
State 1:

a = b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =
k(k2−2)

2 , r = r.
(3.13)

State 2:

a =−b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =
k(k2−2)

2 , r = r.
(3.14)
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Combining Eq. (3.11), Eq. (3.12) with Eq. (3.13) and Eq. (3.14), two families of exact explicit solutions to the DMBBM
equation are obtained

u(x, t) =
1
2

√
6

√
1
α

k (a1bcosh(β )+1+a1bsinh(β ))

+
√

6

√
1
α

a2 (bk sinh(β )+bk cosh(β ))

×R(bcosh(β )+bsinh(β )+ r)

and

u(x, t) =
1
2

√
6

√
1
α

k (a1bcosh(β )−1−a1bsinh(β ))

+
√

6

√
1
α

a2 (−bk sinh(β )+bk cosh(β ))

×R(−bcosh(β )+bsinh(β )+ r) .

where β = kx− kt +
k3t
2

+ξ .

We suppose that w(x, t) be of the form

w(x, t) = Aexp(k1x+ l1t +ξ1)+Bexp(k2x+ l2t +ξ2)+C (3.15)

where A,B,C,ki and li are constants to be determined later and ξi are an arbitrary constant. Setting Eq. (3.15) into Eq. (3.10) ,
we get the following system

a2
1B4k4

2
2
−2a2a0B4k4

2 = 0,

−8a2a0Ak1B3k3
2 +2a2

1Ak1B3k3
2 = 0,

−12a2a0A2k2
1B2k2

2 +3a2
1A2k2

1B2k2
2 = 0,

−B2k2
2 +

1
2 B2k4

2−B2l2k2 = 0,

−8a2a0A3k3
1Bk2 +2a2

1A3k3
1Bk2 = 0,

−Al1Bk2−Ak3
1Bk2−Bl2Ak1−Bk3

2Ak1 +3Ak2
1Bk2

2−2Ak1Bk2 = 0,

a2
1A4k4

1
2
−2a2a0A4k4

1 = 0,

A2k4
1

2
−A2k2

1−A2l1k1 = 0.

Solving above system, one gets the following set of solution.

A = A, B = B, C =C, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, k1 = k2,

k2 = k2, l1 =−k2 +
k3

2
2 , l2 =−k2 +

k3
2
2 , ξ1 = ξ1, ξ2 = ξ2

(3.16)
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Combining Eq. (3.11), Eq. (3.15) with Eq. (3.16), exact explicit solution is obtained

u(x, t) =
k2
√

6
2

√
1
α
(Aa1 exp(β +ξ1)+Ba1 exp(β +ξ2)+1)

+a2
√

6

√
1
α
(Ak2 exp(β +ξ1)+Bk2 exp(β +ξ2))

×R(Aexp(β +ξ1)+Bexp(β +ξ2)+C)

where β = k2x+
(
−k2 +

k3
2
2

)
t.

3.2 Modified Korteweg-de Vries (mKdV)-Burgers equation
mKdV-Burgers equation is given by [15]

ut +qu2ux + ruxx− suxxx = 0 (3.17)

where q, r and s are arbitrary constants. According to the homogeneous balance method, we get the balancing number as n = 1.
From here, we infered that the exact solution of Eq. (3.17) is

u(x, t) = u0 (x, t)+u1 (x, t)R(w(x, t)) (3.18)

where u0 (x, t) and u1 (x, t) are functions to be detected later. Setting Eq. (3.18) and its derivatives with the condition Eq. (2.3)
into Eq. (3.17) and picking all terms with the same power of R(w) ,(i = 0,1, ...,4), we have the following system

R4 (w) : qu3
1wxa2−6su1w3

xa3
2 = 0, (3.19)

R3 (w) : 2qu0u2
1wxa2−6s(u1)x w2

xa2
2 +2ru1w2

xa2
2−12su1w3

xa1a2
2

+qu2
1 (u1)x +qu3

1wxa1−6su1wxwxxa2
2 = 0,

(3.20)

R2 (w) : qu2
1 (u0)x +2r (u1)x wxa2− su1wxxxa2

+u1wta2−3s(u1)x wxxa2−8su1w3
xa0a2

2
+3ru1w2

xa1a2 +2qu0u2
1wxa1−3s(u1)xx wxa2

+2qu0u1 (u1)x−9s(u1)x w2
xa1a2−9su1wxwxxa1a2

+qu3
1wxa0 +qu2

0u1wxa2−7su1w3
xa2

1a2 + ru1wxxa2 = 0,

(3.21)

