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Abstract
We provide a new local convergence analysis of a Newton-Kurchatov-like method to solve non-differentiable
equations in Banach spaces. Our result improve the earlier works in literature. The examples were used to test
our hypotheses.
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1. Introduction
In this work, we solve

H(x) = 0, (1.1)

to find a solution x∗ ∈Ω, where H : Ω⊆ X −→ Y and X ,Y stand for Banach spaces. Iterative methods are mostly used to solve
(1.1), since solutions in closed form are hard to find. If H is a differentiable operator, Newton’s method is the most used method
to solve the equation of (1.1), which is given by [1, 2]

xn+1 = xn−H ′(xn)
−1H(xn), for alln = 0,1,2, . . . x0 ∈Ω. (1.2)

If H is not differentiable, Remember that an operator [x,y;H] ∈ L(X ,Y ) is called a divided difference of order one for the
operator H on the points x and y (x 6= y) if the following equality holds:

[x,y;H] = H(x)−H(y).

Replacing the Fréchet derivative H ′ by divided differences of the operator H in Newton’s method (1.2) at different points, we
can define two iterative methods as follows: one is the secant method is given by [3, 4]

xn+1 = xn− [xn−1,xn;H]−1 H(xn) n≥ 0, x0, x−1 ∈Ω,
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and the other is Kurchatov’s method given by [5]

xn+1 = xn− [xn−1,2xn− xn−1;H]−1 H(xn) n≥ 0, x0, x−1 ∈Ω.

Note that, Kurchatov’s method is as simple as Newton’s method and has the same rate of convergence as Newton’s method.
This means it has the higher rate of convergence than the Secant method. A lot of study about the convergence of Kurchatov’s
method have been given, see [5–10].

We split it as

H(x) = F(x)+G(x),

where F : Ω−→ Y and G : Ω−→ Y. F is differentiable and G is continuous but non-differentiable. Then, we use the following
Newton-Kurchatov-type method given by

xn+1 = xn− (F ′(xn)+ [xn−1, 2xn− xn−1;G])−1 H(xn) n≥ 0, x0, x−1 ∈Ω (1.3)

to solve (1.1). Recently, M. A. Hernández and M. J. Rubio [8] gave an analysis of method (1.3). Cases where method
(1.3) is efficient for solving systems and also arguments about its efficiency were also given in [8]. A novel idea of [8] is
that the usual condition of H ′(x?) is reduced to a new type condition, which means that H can be a non-differentiable oper-
ator. We give a more precise local analysis for (1.3) than [8]. Advantages of our local convergence analysis over the work, in [8] :

(a) Larger radius of convergence lending to wider choice of initial guesses,

(b) More precise estimates on the distances ‖xn+1− x?‖. Hence fewer iterates are need to obtain a desired error tolerance.

(c) At least as precise information on the uniqueness ball of the solution.

These advantages are obtained under the same computational cost, since in practice the new majorizing functions are special
cases of the majorizing functions in [8].

The paper is organized as follows: Section 2 contains the local convergence analysis of method (1.3). The numerical
examples including favorable comparisons with earlier study [8] are presented in the concluding Section 3.

Throughout the paper we denote B(x,ρ) = {y ∈ X : ‖y− x‖< ρ} and B(x,ρ) = {y ∈ X : ‖y− x‖ ≤ ρ}.

2. Local convergence analysis

From now on by differentiable operator, we mean differentiable in the sense of Fréchet. We shall use condition (C) to show the
local convergence analysis of the Kurchatov-type method (1.3):

(C1) F : Ω⊂ X → Y is continuously differentiable operator.

(C2) G : Ω⊂ X → Y is continuous and a divided difference of order one [·, ·;G] : Ω×Ω→ L(X ,Y ), exists.

(C3) There exist x? ∈Ω and x ∈Ω with ‖x− x?‖= δ > 0 such that H(x?) = 0 and M = F ′(x?)+ [x?, x;G] is invertible.

