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Abstract 

Tongue-machine interface (TMI) is a feasible way between the assistive technologies and paralyzed individuals who have lost 

their abilities to communicate with the environment. Researchers have presented equipment based tongue-machine interfaces to 

reach a reliable and speedy system. However, this kind of interfaces may occur a way of obtrusive, unattractive and unhygienic 

for disabled persons. In this research, we intended to propose a natural, unobtrusive and robust glossokinetic potential signals 

(GKP) based TMI exploring the success of the novel machine learning algorithms. The tongue is bound up with cranial nerves 

to the brain, which can escape from the spinal cord injuries in general. Moreover, the tongue has highly capable of sophisticated 

manipulation tasks with less perceived exertion in the oral cavity and gives degrees of privacy. In this study, ten naive healthy 

subjects have attended who were between 22-34 ages. Decision Tree (DT) and k-Nearest Neighbors (kNN) algorithms were used 

with Mean-Absolute Value (MAV) and Power Spectral Density (PSD) methods. Moreover, Discrete Wavelet Transform (DWT) 

was implemented to reveal the theta and delta subbands. In the study, the highest value was provided as 96.77% by the k-Nearest 

Neighbor algorithm for the best participant. Furthermore, the GKP-based TMI may be an alternative system for the limitations 

of the brain-computer interfaces. It is well-known that EEG deficits are major concerns for brain-computer interfaces. 

 

Keywords: Glossokinetic Potential, Tongue-Machine Interface, Brain-Computer Interface, Decision Tree, k-Nearest Neighbors, 

Discrete Wavelet Transform 

 

 

1. INTRODUCTION  

 

Patients suffer from the loss of motor control because of the 

spinal cord injuries (SCIs), brain stroke or amyotrophic 

lateral sclerosis (ALS). These individuals do not use 

peripheral nerves and muscles in regular outputs. Assistive 

technologies (ATs) enable impaired persons to control and 

communicate a device such as computers, wheelchairs, 

neuroprosthesis or word-spellers [1]. Tongue-machine 

interface (TMI) is a tongue- managed system to operate 

assistive technologies by voluntary tongue motions. There is 

substantial research on a number of TMIs. According to 

recent reports, most of the systems operated by the tongue, 

have pieces of equipment in the mouth and around the 

headset [2]. These devices can disturb paralyzed people in 

their swallowing, breathing and speaking performances and 

they are not hygienic in the mouth [3,4]. In this study, we 

aimed to explore the performance of the Decision Tree and 

k-Nearest Neighbors machine learning algorithms in 

advancing a natural, reliable and easy-to-use 1-D control and 

communication tongue-machine interface using the 

glossokinetic potential signals (GKPs) solely. GKPs 

originate from a noncerebral region and occur low-frequency 

interference with the alpha and beta frequencies of brain 

activity. Because GKPs emerge generally in the delta (1-3 

Hz) and theta (4-7 Hz) bands. Then these rarely used signals 

are created by contacting the buccal walls with the tip of the 

tongue. If the tongue touches the buccal walls, the charge 

decreases in contact surface and vice versa operation created 

in the non-contact area [5].  

 

The oral cavity is a sensitive region compared to other body 

parts. Hence, oral structures possess a cortex structure 

matching to hand size, whereas the lower limbs of the body 

possess a relatively small mapping in the somatic sensory 

cortex. Moreover, psychophysical papers on strength 

sensitivity and discrimination confirm that some mouth parts 

like the tongue are more susceptible than the fingertip [6]. 

For this reason, the tongue may perform encouraging results 

in a tongue-machine interface associated with 1-D pattern 
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recognition compared to other body parts due to cortex brain 

mapping by measuring the signals over the scalp [7-9]. 

Inherent problems including degrees of freedom (DoF) and 

loss of control (LoC) are seen in in traditional brain-

computer interfaces (BCIs). These problems are originated 

from the nonstationary electroencephalography (EEG) 

signals [10,11]. Furthermore, long training times and high 

cognitive efforts are drawbacks of BCIs [12,13]. GKP-based 

TMI can solve to these problems without so much energy 

because of the intuitive tongue motions.   

 

Recently, few of the tongue-operated interfaces handled 

glossokinetic potential responses in the literature. Nam et al. 

have developed “Tongue-Rudder” [3]. In this research, 

glossokinetic potential responses were used for 1-D 

extraction and EMG signals of the jaw utilized for calibration 

and toggle operations to control a wheelchair. Linear 

variations of GKP were measured from the scalp and 

earlobes to be classified by principal component analysis 

(PCA). Then, the same research group has developed 

“GOM-face” [4]. In this work, GKP and EOG 

(Electrooculogram) were implemented for each 1-D 

extraction and EMG used for toggle and calibration settings 

again to manage a humanoid robot. Tongue and eyes are 

named as charged organs based on the same phenomena of 

occurring. Thus, all signals were measured over the face. 

Then, eigenvalue decomposition of two covariances was 

calculated to discriminate GKP and EOG signals to be 

classified by support vector machine algorithm. However, 

implementing Decision Tree and k-Nearest Neighbor 

algorithms with MAV and PSD techniques in GKP-based 

TMI is the first attempt to show the performance of these 

machine learning algorithms.  

 

Primary of hardware-based tongue-driven systems are 

presented by Huo et al. [1]. They have developed a series of 

wireless tongue-operated interfaces with attaching a piece of 

permanent magnet on the tongue and placing sensors in the 

mouth or on the dental-set/headset to detect the magnetically 

induced changes [1, 14-16]. Then, transmitted data were 

processed by computer or smartphone. Krishnamurthy et al. 

handled the same phenomena to realize a TMI [17]. 

Nonetheless, this kind of systems might cause disabled 

persons uncomfortable and unhygienic access in daily life. 

However, our study, glossokinetic potential responses on a 

tongue-machine interface may offer handicapped people in a 

natural and easy-to-use control in assistive devices. The 

other design approach of a TMI by Vaidyanathan et al. is 

based on airflow pressure changes created by the tongue 

movements, therefore attaching a microphone to the air canal 

[18-22]. However, GKP-based TMI can handle to manage an 

AT without affecting listening performance due to the 

acquisition the signals over the scalp. 

 

Three experimental paradigms were established in the offline 

recording system. Decision Tree and k-Nearest Neighbor 

algorithms were applied as MLs with Mean-Absolute Value 

and Power Spectral Density methods to recognize the pattern 

of GKPs on the scalp. Moreover, Discrete Wavelet 

Transform (DWT), Principal Component Analysis (PCA), 

and Independent Component Analysis (ICA) were also 

utilized in preprocessing and feature selection operations 

respectively. 

2. MATERIALS AND METHODS  
 

In this study, the procedure of the spatial pattern 

classification is as follows: Acquisition signals were carried 

out over the scalp based on the 10-20 international electrode 

placement system [23]. Then preprocessing steps are 

implemented as; DWT is to extract the delta and theta 

frequency subbands of the signals. Then the raw data set is 

normalized. After that, feature extraction operation is applied 

to highlight the data set. Principal Component Analysis and 

Independent Component Analysis are to decrease the 

features’ dimension of the same data set. Finally extracted 

data are conveyed to the classifiers. GKP occurence and 

GKP-based TMI workflow was presented in Fig.1.  

 

 
 

Fig.1. The presentation of GKP occurance and GKP-based 

tongue machine interface 

 

GKP signals were collected by EEG measurement device 

using the Micromed SAM32RFO with 19 channels, and 

impedances of electrodes were kept under 10kΩ. In the 

acquisition system, Left (A1) and right (A2) earlobes and 

left-eyebrow were designated as reference points and ground 

respectively. Each channel was sampled at a frequency of 

1024 Hz and filtered (0.5-100 Hz). Besides, a notch filter of 

50 Hz was applied to remove the power line noise [24]. The 

electrodes for monopolar installation is represented in Table 

1. Extracted data of delta and theta frequencies were 

normalized in the range of 0-1 according to the Eq.1. 

 

                          𝑋𝑆
𝑛𝑜𝑟𝑚 =

𝑋𝑆 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

                                  (1) 

 

 

XS stands for the sth data, Xmin and Xmax describe the 

minimum and maximum values in the data set, respectively 

[25]. This step helps ML algorithms to classify the data sets 

easier. 
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Table 1. The Monopolar Placement for EEG 

               Electrodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Data Collection 

 

In this study, three experimental paradigms were designed to 

prevent design biases. The tongue dynamics of 8 male and 2 

female participants without any nervous system impairment 

can provide similar signal direction patterns of each tongue 

touchings. The participants were placed in front of the LCD 

monitor and guided not to move any part of the gross body 

except tongue motions during the task timing and trial 

procedure. However, eye movements were set free in the 

resting timing. Four trials for each experimental paradigm 

provided a total of 12 trials for each participant. Low inter-

trial variability and robust performances were observed 

between the trial results of each subject due to the complex 

muscles of the tongue and less effort [1,5]. Therefore pre-

evaluated trials in terms of the classification results and the 

observed best trial of each subject were selected to compare 

the performances of DT and kNN methods. Then, complete 

processed results were provided using this data set of the 

trial. Statistical information of each participant was 

presented in Table 2. 

