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Abstract

In this work, we introduce the class of ordered weak ϕ-contractions in cone metric spaces over Banach algebras
and prove some fixed point results for the mappings belonging to this new class. Our results generalize and
extend some known fixed point results in cone metric spaces to the spaces equipped with a partial order.
Some examples are given which illustrate the results proved herein.

Keywords: Cone metric space; ordered weak ϕ-contraction; fixed point.
2010 MSC: 47H10; 54H25.

1. Introduction

In 1922, Banach [1] proved the famous Banach contraction principle and showed how it can be used to
solve existence problems of integral equations. The Banach contraction principle and its generalizations are
at the center of various research activities, and are the main source of the inspiration of metric fixed point
theory.

Theorem 1.1 (Banach). Let (X, d) be a complete metric space and T : X → X be a contraction mapping,
i.e., satisfies the following condition: there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λd(x, y) (1)

for all x, y ∈ X. Then T has a unique fixed point in X, i.e., there exists a unique x∗ ∈ X such that Tx∗ = x∗.
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Here, the constant λ is called the control constant and the above theorem is also known as the Banach
contraction principle.

The Banach contraction principle is generalized by several authors in various directions. Rus [23, 24]
and Berinde [2] generalized the Banach contraction principle by introducing the notion of ϕ-contractions. In
such generalizations, a function ϕ : [0,∞) → [0,∞) (control function) is used instead the control constant
λ ∈ (0, 1). Importance of using such function in place of constants can be found in the papers [2, 23, 24]. In
this connection, see also the paper by Reich and Zaslavski [21]

Huang and Zhang [8] introduced the notion of cone metric spaces and generalized the concept of metric
spaces. In cone metric space, the usual real-valued metric function was replaced by a vector-valued function
which takes the values in a Banach space. They proved some fixed point results in such spaces for various
types of contractive mappings. Because of some similarities with the fixed point results in usual metric
spaces, the fixed point results in cone metric spaces were the consequences of their usual metric versions
(see, e.g., [3, 6, 7, 14]). Recently, Liu and Xu [16] introduced the concept of a cone metric space over
Banach algebra, and proved some fixed point results in such spaces. They showed that the fixed point results
in this new setting cannot be derived from their usual metric versions. Several authors followed this idea
of generalization of metric spaces and proved various version of fixed point theorems in such spaces (see
[9, 10, 11, 12, 4, 17, 18, 25]).

On the other hand, Ran and Reurings [20], and Nieto and Lopez [19] investigated the existence and
uniqueness of fixed points of contractions in the spaces endowed with a partial order. In such results the
contractive conditions on mappings were weakened by using a partial order defined on the space.

Recently, Li and Huang [15] proved some fixed point results for weak ϕ-contractions in cone metric spaces
over Banach algebra and provided some applications of such mappings. In this paper, we prove an ordered
version of result of Li and Huang [15] which generalizes and unifies the results of Li and Huang [15], Ran
and Reurings [20], and Nieto and Lopez [19] in cone metric spaces over Banach algebras. To justify the new
results, some examples are provided.

2. Preliminaries

The following notions and facts will be needed in this paper.

Definition 2.1 ([23]). A function ϕ : [0,∞)→ [0,∞) is called a comparison if it satisfies the following two
conditions:

(1) ϕ is monotone nondecreasing, i.e., 0 ≤ t1 ≤ t2 ⇒ ϕ(t1) ≤ ϕ(t2);
(2) {ϕn(t)} (t > 0) converges to 0 as n→∞.

It is obvious that ϕ(t) < t for each t > 0, ϕ(0) = 0 and limt→0 ϕ(t) = 0.

Definition 2.2 ([23]). Let (X, d) be a metric space. A mapping T : X → X is called a ϕ-contraction if there
exists a comparison ϕ : [0,∞)→ [0,∞) such that

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X.

Theorem 2.3 ([23]). Let (X, d) be a metric space and T : X → X be a ϕ-contraction. Then T has a unique
fixed point in X. Moreover, for any x ∈ X, the iterative sequence {Tnx} converges to the fixed point.