(C4) ‖M−1
(
F ′(x)−F ′(x?)

)
‖ ≤ v0 (‖x− x?‖) for some function v0 : [0,+∞)→ [0,+∞) continuous, nondecreasing with

v0(0) = 0 and each x ∈Ω.

(C5) ‖M−1
(
[y, 2x− y; G]− [x?, x; G]

)
‖ ≤ w0

(
‖y− x?‖,‖2x− y− x‖

)
for some function w0 : [0,+∞)× [0,+∞)→ [0,+∞)

continuous, nondecreasing for each x, y, 2x− y ∈Ω.

(C6) Equation v0(t)+w0(t,δ + t) = 1 has a minimal positive solution r0. Pick r0 ∈ (0,r0]. Define

p0 := v0(r0)+w0(r0,δ + r0)< 1.

Let Ω0 = Ω∩B(x?,r0).
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(C7) ‖M−1
(
F ′(y)−F ′(x)

)
‖ ≤ v(‖y− x‖) for function v : [0,r0)→ [0,+∞) continuous, nondecreasing with v(0) = 0 and

all x, y ∈Ω0.

(C8) ‖M−1
(
[y, 2x−y; G]− [x?, x; G]

)
‖ ≤ w

(
‖y−x?‖,‖x−y‖

)
for some function w : [0,r0)× [0,r0)→ [0,+∞) continuous,

nondecreasing for each x, y, 2x− y ∈Ω0.
Let p =

∫ 1
0 v(θ r0)dθ +w(r0,2r0) and q = p

1−p0
.

(C9) Let r ≥ 0, there exists minimal r ∈ (0,r0) solving the equation

r = t [1−
2(
∫ 1

0 v(θ t)dθ +w(t,2t))

1−
(
v0(t)+w0(t,δ + t)+2

(∫ 1
0 v(θ t)dθ +w(t,2t)

)) ].
Notice that r > r.

(C10) B(x?,r)⊆Ω.

(C11)∫ 1

0
v0(θ r?)dθ +w0(0,δ + r?)< 1

for some r∗ ≥ r.
First, we need a perturbation result.

Lemma 2.1. Assume (C1)− (C6). Then, operator F ′(x)+ [y, 2x− y; G] is invertible for all x,y,2x− y ∈ B(x?,r0) with x 6= y
and

‖
(
F ′(x)+ [y,2x− y;G]

)−1 M‖ ≤ 1
1− p0

.

Proof. Operator [y,2x− y;G] is well defined, since y 6= 2x− y. Using (C3)− (C5), we have in turn that

‖M−1(M−F ′(x)− [y,2x− y;G]
)
‖

≤ ‖M−1(F ′(x?)−F ′(x)
)
‖+‖M−1([x?,x;G]− [y,2x− y;G]

)
‖

≤ v0(‖x?− x‖)+w0
(
‖x?− y‖,‖x− (2x− y)‖

)
≤ v0(r0)+w0(r0,δ + r0) = p0 < 1.

The result follows from the preceding estimate and the Banach lemma on invertible operators [1, 2].

Secondly, we establish the sequence {xn} generated by the Newton-Kurchatov-type method (1.3) is well defined.

Lemma 2.2. Suppose the conditions (C1)− (C8) hold, xn−1,xn−2,2xn−1− xn−2 ∈ B(x?,r0) and xn−1 6= xn−2, then xn is well
defined and

‖xn− x?‖ ≤ q‖xn−1− x?‖.

Proof. We shall use the notation

Mn−1 = F ′(xn−1)+ [xn−2, 2xn−1− xn−2;G].

Newton-Kurchatov-type method (1.3) gives

xn− x? = xn−1− x?−M−1
n−1 H(xn−1)

= M−1
n−1
(
Mn−1(xn−1− x?)−H(xn−1)

)
= M−1

n−1

((
F ′(xn−1)(xn−1− x?)−F(xn−1)+F(x?)