 

Each recorded trial has 98 s and begins after the 10 s delay. 

Multiple touching contacts last 6 s duration for each right or 

left tongue movements in the oral cavity. Then, 5 s resting 

interval is inserted between the 6 s tongue motion durations 

and expected no tongue motion at this interval. The tongue 

is extended through forward in the intervals of the rest 

timing. Then, four right tongue movements and four left 

tongue movements were made by the subjects following to 

the experimental sequences shown in Fig.2. Approximately 

10 multiple distinct contacts were implemented to the buccal 

walls during the 6 seconds. Distinct contacts are important to 

unveil the GKPs.  Experimental paradigm sequences were 

arranged in different orders to reduce the memorizing effect 

for each subject.  The equal direction number (4 right and 4 

left) and timing process (6 s for task 5 s for resting) were 

made to be deterministic and boosting robust results in each 

experiment of the subjects. The subjects were guided by 

using powerpoint slide based experiments to reveal the 

patterns of GKP signals. Therefore inter-trial differences 

were compensated and reduced as possible as for each 

subject. The control of tongue movements in recorded 

signals were made by observation of amplitude and 

repetitional GKP signals (< 100uV) which are much higher 

than the normal EEG signals (10uV< EEG <100uV) or EOG 

artifacts. 

 

Table 2. Selected experimental setup and trial number for 

each participant with statistical information 

 

 
Fig.2. Sequences of the three experimental    paradigms for 

tongue motions in the GKP-based TMI study 

 

2.2. Discrete Wavelet Transform 

 

Discrete Wavelet Transform (DWT) has revealed as a 

powerful tool to extract desired signals from non-stationary 

signals. DWT is also very suitable for multi-resolution 

analysis and consists of a series of operations for filtering 

and downsampling the input signal. Accomplishing scaling 

functions and wavelet functions are used with associated low 

and high pass filters to decompose high-frequency and low-

frequency components [26, 27]. In this study, to achieve 

better classification results in feature extraction, the DWT 

technique was conducted for preprocessing and extraction of 

the delta and theta frequency bands of GKPs. In this 

application, the db10 of Wavelet type (Daubechies) at the 6th 

level was implemented to extract the delta and theta bands of 

GKPs for a sampling frequency of 1024 Hz. 

Number 

of 

Channels 

Names of 

Channels 

Chnl-1 Fp2 

Chnl-2 Fp1 

Chnl-3 F7 

Chnl-4 F3 

Chnl-5 Fz 

Chnl-6 F4 

Chnl-7 F8 

Chnl-8 T3 

Chnl-9 C3 

Chnl-10 Cz 

Chnl-11 C4 

Chnl-12 T4 

Chnl-13 T5 

Chnl-14 P3 

Chnl-15 Pz 

Chnl-16 P4 

Chnl-17 T6 

Chnl-18 O1 

Chnl-19 O2 

 Gender Age Exper. 

Setup 

Number 

Trial 

Number 

Sub-1 F 25 2 2 

Sub-2 M 23 3 1 

Sub-3 M 22 1 1 

Sub-4 F 22 3 3 

Sub-5 M 23 3 3 

Sub-6 M 32 2 1 

Sub-7 M 22 2 2 

Sub-8 M 25 3 3 

Sub-9 M 23 1 1 

Sub-10 M 34 3 1 
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            𝐷𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∑ 𝑥(𝑛)

𝑛
𝜓∗ (

𝑛 − 𝑏

𝑎
)                  (2) 

 

In this expression, a and b are called scaling and translation 

parameters, respectively [28]. 

 

2.3.  Feature Extraction  

 

Feature extraction consists of calculation from the raw data 

signal to the informative and non-redundant feature vector. 

In this study, the Mean-Absolute Value (MAV-time domain) 

and Power Spectral Density (PSD-frequency domain) 

methods were applied. Feature extraction methods do not 

need transformation operation for time domain. However, 

frequency domain requires a transformation process from 

one domain to other [29]. The mathematical presentation of 

the mean-absolute value is defined in Eq.3. 

 

                      𝑀𝐴𝑉 =  
1

𝑁
 ∑|𝑥𝑖|

𝑁

𝑖=1

                                             (3) 

 

where Xi=1,2,3…N is a sequence of time, N stands for the 

samples’ length in the data array. Power signal changes of 

glossokinetic potential responses have different frequency 

ranges on the scalp that the PSD exhibits. PSD is a function 

describing the power distribution over a signal frequency. 

The mathematical formula of PSD is shown in Eqs.4-7: 

 

           𝑃𝑥(𝑓) =
1

𝑁
|∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

=
1

𝑁
|𝑋(𝑓)|2         (4) 

 

where X(f) is the Fourier Transform of the data series of x(n), 

N means the samples’ length. PSD of the signal is 

implemented by periodogram, and familiar kind of a 

periodogram is called Welch’s method. In this method, data 

segments are separated and then overlapped as shown below: 

 

           𝑥𝑖(𝑛) = 𝑥(𝑛 + 𝑖𝐷)    𝑛 = 0,1, … , 𝑀 − 1                 (5)  

𝑖 = 0,1, … , 𝐿 − 1 
 

where i shows the data segment, n is the length of the 

segment. Moreover, iD is specified as the first value for the 

ith sequence of D = M, and then the segments do not overlap. 

However, if the sequence occurs in D = M/2, then 50 % 

overlap is implemented over the data segments. Overall PSD 

is calculated applying the windowing process to each data 

segment. The modified periodogram is in Eq.6. 

 

     �̅�𝑋
(𝑖)(𝑓) =

1

𝑀𝑈
|∑ 𝑥(𝑛)𝑤(𝑛)𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

                       (6) 

 

where U is appointed as the normalization factor in the 

window functioning ‘‘w(n)’’: 

 

                           𝑈 =
1

𝑀
∑ 𝑤2(𝑛)

𝑁−1

𝑛=0

                                        (7) 

More knowledge for PSD and Welch’s method can be seen 

in these references [30,31]. In our study, the data samples 

were divided into eight segments that are 50% overlapping 

and were processed with hamming windows. These eight 

segment and overlapping process were carried out by PSD 

for each segmentation before the frequency domain 

transformation.  

 

The collected data constitutes a vector of length 

(6×8×1024)×19 for each participant. 6 stands for six seconds 

for multiple contacts in a trial, 8 is the number of total tongue 

movements (4 right-4 left), 1024 means the frequency of 

sampling and 19 states the channel numbers. It covers all 

EEG frequencies along feature extraction process, then 100 

ms window was applied to generate the feature vector. 1 

second data is 1024 / 100ms = 10 parts (approx.), after that 

(6x8x10) equals the data length of 480 (approx.). However, 

some of the subjects start and end trials in difficulty at 

definite times during the experiments. Therefore, the data set 

had been cut off and defined it as a 400x19 dimension for 

each participant.           . 

 

2.4. Principal Component Analysis 

 

Principal Component Analysis (PCA) is a statistical method 

using orthogonal transform to calculate a set of observations 

of possibly related variables into a set of linearly 

uncorrelated variables, called principal components (PCs) 

[24,32]. PCA considers removing unnecessary data. Thus, it 

provides an easier calculation for machine learning (ML's) 

algorithms. Converting the high dimensional data (Xi) is 

reduced into a lower dimensional data (St) by PCA. The 

eigenvalues and eigenvectors are determined for the 

covariance matrix (C)  in this technique. The related 

equations are shown in (8-10). 

 

                          𝐶(𝑋) =  ∑
(𝑋𝑖𝑋

𝑇)

𝑁

𝑁

1

                                       (8) 

                             𝑢𝑖 = 𝐶𝑢𝑖,           𝑖 = 1,2,3 … 𝑚                  (9) 

 

where λi stands for the eigenvalues and ui is the related 

eigenvector. 