Definition 2.4 ([16]). Let A be a Banach algebra with a unit e and a zero element θ. A nonempty closed
subset P of A is called a cone if the following conditions hold:

(1) {θ, e} ⊂ P ;
(2) ∀α, β ∈ [0,∞)⇒ αP + βP ⊆ P ;
(3) P 2 = PP ⊂ P ;
(4) P ∩ (−P ) = {θ}.

A cone P is called a solid cone if P ◦ 6= ∅, where P ◦ stands for the interior of P .
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We can always define a partial ordering � with respect to P by x � y if and only if y − x ∈ P . We shall
write x � y to indicate that y − x ∈ P ◦. We shall also write ‖ · ‖ as the norm on A. A cone P is called
normal if there is a number K > 0 such that for all x, y ∈ A, θ � x � y implies ‖x‖ ≤ K‖y‖.

We always suppose that A is a Banach algebra with a unit e, P is a solid cone in A, and � is partial
ordering with respect to P .

Definition 2.5 ([16]). Let X be a nonempty set and A be a Banach algebra. A mapping d : X ×X → A is
called a cone metric if it satisfies:

(i) θ � d(x, y), for all x, y ∈ X, d(x, y) = θ ⇔ x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y ∈ X.

In this case, the pair (X, d) is called a cone metric space over Banach algebra A.

Definition 2.6 ([5]). A sequence {un} in a Banach algebra A is said to be a c-sequence if for each c � θ,
there exists N ∈ N such that un � c for all n > N .

Definition 2.7 ([11]). Let (X, d) be a cone metric space over Banach algebra A and {xn} be a sequence in
X. We say that

(i) {xn} converges to x ∈ X if {d(xn, x)} is a c-sequence and in this case we write xn → x as n→∞;
(ii) {xn} is a Cauchy sequence if {d(xn, xm)} is a c-sequence for n,m;
(iii) (X, d) is complete if every Cauchy sequence in X is convergent.

It is obvious that the limit of a convergent sequence in a cone metric space (X, d) over Banach algebra
A is unique. We say that the mapping T : X → X is continuous if Txn → Tx as n→∞, whenever, xn → x
as n→∞ for some sequence {xn} in X.

Lemma 2.8 ([13]). Let A be a Banach algebra and u, v, w ∈ A. Then
(1) u� w if u � v � w or u� v � w;
(2) u = θ if θ � u� c for each c� θ.

Lemma 2.9 ([22]). Let A be a Banach algebra with its unit e. Then the spectral radius of u ∈ A equals to
ρ(u) = lim

n→∞
‖un‖

1
n .

Lemma 2.10 ([10]). Let P be a cone in a Banach algebra A, {un} and {vn} be two c-sequences in A, and
α, β ∈ P be vectors, then {αun + βvn} is a c-sequence in A.

Lemma 2.11 ([9]). Let P be a cone and k ∈ P with ρ(k) < 1. Then {kn} is a c-sequence.

Definition 2.12 ([15]). Let A be a Banach algebra and P be a cone in A. A mapping ϕ : P → P is called a
weak comparison if the following conditions hold:

(i) ϕ is nondecreasing with respect to �, namely, t1, t2 ∈ P , t1 � t2 ⇒ ϕ(t1) � ϕ(t2);
(ii) {ϕn(t)} (t ∈ P ) is a c-sequence in P ;
(iii) if {un} is a c-sequence in P , then {ϕ(un)} is also a c-sequence in P .

Remark 2.13 ([15]). By Definition 2.12, we have ϕ(θ) = θ. Indeed, by (i) of Definition 2.12, we have
θ � ϕ(θ) � ϕn(θ). Since {ϕn(θ)} is a c-sequence, then by Lemma 2.8, it may be verified that ϕ(θ) = θ.