)
+G(x?)−G(xn−1)+ [xn−2,2xn−1− xn−2;G] (xn−1− x?)

)
=−[M−1

n−1 M] [M−1
∫ 1

0

(
F ′(xn−1 +θ (x?− xn−1))−F ′(xn−1)

)
(xn−1− x?)dθ ]

+ [M−1
n−1 M] [M−1 ([xn−2,2xn−1− xn−2;G]− [x?,xn−1;G]

)
(xn−1− x?)].
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Using Lemma 2.1, (C7), (C8) and the triangle inequality in the preceding identity,

‖xn− x?‖ ≤ ‖M−1
n−1 M‖

(∫ 1

0
v(θ ‖x?− xn−1‖)d θ

+w
(
‖xn−2− x?‖,‖xn−1− xn−2‖

))
‖xn−1− x?‖

≤ 1
1− p0

(∫ 1

0
v(θ r0)dθ +w(r0,2r0)

)
‖xn−1− x?‖

=
p

1− p0
‖xn−1− x?‖= q‖xn−1− x?‖.

Let r = ‖x0− x?‖. As in [7], [11], we must somehow drop 2xn−1− xn−2 ∈ B(x?,r0), if xn−1,xn−2 ∈ B(x?,r0). Suppose that
x1,x2, · · · ,xn−1 ∈ B(x?,r0), then

‖2xn−1− xn−2− x?‖ ≤ ‖xn−1− xn−2‖+‖xn−1− x?‖
≤ 2‖xn−1− x?‖+‖xn−2− x?‖
≤ (2q+1)‖xn−2− x?‖

and

‖xn−2− x?‖ ≤ qn−2 ‖x0− x?‖.

Then, if q < 1, we have

‖xn−2− x?‖< ‖x0− x?‖= r

and

‖2xn−1− xn−2− x?‖< (2q+1)r.

Clearly, if p0 + p < 1, then q < 1. To show 2xn−1− xn−2 ∈ B(x?,r0), it suffices to have (2q+1)r = r leading to the condition
(C9).

Theorem 2.3. Assume (C) with p0 + p < 1. Then, sequence {xn} generated by the Kurchatov-type method (1.3) for x0 ∈
B(x?,r)−{x?} and x−1 ∈ B(x0,r− r) with x−1 6= x0 and r = ‖x0−x?‖ exists in B(x?,r), stayes in B(x?,r) for all n = 0,1,2, · · ·
and limn−→∞ xn = x?.

Proof. Notice

‖x−1− x?‖ ≤ ‖x−1− x0‖+‖x0− x?‖ ≤ r− r+ r = r

and

‖2x0− x−1− x?‖ ≤ ‖x−1− x0‖+‖x0− x?‖ ≤ r− r+ r = r,

so x−1,2x0− x−1 ∈ B(x?,r) and 2x0− x−1 6= x1. By Lemma 2.1, x1 exists and by Lemma 2.2

‖x1− x?‖ ≤ q‖x0− x?‖< ‖x0− x?‖= r < r,

so, x1 ∈ B(x?,r) and x1 6= x0. Analogously,

‖2x1− x0− x?‖ ≤ ‖x1− x0‖+‖x1− x?‖
≤ 2‖x1− x?‖+‖x0− x?‖< (2q+1)‖x0− x?‖< r,

so 2x1−x0 ∈ B(x?,r). Assume for k≥ 2, if xk−1,xk−2 ∈ B(x?,r) for xk−1 6= xk−2, then 2xk−1−xk−2 ∈ B(x?,r) and hence M−1
k−1

is well defined. Then, xk is well defined and from Lemma 2.2, we get that

‖xk− x?‖ ≤ q‖xk−1− x?‖.
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Suppose using mathematical induction that the preceding two inequalities hold for k = 2,3, · · · ,m, we shall show that they hold
for k = m+1. If xk,xk−1 ∈ B(x?,r) with xk 6= xk−1, we get that