 

                       𝑆𝑡(𝑖) = 𝑢𝑡
𝑇𝑋𝑡 ,               𝑖 = 1,2,3 … 𝑚         (10) 

 

where St(i) describes the principal components of the data set 

(Xt) [32,33]. In this research, 12-features were selected from 

the 19-features representing the highest variance values to 

form a 400×12 data set indicating all data between 97.9%-

99.8% range. 
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2.5. Independent Component Analysis 
 

Independent Component Analysis (ICA) is a kind of 

statistical technique aiming to reveal concealed factors called 

independent components and to find linear projections of 

data that maximize mutual independence. Blind Source 

Separation (BSS) technique is based on ICA that intends to 

select the best EEG channels. Fewer EEG channels mean 

more portable and convenience interfaces and assistive 

technologies. ICA may be a useful tool to understand the 

functioning of brain mapping and glossokinetic potential 

responses during voluntary tongue movements [34, 35]. The 

related equations of ICA are represented in 11-13. 

 

                𝑥𝑖(𝑡) = 𝑎𝑖1𝑠1(𝑡) + ⋯ + 𝑎𝑖𝑛𝑠𝑛(𝑡)                     (11) 

  𝑖 = 1,2, … , 𝑛       
 

where xi(t) is the linear signal mixture belonging to n 

differently and randomly varying coefficients, and sn(t) 

shows the hidden component [24]. ICA notation is in a 

matrix form: 

 

                                     [
𝑥1(𝑡)

⋮
𝑥𝑛(𝑡)

] = 𝐴 [
𝑠1(𝑡)

⋮
𝑠𝑛(𝑡)

]                         (12) 

 

𝐴 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛] 
 

Then,  

                                                   𝑥 = 𝐴𝑠                               (13) 

 

In terms of practical usage, a BCI system with fewer EEG 

channels which can be able to produce greater performance 

in term of the portability and convenience is preferable 

[34,35]. Based on the same basis, in this article, ICA and 

PCA were implemented to select and reduce the optimal 

channels respectively. For this reason, the channel numbers 

were reduced from the raw data set (400 × 19) to the data 

size (400 × 12) and compared the results with PCA (400×12). 

Hence, the success of the selection method (ICA) and 

projection technique (means PCA) was explored in terms of 

classification success of the GKP signals in a tongue-

machine interface model. 

 

3. MACHINE LEARNING ALGORITHMS 
 

The relevant data set is processed by machine learning 

methods after preprocessing, feature extraction and feature 

selection operations. In this study, Decision Tree (DT) with 

Gini Index and k-Nearest Neighbors (kNN) algorithms were 

implemented to recognize the pattern of glossokinetic 

potential signals for extraction of 1-D related to touching of 

tongue movements on the buccal walls. 

 

Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), 

and Information Transfer Rate (ITR) evaluation parameters 

were obtained to survey the performance of the GKP-based 

TMI. k-fold cross-validation is to improve the stability of the 

results. Then 10-fold was used in the calculations [36]. The 

equations represent for the correctness of the classification 

in Eqs.14-16.     

 

       𝐴𝐶𝐶(𝑇𝑆) =
∑ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑖)

|𝑇𝑆|
𝑖=1

|𝑇𝑆|
,  𝑛𝑖𝑇𝑆         (14) 

 

         𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = {
1 , 𝑖𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = 𝑐𝑛
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (15) 

 

          𝐶𝑙𝑎𝑠𝑠. 𝐴𝐶𝐶 =
∑ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇𝑆𝑖)|𝑘|

𝑖=1

|𝑘|
                      (16) 

 

 

where TS refers the test data set, then 𝑛𝑇𝑆, cn is the class 

of n. Furthermore, estimate(n) stands for the classification 

value for n, k is the value for the k-fold cross validation 

[24,36]. True negative (TN), true positive (TP), false 

negative (FN) and false positive (FP) are the primary 

parameters implemented for the specificity (SPEC) and 

sensitivity (SENS) in Receiver Operating Characteristic 

(ROC) analysis, represented in Eqs.17-18 [36]. 

 

                        𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             (17) 

 

                        𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                             (18) 

 

 

In EEG-based BCI systems, ITR is characterized a 

measuring parameter providing transmitted data information 

per trial or time. In this study, ITR was utilized to measure 

the system performance of GKP-based TMI. The equation of 

ITR is in Eq.19: 

 

        𝐵 = log2 𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2

(1 − 𝑃)

(𝑁 − 1)
                (19) 

 

where B describes the bits per trial, N is different types of 

mental tasks. Then the accuracy is named as P. If the number 

of mental functions increases, the value of ITR increases in 

the range of (0-1) [37-39]. 

 

3.1. Decision Trees 

 

Decision tree (DT) is known as a hierarchical data structure 

that is based on the divide-and-conquer strategy. This rule-

based algorithm is called a nonparametric method, which 

creates a tree for a model in the training of data. Then this 

model is used to structure a set of simple rules. The new data 

set is carried out to be labeled for the classes in a sequencing 

recursive splits via implementing the internal decision nodes 

and terminal leaves [32,40]. In this article, the splitting 

criterion of the Decision Tree was selected as the Gini Index. 

The related equations are shown in Eqs. 20-22. 
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               𝐺𝑖𝑛𝑖𝑙𝑒𝑓𝑡 = 1 − ∑ (
𝐿𝑖

|𝑇𝑙𝑒𝑓𝑡|
)

2𝑘

𝑖=1
                        (20) 

              𝐺𝑖𝑛𝑖𝑟𝑖𝑔ℎ𝑡 = 1 − ∑ (
𝑅𝑖

|𝑇𝑟𝑖𝑔ℎ𝑡|
)

2

                    (21)
𝑘

𝑖=1
 

where k is named as the total number of classes in the data 

set, T states the number of samples in a node,  

|Tleft| is called as the number of samples on the left branch, 

|Tright| means the number of samples on the right branch, Ri 

is defined as the number of samples in the ith group at the 

right branch, and Li is the number of samples in the ith group 

at the left branch. The values of the relevant attributes are 

made in a group of pairs. The class values related to the left 

and right separations are provided in this way. Then Ginileft 

and Giniright values are determined for each attribute in the 

left and right divisions as below: 

 

          𝐺𝑖𝑛𝑖𝑗 =
1

𝑛
 (|𝑇𝑙𝑒𝑓𝑡|. 𝐺𝑖𝑛𝑖𝑙𝑒𝑓𝑡 + |𝑇𝑟𝑖𝑔ℎ𝑡|. 𝐺𝑖𝑛𝑖𝑟𝑖𝑔ℎ𝑡)          (22) 

 

The calculated minimum Gini values for the relevant j 

attribute is chosen as a division attribute [41].  The procedure 

is repeated until the leaf node is reached for the final 

decision. 

 

3.2. k-Nearest Neighbors 

 

This Euclidean-based algorithm assigns an input data 

between the k-Nearest Neighbors (kNN) of having most 

examples in the training set. All neighbors receive an equal 

vote and class having a maximum number of voters among 

its neighbors is selected. The degree of smoothing parameter 

is controlled by k in the neighborhood of kNN [32]. Thus, k 

must be smaller than N (length of data). Mathematical 

approaches for Euclidean distance between a and b for each 

sample: 

                   𝑑1(𝑥) ≤ 𝑑2(𝑥) ≤ ⋯ ≤ 𝑑𝑁(𝑥)                        (23) 

Distances are located in ascending order by the nearest 

distance d1(x) and the next nearest distance d2(x). xt is 

described as data points, and t is the index of neighborhoods 

of samples: 

                               𝑑1(𝑥) = min
𝑡

|𝑥 − 𝑥𝑡|                            (24)  

In order to obtain the best results in this study, step k has 

been searched between 3 and 25 [29,42]. 

 

4. RESULTS 

 

GKPs were used to advance a TMI for 1-D control. MAV 

and PSD were employed in DT with Gini Index and kNN 

algorithms. In this work, the raw data set size was calculated 

as 400×19 dimension for each participant. The results in the 

article were processed by MLs from the data sets: 

 

 The raw data set (400x19) 

 The reduced data set processed by PCA (400x12) 

 The reduced data set processed by ICA  (400x12) 

 The Extracted frontal lobe data set (7 channels) 

(400x7) 

 The Extracted frontal and temporal lobes data set 

(11 channels) (400x11) 

All the results on the paper are shown in the decimal 

base and percentage expression (%), excluding ITR 

results. The best and worst participants were 

determined by observing the raw data set results to 

compare easily. Then, the statements for outcomes 

were explained related to the participants of best and 

worst in the article. 

 

 

Table 3. Machine learning performances for the raw data set (400×19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method  .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver. 