If A = R and P = [0,∞), then the above definition is reduced into the Definition 2.1

Example 2.14 ([15]). Let A be a Banach algebra, P be a cone in A, and k ∈ P . Take ϕ(t) = kt (t ∈ P ),
where ρ(k) < 1. Then by Lemma 2.10 and Lemma 2.11, ϕ is a weak comparison.

Example 2.15 ([15]). Let M be a compact set of Rn and A = C(M), where C(M) denotes the set of all
continuous functions on M . Let P = {u ∈ A : u(t) ≥ 0, t ∈ M} and define a mapping ϕ : P → P by
ϕ(u) = u

u+1 . Then ϕ is a weak comparison.
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Definition 2.16 ([15]). Let (X, d) be a cone metric space over Banach algebra A. Let P be a cone and
ϕ : P → P be a weak comparison. Then a mapping T : X → X is called a weak ϕ-contraction if

d(Tx, Ty) � ϕ(d(x, y)) for all x, y ∈ X. (2)

Clearly, the above definition generalizes the Definition 2.2.

3. Main Results

First we introduce some definitions which will be needed in the sequel.
Suppose X is a nonempty set, T : X → X a mapping and x0 ∈ X. Then, the sequence {xn} is called a

Picard sequence {xn} generated by T if xn = Txn−1 = Tnx0 for all n ∈ N.

Definition 3.1. Let (X, d) be a cone metric space over Banach algebra A, T : X → X be a mapping and
v be a partial order on X. Then, X is said to be T -orbitally ordered complete if a nondecreasing Picard
sequence {xn}, x0 ∈ X generated by T is a Cauchy sequence then there exist x∗ ∈ X and a subsequence
{xnk

} such that {d(xnk
, x∗)} is a c-sequence and xnk

v x∗ for all k ∈ X.

The following two examples shows that the T -orbital ordered completeness and the completeness of the
space are mutual independent concepts.

Example 3.2. Let A = C1
R[0, 1] and define a norm on ‖ · ‖ by ‖x‖ = ‖x‖∞ + ‖x′‖∞ for x ∈ A. Define

multiplication in A as just pointwise multiplication. Then A is a real unital Banach algebra with unit e = 1.
The set P = {x ∈ A : x ≥ 0} is a cone in A. Let X = Q∩ [0, 1]. Define d : X ×X → A by d(x, y) = |x− y|et
for all x, y ∈ X, then (X, d) is a cone metric space over Banach algebra A. Define a mapping T : X → X

by Tx =
x

2
for all x ∈ X and partial order v by v= {(x, y) ∈ X ×X : y ≤ x}. Then it is obvious that every

nondecreasing Picard sequence in X is a monotonic nonincreasing sequence with respect to the ordinary order
in X and must converge to some point x∗ ∈ X with xnk

v x∗. Therefore, X is T -orbitally ordered complete.
On the other hand, it is easy to see that the space X is not a complete metric space.

Example 3.3. Let A and P are same as in the previous example. Suppose, X = [0, 1] and define d : X×X →
A by d(x, y) = |x− y|et for all x, y ∈ X, then (X, d) is a cone metric space with Banach algebra A. Define
a mapping T : X → X by Tx =

x

2
for all x ∈ X and partial order v by v= {(x, y) ∈ X × X : y ≤

x} \ {(x, 0) : x ∈ (0, 1]}. Then, although, every nondecreasing Picard sequence {xn} in X generated by T
with x0 ∈ (0, 1], is a monotonic nonincreasin sequence with respect to the ordinary order in X and must
converge to some point x∗ ∈ X, but there exists no subsequence {xnk

} such that xnk
v x∗. Therefore, X is

not T -orbitally ordered complete.
On the other hand, it is easy to see that the space X is a complete cone metric space.

Definition 3.4. Let (X, d) be a cone metric space over Banach algebra A and v be a partial order on X.
Let P be a cone and ϕ : P → P be a weak comparison. Then a mapping T : X → X is called an ordered
weak ϕ-contraction if

d(Tx, Ty) � ϕ(d(x, y)) for all x, y ∈ X with x v y. (3)

It is obvious that the above contractive condition is weaker than the condition (2). The following example
verifies this fact.