‖2xk− xk−1− x?‖ ≤ ‖xk− xk−1‖+‖xk− x?‖
≤ 2‖xk− x?‖+‖xk−1− x?‖< (2q+1)‖xk−1− x?‖
≤ (2q+1)qk−1 ‖x0− x?‖< (2q+1)‖x0− x?‖< r,

so 2xk− xk−1 ∈ B(x?,r) and 2xk− xk−1 6= xk−1. That is by Lemma 2.1 M−1
k exists and xk+1 is well defined. Moreover, by

Lemma 2.2,

‖xk−1− x?‖ ≤ q‖xk− x?‖

which completes the induction. That is {xk} ⊆ B(x?,r) and

‖xk− x?‖ ≤ qk ‖x0− x?‖,

from which we deduce that limk→∞ xk = x?.

Next, a uniqueness result is given.

Proposition 2.4. Assume conditions (C). Then, x? is the only solution of equation H(x) = 0 in Ω1 = Ω∩B(x?,r?).

Proof. Let y? ∈Ω1 with H(y?) = 0. Define operator T =
∫ 1

0 F ′(x?+θ (y?− x?))d θ +[x?,y?;G]. Then, using (C4), (C5) and
(C11).

‖M−1 (T −M)‖ ≤ ‖
∫ 1

0
M−1

(
F ′(x?+θ (y?− x?))

)
d θ‖

+‖M−1 ([x?,y?;G]− [x?,x;G])‖

≤
∫ 1

0
v0(θ ‖x?− y?‖)d θ +w0(‖x?− x?‖,‖y?− x‖)

≤
∫ 1

0
v0(θ r?)d θ +w0(0,r?+δ )< 1,

so, T−1 exists.
But from

0 = H(x?)−H(y?) = T (x?− y?),

we conclude that y? = x?.

Remark 2.5. (a) We can set x = x0. In this case δ = r.

(b) If Ω = X , condition 2x− y ∈Ω is automatically satisfied. To relax this condition,
let

p1 = v0(r0)+w0(r0,δ +3r0).

Then, we use the condition p1 + p < 1, instead of using (C9) to calculate r, or the equation

v0(t)++w0(t,δ +3 t)+2
(∫ 1

0
v(θ t)d t +w(t,2t)

)
= 1. (2.1)

Note that in this case q1 =
p

1−p1
< 1. Hence, we arrived at:

Proposition 2.6. Assume conditions (C1)− (C8), and

(C9)
′ There exists a solution R ∈ (0,r0) of equation (2.1)
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(C10)
′ For R1 < R, B(x?,R1)⊂Ω

(C11)
′ 2x− y ∈Ω for all x,y ∈ B(x?,R1) with x 6= y

(C12)∫ 1

0
v0(θ R?)d θ +w0(0,δ +R?)< 1

for some R? ≥ R1. Then, sequence {xn} generated for x0 ∈ B(x?)− x? and x1 ∈ B(x0,R1− r) with x−1 6= x0 by the Newton-
Kurchatov-type method (1.3) exists in B(x?,R1), stays in B(x?,R1) for all n = 0,1, · · · and limn−→∞ xn = x?, which is the only
solution of equation H(x) = 0 in Ω2 = Ω∩B(x?,R1).

Remark 2.7. Clearly condition (C11)
′ can be exchanged by

(C10)
′′B(x?,3R)⊆Ω,

since if x,y ∈ B(x?,R)⇒‖x?− (2x−y)‖ ≤ 2‖x?−x‖+‖x?−y‖< 3R⇒ 2x−y ∈ B(x?,3R) (see also [5–9] and the numerical
examples).