 

D
T

 

 (
M

A
V

) 

   

Acc 71.17 94.27 70.27 71.09 88.06 93.21 83.01 75.66 77.70 91.04 81.55 

Sen 76.17 94.50 74.15 75.29 91.23 93.28 84.48 77.65 79.62 91.78 83.81 

Spe 64.24 93.95 65.26 64.82 83.41 93.32 81.48 73.12 75.41 90.08 78.51 

ITR 0.133 0.684 0.122 0.132 0.472 0.642 0.342 0.199 0.234 0.565 0.353 

 

D
T

 

(P
S

D
) 

   

Acc 75.53 93.03 71.14 70.05 86.49 94.16 83.54 76.22 77.00 91.29 81.84 

Sen 81.88 91.50 75.95 74.87 90.78 95.40 83.55 78.54 80.09 93.93 84.65 

Spe 66.97 94.57 65.18 63.58 80.11 92.48 83.35 73.51 72.71 87.88 78.03 

ITR 0.197 0.635 0.133 0.119 0.429 0.679 0.355 0.209 0.222 0.573 0.355 

 

  
 k

N
N

 

(M
A

V
) 

  

Acc 70.27 96.02 67.20 68.32 87.01 94.30 83.02 73.07 80.98 92.50 81.27 

Sen 85.24 95.50 90.04 74.37 89.86 96.21 80.05 72.45 78.79 96.03 85.85 

Spe 50.44 96.55 37.78 60.19 83.22 91.35 86.27 73.76 84.05 87.58 75.12 

ITR 0.122 0.759 0.087 0.099 0.443 0.685 0.343 0.160 0.298 0.616 0.361 

 

k
N

N
 

(P
S

D
) 

   

Acc 70.66 95.26 68.16 69.16 86.15 94.17 81.02 72.54 77.09 91.02 80.52 

Sen 82.64 95.44 89.85 77.76 89.39 97.05 81.29 73.22 75.33 95.22 85.72 

Spe 54.99 95.04 40.24 57.59 81.38 90.04 80.56 71.82 79.48 85.32 73.64 

ITR 0.127 0.725 0.097 0.109 0.420 0.679 0.299 0.152 0.224 0.564 0.340 
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Table 4. Machine learning performances for the reduced data set by PCA (400×12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Accuracy (Acc),Specificity (Spe) and Sensitivity (Sen) 

 

As seen in Table 3, the highest and lowest classification 

accuracies of glossokinetic potential-based right-left tongue 

movements were obtained as 96.02% and 67.20% by 

kNN+MAV methods, respectively. Then, the best and worst 

subjects were defined according to the raw data set results as 

Sub-2 (96.02%) and Sub-3 (67.20%) respectively. 

Moreover, for the Sub-3, the greatest outcome was provided 

by DT+PSD (71.14%). Thus, the difference value between 

the results of the highest accuracies for the best and worst 

subjects is 24.88. Moreover, DT+PSD have outperformed 

for the highest average accuracy of 81.84%. Furthermore, 

DT+MAV, kNN+MAV, and kNN+PSD obtained very close 

outcomes in terms of average classification accuracies 

around 80-81%. In Fig.3, the best and worst subject 

performances are shown based on the raw data set outcomes. 

Reduced data set results implementing PCA technique can 

be seen in Table 4. The best subject performed reaching up  

to the 95.01% classification accuracy by kNN+MAV. Then 

the worst participant obtained accuracy of 72.93% with the 

same method (kNN+MAV). The decrease value for the best 

participant compared to the raw data set result (Table 3) was 

achieved as 1.05%. However, 2.51% increase in accuracy 

was provided by reduced data set after the PCA technique. 

Additionally, the average classification accuracy was 

improved and obtained by kNN+MAV (82.17%) compared 

to the raw data set result (81.84%). Easier computation of 

classifiers may cause this increment due to the lower 

dimension of data processed by PCA. Hence the spatial 

pattern of glossokinetic potential signals can be recognized 

better after the redundant data by PCA. 

 

 

  

                            
 

Fig.3. a. Classification performances of the best subject (left) b. Classification performances of the worst subject (right) 

 

 

 

Method  .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver. 

 

D
T

 

 (
M

A
V

) 

   

Acc 73.17 95.01 71.21 69.47 88.02 91.03 82.08 75.41 78.06 90.37 81.38 

Sen 77.96 94.00 77.79 77.43 89.11 91.11 82.60 78.04 79.66 93.04 84.07 

Spe 67.17 96.02 62.17 57.96 85.60 90.81 81.66 72.31 75.68 86.14 77.55 

ITR 0.161 0.714 0.134 0.112 0.471 0.565 0.322 0.195 0.241 0.543 0.346 

 

D
T

 

(P
S

D
) 

   

Acc 73.01 92.27 71.21 68.28 84.08 93.30 80.49 74.11 80.47 91.20 80.84 

Sen 76.56 89.50 77.31 70.54 88.70 94.93 81.30 76.36 81.01 92.23 82.84 

Spe 68.63 94.93 63.53 65.21 77.14 91.01 79.51 71.35 79.58 89.62 78.05 

ITR 0.159 0.607 0.134 0.099 0.368 0.646 0.288 0.175 0.288 0.570 0.333 

 

k
N

N
 

(M
A

V
) 

  

Acc 73.35 95.01 72.93 70.18 87.07 95.82 81.01 73.53 79.74 93.07 82.17 

Sen 82.83 93.17 87.76 75.30 88.92 97.90 79.56 71.98 78.77 95.76 85.19 

Spe 60.53 96.85 53.92 62.26 83.83 93.12 82.26 75.76 81.43 89.43 77.94 

ITR 0.164 0.714 0.157 0.121 0.444 0.749 0.299 0.166 0.273 0.637 0.372 

 

k
N

N
 

(P
S

D
) 

   

Acc 74.02 90.70 71.32 67.66 84.35 93.05 78.93 74.56 74.36 88.04 79.70 

Sen 86.20 87.50 80.85 73.10 84.83 95.36 79.64 77.25 74.87 95.22 83.48 

Spe 57.97 93.85 58.22 60.59 83.01 89.87 78.23 71.18 73.85 78.16 74.49 

ITR 0.174 0.553 0.135 0.092 0.374 0.636 0.257 0.182 0.179 0.472 0.305 
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Table 5. Machine learning performances for the reduced data set by ICA (400×12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Machine learning performances for the frontal lobe signal data set (400×7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 5, ICA has a great average and individual 

performances in reduced data set by twelve features. The best 

and worst participants have obtained the highest accuracy of 

91.51% and 73.32%  with kNN+MAV respectively. Then the 

average performances were again shown in the kNN+MAV 

method reaching up to the 81.05%. Furthermore, ICA results 

are fairly close to the results of the PCA technique regarding 

the average outcomes.   

 

Frontal and temporal lobes are responsible for planning, 

attention, conscious motor movement and language-speech 

recognition [37]. Then voluntary gross tongue movements 

might require focus and planning efforts in distinct and 

regular motions. Then these might lead EEG potentials, as 

well as GKPs during the experimental work. On the other 

hand, in the mechanism of generating glossokinetic potential 

responses, forward movements of the tongue may cause 

high-density GKP signals over the frontal and mastoid 

region [43,44]. Therefore in our research, the investigation 

of the classification effect of the frontal and temporal lobes 

was observed during voluntary tongue movements in Tables 

6 and 7. Therefore, 400×7 and 400×11 data sets were 

extracted from the raw data set (400×19). T3, T4, T5, and T6 

electrodes were implemented for eleven channels (Frontal + 

Temporal Lobe) as well as these seven electrodes for the 

seven channels (Fp1, Fp2, F7, F8, Fz, F3, and F4) (Frontal 

Lobe), as seen in Table 1. 

 

In Table 6, the best and worst participant provided the 

highest accuracy of 96.77% (kNN+MAV) and 69.17% 

(DT+PSD). Then the greatest average accuracy of 79.26% 

was obtained by DT+PSD.  

Method  .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver. 