R1 (w) : qu2
0 (u1)x−6su1wxwxxa2a0 +2qu0u2

1wxa0 + r (u1)xx
+ru1wxxa1− su1wxxxa1 +(u1)t −3s(u1)xx wxa1
−3s(u1)x w2

xa2
1− su1w3

xa3
1 + ru1w2

xa2
1−3s(u1)x wxxa1

+qu2
0u1wxa1− s(u1)xxx +u1wta1−3su1wxwxxa2

1
−8su1w3

xa1a2a0 +2r (u1)x wxa1 +2ru1w2
xa2a0

+2qu0u1 (u0)x−6s(u1)x w2
xa2a0 = 0,

(3.22)

R0 (w) : u1wta0−3s(u1)x w2
xa1a0 +2r (u1)x wxa0 + ru1w2

xa1a0
+ru1wxxa0−3s(u1)xx wxa0 +qu2

0u1wxa0− su1wxxxa0
+r (u0)xx−2su1w3

xa2a2
0−3s(u1)x wxxa0 +qu2

0 (u0)x
−3su1wxwxxa1a0 +(u0)t − s(u0)xxx− su1w3

xa2
1a0 = 0.

(3.23)

From the Eq. (3.19), we get

u1 (x, t) =

√
6
√

sa2wx√
q

. (3.24)



Construction of Exact Solutions to Partial Differential Equations with CRE Method — 110/113

If we substitute Eq. (3.24) in Eq. (3.20), we obtain

u0 (x, t) =

√
6
(
3swxx− rwx +3sw2

xa1
)

6
√

s
√

qwx
. (3.25)

When we substitute Eq. (3.24) and Eq. (3.25) in Eq. (3.21), we get following partial differential equation

wtwx =−3sw2
xx +2sa2a0w4

x−
sw4

xa2
1

2
+ swxxxwx−

w2
xr2

6s
. (3.26)

If we use Eq. (3.26) in Eq. (3.22), this Eq. is equal to zero. If we use Eq. (3.26) in Eq. (3.23), we obtain

r
√

6s
(
4wxxa2w4

xa0 +3w3
xx +wxxxxw2

x−4wxxwxxxwx−w4
xa2

1wxx
)

2
√

qw3
x

= 0. (3.27)

If w is a solution of Eqs. (3.26) and (3.27), then

u =

√
6
(
3swxx− rwx +3sw2

xa1
)

6
√

s
√

qwx
+

√
6
√

sa2wx√
q

R (3.28)

is a solution of the Eq. (3.17) with R≡ R(w) being a solution of the Riccati equation (2.3).

We suppose that w(x, t) be of the form

w(x, t) = acosh(kx+ lt +ξ )+bsinh(kx+ lt +ξ )+ r (3.29)

where a,b,k, l and r are constants to be determined later and ξ is an arbitrary constant. Setting Eq. (3.29) into Eqs. (3.26) and
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(3.27), we obtain the following equations