Remark 2.8. The results in this study improve the corresponding ones in [8]. Indeed, we have the following advantages:

(1) Affine invariant results are given here which are more advantageous than non affine results given in [8].
(2) The following conditions have been used in [8]

(h7) ‖F ′(y)−F ′(x)‖ ≤ v(‖y− x‖) for all x,y ∈Ω,

(h8) ‖[x,y;G]− [u,v;G]‖ ≤ w(‖x−u‖,‖y− v‖) for all x,y,u,v ∈Ω,

(h6)
′ p = γ

(∫ 1
0 v(θ ρ)d θ +w(ρ,2ρ)

)
, q = p

1−p0
, ‖M−1‖ ≤ γ,

p0 = γ(v(ρ)+w(ρ,ρ +δ ))< 1,

r = t [1−
2γ

(∫ 1
0 v(θ t)d θ+w(t,2t)

)
1−γ

(
v(t)+w(t γ,δ+t)+2γ

(∫ 1
0 v(θ t)d θ+w(t,2t)

)) ]
and

(h9) B(x?,ρ)⊆Ω,

(h10) There exists ρ? ≥ ρ such that

γ

(∫ 1

0
v(θ ρ

?)dθ +w(0,δ +ρ
?)
)
< 1.

However, we have that

v0(t)≤ γ v(t),v(t)≤ γ v(t)

w0(s, t)≤ w(s, t)≤ γ w(s, t)

q≤ q

ρ ≤ r

and

ρ
? ≤ r?

which lead to the improvements listed in the introduction. It is worth noticing that improvements are given using the same
computational cost, because in practice the computation of functions v, w needs the computation of the functions v0,v,w0,w as
special cases.
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Remark 2.9. Let us see the radii for Newton’s method (1.2), i.e., when the v̄ and the the v̄0 functions are choosen by v̄(t) = µt
and v̄0(t) = λ t, G = 0,w = w0 = 0 and x? = x (i.e, δ = 0). The radius ρ given in [8] is

ρ =
2

3γ µ
.

The radius ρ coincides with radius given independently by Rheinboldt [12] and Traub [13]. This value improves the radius

ρ0 =
1

2γ µ
,

given also by Dennis and Schnabel [12, 13]. Our radius of convergence r is given by

r =
2

(2λ +µ0)γ
.

Then, we have that

ρ0 ≤ ρ ≤ r. (2.2)

The right hand side inequality in (2.2) can be strict (see (c4), (h7) and the numerical examples).

3. Numerical examples

Choose the divided difference [x,y;F ] =
∫ 1

0 F ′(y+θ(x− y))dθ .

Example 3.1. Case 1 Newton’s method. Let F, G be defined on Ω = [−1,1]× [−1,1]× [−1,1] by

F(x,y,z) = (ex−1,
(e−1)y2

2
+ y,z)T , and G = 0. (3.1)

Choose λ = e−1,µ0 = e
1

e−1 , µ = e for x? = (0,0,0)T and γ = 1
we have

ρ0 = 0.1839 < ρ = 0.2453 < r = 0.3827.

Newton’s method is very efficient. In general, if the method is inefficient, then we use a better method. The new error bounds
are also better, since

‖xn+1− x?‖ ≤ µ0 ‖xn− x?‖2

2(1−λ ‖xn− x?‖)
n = 1,2, . . .

and

‖x1− x?‖ ≤ λ ‖x0− x?‖2

2(1−λ ‖xn− x?‖)

but λ the old ones are given by

‖xn+1− x?‖ ≤ µ ‖xn− x?‖2

2(1−µ ‖xn− x?‖)
,n = 0,1,2,3, · · · .

The old uniqueness ball is B(x?, 2
e ). The new uniqueness ball is B(x?, 2

e−1 ) is better, since

B(x?,
2
e
)⊆ B(x?,

2
e−1

).

Case 2 Newton-Kurchatov-type method. Let F be given as in (3.1) and define G(x)= |x|. We have for x̄=(0.01,0.01,0.01)T ,γ =
1
2 ,δ = 0.01, v0(t) = (e−1)t, v(t) = e

1
e−1 t,w0(s, t) = w(s, t) = 1, r̄ = δ and v0(t)< v(t). Then

rold = 0.4905 < r = 0.7654.
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