 

D
T

 

 (
M

A
V

) 

   

Acc 72.13 88.13 71.65 71.20 82.04 87.22 79.00 75.47 77.54 83.19 78.76 

Sen 74.43 89.50 76.50 74.89 85.82 89.00 79.68 79.55 81.34 85.27 81.60 

Spe 69.27 86.77 65.32 66.56 76.52 84.13 78.35 70.70 72.17 80.46 75.03 

ITR 0.146 0.474 0.140 0.134 0.321 0.449 0.258 0.196 0.231 0.347 0.270 

 

D
T

 

(P
S

D
) 

   

Acc 71.21 84.24 70.01 72.41 80.25 86.34 76.75 76.28 78.25 83.05 77.88 

Sen 74.03 85.00 72.87 77.05 84.98 87.34 77.38 79.03 80.09 86.11 80.39 

Spe 67.45 83.57 66.75 65.38 74.18 84.85 76.04 72.24 75.82 78.56 74.48 

ITR 0.134 0.372 0.119 0.150 0.283 0.425 0.218 0.210 0.244 0.343 0.250 

 

  
 k

N
N

 

(M
A

V
) 

  

Acc 72.33 91.51 73.32 72.58 85.21 91.33 78.52 76.22 80.23 89.26 81.05 

Sen 87.66 93.98 80.91 73.12 87.43 95.78 70.31 75.89 74.95 96.93 83.70 

Spe 52.27 89.06 64.49 71.84 81.93 84.97 87.97 76.64 87.63 78.81 77.56 

ITR 0.149 0.581 0.163 0.153 0.395 0.575 0.249 0.209 0.283 0.508 0.326 

 

k
N

N
 

(P
S

D
) 

   

Acc 72.09 87.35 69.04 69.24 83.04 89.28 75.48 75.37 78.96 87.19 78.70 

Sen 87.40 81.37 85.07 76.94 83.32 97.13 76.37 79.54 79.20 93.90 84.02 

Spe 51.74 93.34 48.43 59.13 83.11 77.41 74.58 70.16 78.16 77.91 71.40 

ITR 0.146 0.452 0.107 0.110 0.343 0.509 0.196 0.195 0.258 0.448 0.276 

Method  .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver. 

  

D
T

 

 (
M

A
V

) 

   

Acc 69.01 95.07 68.39 69.54 80.54 92.59 80.11 62.09 72.14 91.18 78.07 

Sen 73.46 95.00 76.94 72.30 86.58 93.70 83.51 66.52 78.37 92.72 81.91 

Spe 62.19 95.21 57.57 66.26 71.48 91.02 76.32 56.48 63.70 88.84 72.91 

ITR 0.107 0.717 0.100 0.113 0.289 0.619 0.280 0.043 0.146 0.570 0.298 

 

D
T

 

(P
S

D
) 

   

Acc 70.01 95.03 69.17 71.13 80.22 94.16 82.37 64.02 75.48 91.02 79.26 

Sen 75.73 95.50 75.63 76.61 84.93 96.63 82.58 69.66 78.77 89.60 82.56 

Spe 62.40 94.46 61.29 63.65 73.50 90.81 82.06 57.04 71.24 92.81 74.93 

ITR 0.119 0.715 0.109 0.133 0.283 0.679 0.328 0.058 0.196 0.564 0.318 

 

k
N

N
 

(M
A

V
) 

  

Acc 69.23 96.77 68.35 67.12 83.05 94.05 82.04 61.44 77.70 91.76 79.15 

Sen 82.14 97.25 88.36 73.17 84.64 94.47 79.27 75.72 77.48 93.06 84.56 

Spe 52.45 96.36 42.91 59.23 80.99 93.13 85.46 42.89 77.85 90.39 72.17 

ITR 0.110 0.794 0.099 0.086 0.344 0.675 0.321 0.038 0.234 0.589 0.329 

 

k
N

N
 

(P
S

D
) 

   

Acc 70.28 96.33 68.11 66.02 82.05 94.25 82.51 60.02 74.43 89.85 78.39 

Sen 83.13 95.94 86.38 75.15 86.13 94.51 81.69 70.80 73.61 91.74 83.91 

Spe 54.08 96.81 44.37 53.28 75.85 93.65 83.42 46.46 76.07 87.57 71.16 

ITR 0.122 0.773 0.097 0.075 0.321 0.683 0.331 0.029 0.180 0.526 0.314 
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Comparing to the raw data set results in Table 3 shows that 

the best subject’s results have reached to 96.77%, and the 

worst participant has 69.19% classification accuracy. Frontal 

and temporal lobe signals were processed together and 

evaluated to show the effects of both region in Table 7. The 

greatest outcomes of best and worst participants were 

obtained by kNN+MAV (96.66%) and DT+PSD (71.05%) 

respectively. Furthermore, the highest average accuracy 

(82.49%) was obtained by kNN+MAV. Therefore the 

changes compared to raw data set results are as follows: for 

the best subject (0.66% increment), for the worst subject 

(0.12% decrement) and the average success (0.79% 

increment) were achieved.  

 

 

Table 7. Machine learning performances for the frontal+temporal lobe signals data set (400×11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Brain mappings of Subject-2 (best participant) related 

the tongue movements towards touching the right buccal 

wall (a- the intensity of delta and theta bands b- the intensity 

alpha and beta bands) 

 

Concentrated participants have highly signal variations on 

delta and theta bands [5]. As presented in Figs.4 and 5, high 

power alterations of the best subject can be observed over the 

frontal and temporal lobes and partly pre-motor and motor 

cortex on delta bands. This significant finding was 

compatible with the classification achievement shown in 

Tables 6 and 7. Furthermore, in theta and alpha frequency 

bands negligible power assessments were obtained to 

distinguish the certain GKP responses. However, insufficient 

power signal variations were observed in the beta bands of 

the occipital lobe at the contralateral side of the brain. This 

may depend on the visual stimulus in front of the LCD 

monitor or may be occurred by tongue touching the 

articulators in the oral cavity, such as palate [24,43-44].  

 

 
Fig.5. Brain mappings of Subject-2 (best participant) related 

the tongue movements towards touching the left buccal wall 

(a- the intensity of delta and theta bands b- the intensity of 

alpha and beta bands) 

 

 

 

 

Method  .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver. 

  

D
T

 

 (
M

A
V

) 

   

Acc 72.78 95.22 70.26 70.09 86.30 95.03 83.22 76.17 77.48 91.71 81.83 

Sen 74.96 96.00 75.06 72.64 89.11 96.63 81.05 81.70 81.79 92.23 84.12 

Spe 69.51 94.59 63.73 66.95 81.80 92.76 85.67 68.80 71.53 91.27 78.66 

ITR 0.155 0.723 0.122 0.120 0.424 0.715 0.347 0.208 0.230 0.588 0.363 

 

D
T

 

(P
S

D
) 

   

Acc 74.42 93.29 71.05 68.57 85.31 95.01 83.05 75.25 76.02 91.01 81.30 

Sen 79.70 91.50 78.68 73.61 90.34 95.36 80.80 79.39 78.35 91.30 83.90 

Spe 67.14 95.13 60.63 61.69 77.48 93.94 85.49 70.16 72.86 90.65 77.52 

ITR 0.180 0.645 0.132 0.102 0.398 0.714 0.343 0.193 0.205 0.564 0.348 

 

k
N

N
 

(M
A

V
) 

  

Acc 73.25 96.66 70.44 68.05 86.18 94.52 83.04 76.28 81.77 94.73 82.49 

Sen 85.33 96.67 81.40 74.91 86.70 97.46 81.33 78.14 82.25 94.78 85.90 

Spe 57.48 96.56 56.19 58.72 85.62 89.99 85.09 73.89 80.74 94.72 77.90 

ITR 0.162 0.789 0.124 0.096 0.420 0.694 0.343 0.210 0.315 0.702 0.386 

 

k
N

N
 

(P
S

D
) 

   

Acc 73.07 96.30 69.30 66.40 86.29 94.32 82.11 74.40 80.70 91.13 81.40 

Sen 84.36 95.82 88.70 73.86 87.22 96.20 81.17 75.08 80.94 92.63 85.60 

Spe 58.38 96.78 44.37 56.54 85.37 91.80 82.98 73.65 80.43 88.92 75.92 

ITR 0.160 0.772 0.110 0.079 0.424 0.685 0.322 0.179 0.292 0.568 0.359 
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Fig.6. Brain mappings of Subject-3 (worst participant) 

related the tongue movements towards touching the right 

buccal wall (a- the intensity of delta and theta bands b- the 

intensity of alpha and beta bands) 

 

The topography results of the best participant show that the 

frontal lobe has high-intensity power signal changes, but 

does not extend correctly and smoothly in the temporal lobes 

of the delta and theta frequencies including the T3, T4, T5, 

and T6 electrode locations introduced in Figs.6 and 7.  

 

On the other hand, beta frequency bands of the worst subject 

have acceptable values compared to the best subject. The 

reason for this fact may be occurred due to the inadequate 

target-oriented motivation and disturbing perception [37,45]. 

Moreover, time-frequency analysis and scatter plot of 

classification for the best subject were presented in Fig.8. 