sa2k4−a2kl− 3sb2k4

2
− r2a2k2

6s
= 0, 2sa2a0a4k4− sa2

1a4k4

2
= 0,

−3sa2
1a2k4b2 +12sa2a0a2k4b2 = 0, 8sa2a0a3k4b−2sa2

1a3k4b = 0,

− sa2
1b4k4

2
+2sa2a0b4k4 = 0, −sak4b−2akbl− r2ak2b

3s
= 0,

2
√

6r
√

sbk6a2a4a0√
q

−
√

6r
√

sa4k6ba2
1

2
√

q
= 0, − r2b2k2

6s
−b2kl− 3sa2k4

2
+ sb2k4 = 0,

−
√

6r
√

sa5k6a2
1

2
√

q
− 2
√

6r
√

sa3k6b2a2
1√

q
+2a0

(
4
√

6r
√

sa3k6b2a2√
q

+

√
6r
√

sa5k6a2√
q

)
= 0,

−2
√

6r
√

sa4k6ba2
1√

q
− 3
√

6r
√

sa2k6b3a2
1√

q
+2a0

(
6
√

6r
√

sa2k6b3a2√
q

+
4
√

6r
√

sa4k6a2b
√

q

)
= 0,

−2sa2
1ak4b3 +8sa2a0ak4b3 = 0, −3

√
6r
√

sbk6a2

2
√

q
+

3
√

6r
√

sb3k6

2
√

q
= 0,

−3
√

6r
√

sa3k6b2a2
1√

q
− 2
√

6r
√

sab4k6a2
1√

q
+2a0

(
4
√

6r
√

sak6b4a2√
q

+
6
√

6r
√

sa3k6a2b2
√

q

)
= 0,

7
√

6r
√

sak6b2

2
√

q
+

√
6r
√

sa3k6

2
√

q
−2ak

(√
6r
√

sk5b2
√

q
+

√
6r
√

sa2k5
√

q

)
= 0,

−2
√

6r
√

sa2k6b3a2
1√

q
−
√

6r
√

sab5k6a2
1

2
√

q
+2a0

(√
6r
√

sb5k6a2√
q

+
4
√

6r
√

sa2k6a2b3
√

q

)
= 0,

7
√

6r
√

sbk6a2

2
√

q
+

√
6r
√

sb3k6

2
√

q
−2bk

(√
6r
√

sk5b2
√

q
+

√
6r
√

sa2k5
√

q

)
= 0,

3
√

6r
√

sa3k6

2
√

q
− 3
√

6r
√

sak6b2

2
√

q
= 0,

2
√

6r
√

sak6b4a2a0√
q

−
√

6r
√

sab4k6a2
1

2
√

q
= 0,

Solving above system, we get the following two solutions.

State 1:

a = b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =− k(3s2k2+r2)
6s , r = r.

(3.30)

State 2:

a =−b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =− k(3s2k2+r2)
6s , r = r.

(3.31)

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.30) and Eq. (3.31), two families of exact explicit solutions to the mKdV-Burgers
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equation are obtained

u(x, t) =

√
6b3k3 (cosh(β )− sinh(β ))3 (3sk− r+3sbka1 cosh(β )−3sbka1 sinh(β ))

6
√

s
√

q(−bk sinh(α)+bk cosh(α))3

+

√
6s
√

q
(−bk sinh(α)+bk cosh(α))a2R(bcosh(α)−bsinh(α)+ r)

and

u(x, t) =

√
6b3k3 (cosh(β )− sinh(β ))3 (−3sk− r+3sbka1 cosh(β )+3sbka1 sinh(β ))

6
√

s
√

q(bk sinh(α)+bk cosh(α))3

+

√
6s
√

q
(bk sinh(α)+bk cosh(α))a2R(−bcosh(α)−bsinh(α)+ r)

where α =−kx+
k(3s2k2+r2)t

6s −ξ , β =
−6kxs+3k3ts2 + ktr2−6sξ

6s
.

We suppose that w(x, t) be of the form

w(x, t) = A+Bexp(k1x+ l1t +ξ1) (3.32)

where A,B,k1 and l1 are constants to be determined later and ξ1 are an arbitrary constant. Setting Eq. (3.32) into Eqs. (3.26)
and (3.27), we get the following system

2
√

6r
√

sB2k3
1a2a0√

q
−
√

6r
√

sB2k3
1a2

1
2
√

q
= 0,

2sB3k3
1a2a0−

sB3k3
1a2

1
2

= 0,

−
sBk3

1
2
− Bk1r2

6s
−Bl1 = 0,

Solving above system, one gets the following set of solution

A = A, B = B, a0 =
a2

1
4a2

, a1 = a1, a2 = a2,

k1 = k1, l1 =−
k1(3s2k2

1+r2)
6s , ξ1 = ξ1.

(3.33)

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.33), exact explicit solution is obtained

u(x, t) =

√
6exp(α)

(
3k1s− r+3sBk1a1 exp

(
α

3

))
6
√

sq(exp(β ))3

+

√
6
√

sBk1a2 exp(β )R(A+Bexp(β ))
√

q

where α =−
−6k1xs+3k3

1ts2 + k1tr2−6ξ1s
2s

,β = k1x−
k1
(
3s2k2

1 + r2
)

t
6s

+ξ1

4. Conclusions
In this paper, by introducing CRE method we apply to DMBBM and mKdV-Burgers equations. We had exact explicit

solutions of given equations with the help of Riccati equation. The obtained exact solutions are consist of hyperbolic and
exponential functions. We checked all solutions of given equations by the Maple.

It is also shown that the CRE method can be performed to other kinds of integrable systems and can be obtained other kind
of solutions.
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