 

 
Fig.7. Brain mappings of Subject-3 (worst participant) 

related the tongue movements towards touching the left 

buccal wall (a- the intensity of delta and theta bands b- the 

intensity of alpha and beta bands) 

 

Fig.8. a- Time-frequency analysis (usage of Continuous Wavelet Transform) while touching the right buccal wall of the best 

participant during 6 s (left) b- Scatter plot presentation of the best subject (Channel-1 vs. Channel-4) (right)      

 

Table 8. Computation times of the Decision Tree and k-

Nearest Neighbor algorithms  
Methods DT+ 

MAV 

DT+PSD kNN+MAV kNN+PSD 

F.E.T.+ 

C.T. (s) 
0.0014 0.9389 0.0021 0.9524 

F.E.T.(Feature Extraction Time), C.T. (Classfying Time) 

Computation time is an important parameter to show the 

real-time application of the glossokinetic potential-based 

tongue machine interface [1,4]. Related to the Table 8, 

DT+MAV has the least computation time with 0.0014 s 

among the other methods. Then the longest computation time 

was obtained by kNN+PSD as 0.9524 s. Hence mean-

absolute value is more appropriate than the power-spectral 

methods due to the not requiring transformation from the 

time domain to the frequency domain for real-time usage of 

the GKP-based TMI study [24,29]. The results represented 

in Table 8 were acquired in 1-fold cross-validation for 

average test samples of the raw data set of the best participant 

and computed using Matlab (License No: 834260). The 

computer hardware and software are those : Intel Core i5-

7200 U CPU (2.50 GHz), 64 bit, 8 GB Ram and Windows 

10 operating system. 

 

5. DISCUSSION 

 

The aim of this research is to investigate DT and kNN 

machine learning algorithms’ performances in advancing a 

natural, attractive and reliable system using GKPs. Hence, 

these GKP responses are generated by distinct and simple 

tongue touches on the buccal walls. In this work, the results 

obtained show that the kNN+MAV and DT+PSD methods 

generally provide the highest classification scores for the 
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individual and average success among other combination 

methods. In addition, the PSD feature extraction method 

takes prolonged time than the MAV in terms of the 

computation time. However, feature extraction performances 

depend on the data sets because of the smoothness or 

outliers. Machine learning algorithms, Decision Trees, and 

k-Nearest Neighbors have some advantages over the other 

classifiers. The Decision Trees are rule-based algorithms and 

easily interpreted and comprehended by experts. Then, kNN 

can give good results if appropriate feature extraction 

methods are applied [40]. Therefore, both of the classifiers 

performances have almost the same in raw and preprocessed 

data sets. Hence, the comparison of the Decision Trees and 

k-Nearest Neighbors in recognizing the spatial pattern of 

glossokinetic potential signals were explored as the first 

attempt among the machine learning algorithms in a tongue 

machine interface research.  

 

Modern brain-machine interface (BMI) design requires 

multiple science disciplines. These efforts associate signal 

processing, information systems, control theory and machine 

learning [46-48]. The significant investigation of the 

research is about the contribution and assessment of frontal 

(7-channels) and frontal+temporal (11-channels) region 

signals due to the high exposure of GKPs regarding the 

success of the GKP-based TMI with fewer electrodes. Then 

the accuracy of the frontal + temporal region signals is very 

close to, or even better than the raw data set results, 

represented in Tables 7 and 3, respectively. This clarity may 

have been originated from the intense exposure of the 

glossokinetic potential variations over the frontal+temporal 

regions of the scalp. Then, this evidence was also promoted 

by brain mappings, as shown in Figs.4 and 5. This finding 

might cause a significant increase in degrees of freedom 

challenge and reliability in tongue-machine interfaces due to 

the fewer channels [10-11, 35]. Therefore, easy-to-use, 

wearable, and portable systems can be designed on these 

promising findings for disabled persons [49]. Moreover, 

corticomuscular coupling analysis explains the relation of 

brain regions and ongoing muscular activities (EMG). 

Furthermore, coherence of cortex potentials and GKPs in 

delta and theta bands during the tongue-muscle motor 

functions were investigated for the first time in a TMI as our 

best knowledge [50]. 

 

The symmetrical situation was observed while occurring of 

GKPs on the scalp. As mentioned before, GKP signals were 

arisen unsymmetrically in the brain mappings due to the 

negatively charged tongue tip creating potentially increased 

and decreased variations on the non-contact and contact 

surfaces, respectively [3-5]. However, the same researchers 

reported that GKPs create dissimilar patterns in brain maps 

when tongue touches to the other articulators, teeth or palate. 

Moreover, pronouncing the retroflex consonants lead to a 

strong potential rising over the frontal region during the 

tongue bending in language and phonetic research [44]. It 

may be that in our study, an antisymmetric event may have 

been suppressed due to strong and distinct touchings while 

the tongue contacts the buccal walls during experimental 

tasks. Hence, our results may have revealed symmetrical 

formation on the brain mappings, represented in Figs.4 and 

5. According to the same article, these are different including 

the electrode placements, reference point, and experimental 

procedure. In their study, the tongue was moved in a 

continuous motion on the right-front-left path to touch the 

buccal walls [3,4]. However, in our research, multiple 

distinct contacts were carried out in the 6 s task. Thus, all 

these differences may form symmetrical results on brain 

maps in our study. 

 

The performances of the best and worst participants were 

observed, and the comments were made to reveal the 

distinguishing features. The outcomes of the best participant 

show that distinct, speedy and regular tongue movements in 

high motivation state provide the significant achievements in 

GKP-based TMI. However, the success of the worst 

participant was acceptable due to the less concentration and 

not correctly doing instructed tasks. Motivation and 

cognitive effort have been identified as key parameters for 

the superior performance in BCIs [45,51]. 

 

The investigation of independent and principal component 

analysis on glossokinetic potential responses in our study is 

the first and considerable attempt. While ICA is better suited 

for non-Gaussian functions, PCA has great performance for 

smooth data of EEG signals. This truth may be the same for 

glossokinetic potential responses. Therefore, according to 

the Tables 4 and 5, PCA and ICA results are so close to each 

other. However, PCA is relatively better than ICA, especially 

for the best participant. Because of this reason may be that 

the data set of the best subject has more smooth and lower 

spatial overlapping of cortical activity [52-54]. Moreover, 

the extraction of the delta and theta bands with DWT is an 

alternative solution in the preprocessing stage for removing 

noise on GKPs. Also, DWT may produce better 

performances in classification success [55,56].  

 

The notion of inter-trial and inter-subject instability is an 

important issue for the performance of BCI research and a 

solution is named as transfer learning technique [46]. The 

same deduction has occurred but not as much as BCI 

research. Mostly low variations have been observed for each 

participant at the trial-to-trial performances. Then the best 

trial of each subject was selected to proceed. An approach is 

offered to overcome this instability by forcing and educating 

the brain activities of subjects. The name of this approach is 

also proposed as over-trial or training effects. According to 

this view, the classification performance can be improved by 

increasing the experience and the accumulation of training 

[45]. Similar evidence was observed as shown in Table 2; 

experimental setup-2 and setup-3 performances between the 

three setups have the highest performance for ten subjects 

outside of Subject_3 and Subject_9. Moreover, fewer 

parameters in experimental setups indicate more degrees of 

freedom [46]. At this point, the experimental parameters in 

the GKP-based TMI study are only necessary and basic 

parameters, as shown in Fig.1. Furthermore, it has been 

noted that the long cognitive planning time and flexible 
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experiments can allow participants for instincts thoughts and 

goal oriented success in BCI research [45,51]. Therefore, this 

statement might advance GKP-based TMI in future studies. 

 

6. CONCLUSION 

 

This paper aims to develop a novel machine learning 

approach for a tongue-machine interface using solely 

glossokinetic potential responses for disabled persons. 

Compared to other hardware-based studies, GKP-based TMI 

may provide a natural, reliable, speedy control and 

communication channel via 1-D simple tongue motions. 

Then highly exposure of glossokinetic potential responses 

over the frontal and temporal regions may also help to 

understand of association between the machine learning 

algorithms and GKP biosignals. Besides this outcome may 

cause to design wearable and easy-to-use brain-machine 

interfaces and tongue-machine interfaces via fewer 

electrodes. As far as we know, this point and glossokinetic 

potential responses have been handled for the first time 

implementing DT and kNN with mean-absolute value and 

power spectral density methods. According to our previous 

research articles, the rule-based algorithm (Decision Tree 

with Gini Index) is less successful in individual and average 

results compared to the kernel-based algorithms (Support 

Vector Machine and Linear Discriminant Analysis) and 

Neural Network Algorithms (Multi-Layer Neural Network 

and Probabilistic Neural Network) [55, 56].  

 

Nevertheless, Decision Trees perform well in EEG signals 

and that these models are easy to understand for the experts 

due to the rule-based structure [57]. For this reason, Decision 

Trees are very popular and sometimes selected over a more 

accurate but less interpretable machine learning algorithms 

[32]. However, the performance of the Decision Tree can 

severely be affected by the non-stationary nature of EEGs 

[57]. Thus, it was observed that voluntary GKP signals 

generated by tongue contacts were not affected as much as 

EEG signals via exploring and comparing the potential of the 

DT and kNN in required close classification results. 

Moreover, CNN's performance of the previous study has 

shown that DT and kNN performances have not achieved as 

CNN, but highly promising results were provided by these 

methods [58].  

 

The results of the article indicated that highly acceptable 

values and investigation of glossokinetic potential responses 

might demonstrate a novel and promising technique. 

Therefore GKP-based TMI may be an alternative real-time 

approach for conventional EEG-based BCIs. Since 

significant deficiencies arise from the nature of EEG signals, 

such as low signal-to-noise ratio and internally induced 

nonstationary mental activities or other external variables. 

Moreover, GKPs can be compared with the 

magnetoencephalography signals (MEG) in term of PCA and 

ICA in the future TMI studies [59-60]. 

Acknowledgements The authors would like to thank the 

students of the University of Yozgat Bozok for providing the 

participation for this research. 

Compliance with ethical standards 

 

Conflicts of interest There is no conflict of interest between 

the authors. 

 

Ethical approval The Ethical Committee of Sakarya 

University approved this research. All procedures were 

performed in accordance with the ethical standards of the 

institutional and/or national research committee. 

 

Informed consent Informed consent was obtained from all 

individual participants included in the study. 

 

REFERENCES 

[1] X. Huo, M. Ghovanloo, “Tongue Drive: A wireless 

tongue-operated means for people with severe disabilities to 

communicate their intentions”, IEEE Comm. Magaz., 

vol.50, no.10, pp.128-135, 2012. 

[2] L.N.S. Andreasen Struijk, “An inductive tongue 

computer interface for control of computers and assistive 

devices,” IEEE Trans on Biomed Engin., vol. 53, no.12, pp. 

2594-2597, 2006. 

[3] Y. Nam, Q. Zhao, A. Cichocki, S. Choi, “Tongue-

Rudder: A Glossokinetic-Potential-Based tongue–machine 

interface,” IEEE Trans. on Bio Engin., vol.59, no.1, pp.290-

299, 2012. 

[4] Y. Nam, B. Koo, A. Cichocki, S. Choi, “GOM-Face: 

GKP, EOG, and EMG-Based multimodal interface with 

application to humanoid robot control,” IEEE Trans. on 

Biomed. Engin. vol.61, no.2, pp.453-462, 2014. 

[5] Y. Nam, B. Koo, A. Cichocki, S. Choi, “Glossokinetic 

Potentials for a tongue–machine interface,” IEEE Systems, 

Man, & Cybernetics Magaz., vol.2, no.1, pp.6-13, 2016. 

[6] H. Tang, D.J. Beebe, “An oral tactile interface for blind 

navigation,” IEEE Trans On Neural Sys. and Rehab. Engin., 

vol.14, no.1, pp.116-123, 2006. 

[7] X. Bao, J. Wang, J. Hu, “Method of individual 

identification based on electroencephalogram analysis,” 

Inter Conf on New Trends in Infor and Ser Sci. pp.390-393 

(DOI: 10.1109/NISS.2009.44. 2009). 

[8] K.J. Miller, P. Shenoy, M. Nijs, L.B. Sorensen, et.al,. 

”Beyond the Gamma Band: The role of high-frequency 

features in movement classification,” IEEE Trans. on 

Biomed. Engin. vol.55, no.5, pp.1634-1637, 2008. 

[9] D. Xiao, J. Hu, “Identification of motor imagery EEG 

signal,” Inter Conference on Biomedical Eng and Computer 

Science, 2010; Wuhan, China. 

[10] B. Reuderink, M. Poel, A. Nijholt, “The impact of loss 

of control on movement BCIs,” IEEE Trans on Neural Syst. 

and Reha. Engin., vol.19, no.6, pp.628-637, 2011. 

[11] X. Huo, J. Wang, M. Ghovanloo, “A magneto-inductive 

sensor based wireless tongue-computer interface,” IEEE 

Trans on Neural Syst. and Reha. Engin., vol.16, no.5, 

pp.497-504, 2008. 

[12] R. Rupp, M. Rohm, M. Schneiders, A. Kreilinger, G.R. 



K.GORUR                                                                                       Academic Platform Journal of Engineering and Science 9-1, 112-125, 2021 

 

124 

 

Müller-Putz. “Functional rehabilitation of the paralyzed 

upper extremity after spinal cord injury by noninvasive 

hybrid neuroprostheses,” Proceedings of the IEEE, vol.103, 

no.6, pp.954-968, 2015. 

[13] L.M. Alonso-Valerdi, F. Sepulveda, “Development of a 

simulated living environment platform: Design of BCI 

assistive software and modelling of a virtual dwelling place,” 

Computer Aided Design, vol,54, pp.39-50, 2014. 

[14] X. Huo, J. Wang, M. Ghovanloo, “Using magneto-

inductive sensors to detect tongue position in a wireless 

assistive technology for people with severe disabilities,” 

IEEE Sensor Conf; 2007, Atlanta, USA. 

[15] X. Huo, J. Wang, M. Ghovanloo, “A wireless tongue-

computer interface using stereo differential magnetic field 

measurement,” Proceedings of the 29th Ann Inter Conf of 

the IEEE EMBS Cité Internationale, 2007, Lyon, France. 

[16] X. Huo, J. Wang, M. Ghovanloo, “A magnetic wireless 

tongue-computer interface,” Proceed of the 3rd Inter IEEE 

EMBS Conf on Neural Engineering, 2007, Kohala Coast, 

Hawaii, USA. 

[17] G. Krishnamurthy, M. Ghovanloo, “Tongue Drive: A 

tongue operated magnetic sensor based wireless assistive 

technology for people with severe disabilities,” IEEE Inter 

Sym on Circuits and Systems (ISCAS), pp.5551-5554, 2006. 

[18] R. Vaidyanathan, B. Chung, L. Gupta et.al., “Tongue-

movement communication and control concept for hands-

free human–machine interfaces,” IEEE Trans. on Sys. Man 

and Cybernetics. vol.37, no.4, pp.533-546, 2007. 

[19] R.Vaidyanathan, C.J. James, “Independent component 

analysis for extraction of critical features from tongue 

movement ear pressure signals,” Proceed of the 29th Ann 

Inter Conf of the IEEE EMBS Cité Internationale; 2007; 

Lyon, France. 

[20] R. Vaidyanathan, L. Gupta, H. Kook, J. West, “A 

decision fusion classification architecture for mapping of 

tongue movements based on aural flow monitoring,” 

Proceed of the IEEE International Conference on Robotics 

and Automation, 2006; Orlando, Florida. 

[21] R. Vaidyanathan, M. Fargues, L. Gupta et.al., “A dual-

mode human-machine interface for robotic control based on 

acoustic sensitivity of the aural cavity,” IEEE/RAS-EMBS 

International Conference on  Biomedical Robotics and 

Biomechatronics, BioRob’06, 2006, Pisa, Italy.  

[22] R. Vaidyanathan, H. Kook, L. Gupta, J. West, 

“Parametric and non-parametric signal analysis for mapping 

air flow in the ear-canal to tongue movements: A new 

strategy for hands-free human-machine interfaces,” IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing Proceedings, 2004, Montreal, Canada. 

[23] H. Jasper, “The ten twenty electrode system of the 

international federation,” Electro Clin Neuro., vol.10, no.2, 

pp.370-375, 1958. 

[24] M.S. Bascil, A.Y. Tesneli, F. Temurtas, “Spectral 

feature extraction of EEG signals and pattern recognition 

during mental tasks of 2-D cursor movements for BCI using 

SVM and ANN,” Australas Phys. Eng. Sci Med. vol. 39, 

no.3, pp.665-676, 2016. 

[25] N. Yalcın, G. Tezel, C. Karakuzu, “Epilepsy diagnosis 

using artificial neural network learned by PSO,” Turk J. 

Elec. Eng & Comp. Sci. vol.23,pp.421-432, 2015. 

[26] K.D. Desai, M.S. Sankhe, “A Real-Time Fetal ECG 

Feature Extraction Using Multiscale Discrete Wavelet 

Transform,” 5th Int Conf. on Biomedical Eng. and Infor., pp. 

407-412, 2012. 

[27] A. Hamad, E.H. Houssein, A.E. Hassanien, A.A. 

Fahmy, “Feature Extraction of Epilepsy EEG using Discrete 

Wavelet Transform,” 12th Int. Computer Engineering Conf., 

pp.109-195, 2016. 

[28] T.K. Patel, P.C.Panda, S.C. Swain, “Mohanty SK. A 

Fault Detection Technique in Transmission Line By using 

Discrete Wavelet Transform,” 2nd Int. Conf. on Electrical, 

Computer and Communication Tech., 2017. 

[29] E.J. Rechy-Ramirez, H. Hu, “Bio-signal based control 

in assistive robots: a survey,” Digital Communications and 

Networks, vol.1, no.2, pp.85-101, 2015. 

[30] J.G. Proakis, D.G. Manolakis, “Digital signal 

processing principles, algorithms and applications,” 3rd edn 

Prentice-Hall, New York [chapter 12]; 1996. 

[31] P. Stoica, R.  Moses, “Spectral analysis of signals,” 

Prentice Hall International, New York. 2005. 

[32] E. Alpaydın, “Introduction to Machine Learning,” MIT 

Press, Cambridge, Massachusetts, Second Edition. 2010. 

[33] M. Kavita, M.R. Vargantwar, M.R. Sangita, 

“Classification of EEG using PCA, ICA and neural 

network,” Int. J. Eng. Adv. Technol., vol. 1, pp.1–4, 2011. 

[34] R. Vigário, J. Särelä, V. Jousmäki, et.al. “Independent 

component approach to the analysis of EEG and MEG 

recordings,” IEEE Trans. on Biomed. Engin. vol.47, no.5, 

pp.589-593, 2000. 

[35] R.Chai, R.G. Naik, N.T. Nguyen, et.al., “Selecting 

optimal EEG channels for mental tasks classification: An 

approach using ICA,” IEEE Congress on Evolutionary 

Computation (CEC), pp.1331-1335, 2016. 

[36] B. Şen, M. Peker, “Novel approaches for automated 

epileptic diagnosis using fcbf selection and classification 

algorithms,” Turk J. Elec. Eng & Comp. Sci. vol.21, 

pp.2092-2109, 2013. 

[37] R.A. Ramadan, A.V. Vasilakos, “Brain computer 

interface: control signals review,” Neurocomputing. vol.223, 

pp.26-44, 2017. 

[38] B. Obermaier, C. Neuper, C. Guger, G. Pfurtscheller, 

“Information transfer rate in a five-classes brain–computer 

interface,” IEEE Trans. on Neural Syst. and Reha., vol.9, no. 

3, pp.283-288, 2001. 

[39] M. Sengelmann, A.K. Engel, A. Maye, “Maximizing 

information transfer in ssvep-based brain–computer 

interfaces,” IEEE Trans. on Biomedical Engin. vol.64, no.2, 

pp.381-394, 2017. 

[40] B. Wang, C.M. Wong, F. Wan et.al., “Comparison of 

Different Classification Methods for EEG-Based Brain 

Computer Interfaces: A Case Study,” IEEE Int. Conf on 

Infor and Automation, Zhuhai/Maca, China, pp.1416-1421, 

2009.  

[41] K. Gorur, M.S. Bascil, M.R. Bozkurt, F. Temurtas, 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11145
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10916
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10916
http://www.sciencedirect.com/science/journal/23528648
http://www.sciencedirect.com/science/journal/23528648


K.GORUR                                                                                       Academic Platform Journal of Engineering and Science 9-1, 112-125, 2021 

 

125 

 

“Classification of Thyroid Data Using Decision Trees, kNN 

and SVM Methods,” International Artificial Intelligence and 

Data Processing Symposium, IDAP’16, Malatya, Turkey, 

pp. 130-134, 2016. 

[42] Ö. Aydemir, T. Kayıkçıoğlu, “Investigation of the most 

appropriate mother wavelet for characterizing imaginary 

EEG signals used in BCI systems,” Turk J. Elec. Eng. & 

Comp. Sci. vol.24, pp.38-49, 2016. 

[43] S. Vanhatalo, J. Voipio, A. Dewaraja, et.al., 

“Topography and elimination of slow EEG responses related 

to tongue movements,” NeuroImage, vol. 20, pp.1419-1423, 

2003. 

[44] Y. Nam, K. Bonkon, S. Choi, “Language-related 

glossokinetic potentials on scalp,” IEEE International 

conference on systems, Man, and Cybernetics, San Diego, 

USA, 2014. 

[45] R. Leeb, F. Lee, C. Keinrath, R. Scherer, et.al., “Brain-

computer communication: motivation, aim, and impact of 

exploring a virtual apartment,” IEEE Trans. on Neural Syst. 

and Reha., vol.15, no.4, pp.473-481, 2007. 

[46] V. Jayaram, M. Alamgir, Y. Altun, B. Schölkopf, 

“Grosse-Wentrup M. Transfer learning in brain-computer 

interfaces,” IEEE Computational Intelligence Magazine, 

pp.20-31, 2016. 

[47] J.C. Kao, S.D. Stavisky, et.al., “Information systems 

opportunities in brain–machine interface decoders,”, 

Proceedings of the IEEE; vol.102, no.5, pp.666-682, 2014. 

[48] A.B. Barreto, A.M. Taberner, L.M. Vicente, 

“Classification of spatio-temporal EEG readiness potentials 

towards the development of a brain-computer interface, 

bringing together education, science and technology,” 

Proceedings of the IEEE, Tampa, USA, 1996. 

[49] S.Cerutti, “In the Spotlight: Biomedical signal 

processing,” IEEE Reviews In Biomedical Engin. vol.2, 

pp.9-11, 2009. 

[50] X. Chen, C. He, J. Z .Wang et.al., “An IC-PLS 

framework for group corticomuscular coupling analysis,” 

IEEE Trans on Biomed Engin. vol.60, no.7, pp.2022-2033, 

2013. 

[51] J.J. Daly, Y. Fang, et.al., “Prolonged cognitive planning 

time, elevated cognitive effort, and relationship to 

coordination and motor control following stroke,” IEEE 

Trans on Neural Syst. and Reha. Engin. vol.14, no.2, pp.168-

171, 2006. 

[52] Y. Li, C. Guan, J. Qin, “Enhancing feature extraction 

with sparse component analysis for brain-computer 

interface,” Proceed. of the IEEE Engin. in Med. and Bio. 

27th Annual Conference Shanghai, China, 2005. 

[53] H.M. Genc, Z Cataltepe, T. Pearson, “A New PCA/ICA 

based feature selection method,” IEEE Signal Processing 

and Comm. App. 15th (SIU); 2007. 

[54] M.J. McKeown, R. Saab, R. Abu-Gharbieh, “A 

combined independent component analysis (ICA)/ empirical 

mode decomposition (EMD) method to infer 

corticomuscular coupling,” IEEE Neural Engin Conf 

Proceed 2nd Int (EMBS),  pp.1-8, 2005. 

[55] K. Gorur, M.R. Bozkurt, M.S. Bascil, “Temurtas F. 

Glossokinetic potential based tongue–machine interface 

for 1-D extraction,” Australasian Physical & Engineering 

Sciences in Medicine, vol.41, no.2, pp.379-391, 2018.  [56] 

K. Gorur, M.R. Bozkurt, M.S. Bascil, F. Temurtas, 

“Glossokinetic Potential Based Tongue–Machine Interface 

For 1-D Extraction Using Neural Networks,” Biocybernetics 

And Biomedical Engineering. Vol.38, No.3, pp.745-759, 

2018. 

[57] V.Schetinin, C. Maple, “A Bayesian Model Averaging 

Methodology For Detecting Eeg,” 15th International 

Conference On Digital Signal Processing, pp. 499-502, 

2007. 

[58] K. Gorur, M.R. Bozkurt, M.S. Bascil, F. Temurtas,” 

GKP Signal Processing Using Deep CNN and SVM for 

Tongue-Machine Interface”, Traitement du Signal, Vol:36, 

No:4, pp.319-329, 2019. 

[59] O.Cetin, F. Temurtas, “Classification of 

Magnetoencephalography Signals Regarding Visual Stimuli 

by Generalized Regression Neural Network,” Dicle Med 

J.Vol.46, No.1, pp.19-25, 2019. 

[60] K. Gorur, M.R. Bozkurt, M.S. Bascil, F. 

Temurtas,”Comparative Evaluation for PCA and ICA on 

Tongue-Machine Interface Using Glossokinetic Potential 

Responses”, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 

Vol:16, No:1, pp.35-46, 2020. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3684
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3684
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9720
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4288490
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4288490