Example 3.5. Let A = R2 with the norm ‖(x1, x2)‖ = |x1| + |x2|. Define the multiplication on A by
xy = (x1y1, x1y2 + x2y1) for all x = (x1, x2), y = (y1, y2) ∈ A. Then, A is a Banach algebra with unit
e = (1, 0). Let P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0}. Then P is a positive cone. Let X = [0, 1]× [0, 1] and define
the cone metric d : X ×X → P by

d((x1, x2), (y1, y2)) = (|x1 − y1|, |x2 − y2|) ∈ P.
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Then, (X, d) is a cone metric space. Let Q ∩ [0, 1) = Q1 and define the mappings T : X → X and a partial
order v on X by:

T (x1, x2) =

{
(a, a) , if x1, x2 ∈ Q1;
(x1, x2), otherwise.

and v= {(x, y) ∈ X ×X : x = (x1, x2) � y = (y1, y2), x1, x2, y1, y2 ∈ Q1}, where a ∈ [0, 1] is fixed and ∆ is
the diagonal of X×X. Then, T is an ordered weak ϕ-contraction with arbitrary ϕ on P . On the other hand,
T is not a weak ϕ-contraction.

Next, we state a fixed point theorem for ordered weak ϕ-contraction on cone metric spaces.

Theorem 3.6. Let (X, d) be a cone metric space over Banach algebra A and v be a partial order on X. Let
T : X → X be an ordered weak ϕ-contraction and the following conditions are satisfied:

(i) X is T -orbitally ordered complete;
(ii) T is nondecreasing with respect to v;
(iii) there exists x0 ∈ X such that x0 v Tx0.

Then T has a fixed point in X. Moreover, the iterative sequence {Tnx0} converges to a fixed point of T .

Proof. Suppose x0 ∈ X is such that x0 v Tx0. Let xn = Tnx0, n ≥ 1. We shall show that the Picard
sequence {Tnx0} = {xn} is nondecreasing with respect to v . Then, since x0 v Tx0 we have x0 v x1 and T is
nondecreasing it implies that Tx0 v Tx1, i.e., x1 v x2. Again, since T is nondecreasing we have Tx1 v Tx2,
i.e., x2 v x3. Continuing this process we obtain

xn v xn+1 for all n ≥ 1.

Thus, {xn} is nondecreasing with respect to v .
Next, we show that the sequence {xn} is a Cauchy sequence. Then, for any c � θ, by definition of ϕ,

there exists n0 ∈ N such that ϕn0(c) � c. Since xn v xn+1 for all n ≥ 1 by transitivity of v we have
xn v xn+r for all n ≥ 1, r ≥ 0, and as T is an ordered weak ϕ-contraction, it follows that

d(xn, xn+n0) = d(Txn−1, Txn+n0−1)

� ϕ(d(xn−1, xn+n0−1)). (4)

Again, since xn v xn+r for all n ≥ 1, r ≥ 0 we can replace n by n − 1 in the above inequality and then
we obtain

d(xn−1, xn+n0−1) � ϕ(d(xn−2, xn+n0−2)).

Since ϕ is nondecreasing we obtain

ϕ(d(xn−1, xn+n0−1)) � ϕ2(d(xn−2, xn+n0−2)).

The above inequality with (4) yields

d(xn, xn+n0) � ϕ2(d(xn−2, xn+n0−2)).

Proceeding in similar manner we obtain the following inequality:

d(xn, xn+n0) � ϕn(d(x0, xn0)). (5)

Similarly, we can obtain

d(xn+n0 , T
n0x) = d(xn0 , xn+n0) � ϕn0(d(xn, x)). (6)
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As, d(x0, xn0) ∈ P the sequence {ϕn(d(x0, xn0))} is a c-sequence, and by Lemma 2.8 and inequality (5) it
follows that {d(xn, xn+n0)} is a c-sequence, and so, by choice of n0 there exists n1 ∈ N such that

d(xn, xn+n0)� c− ϕn0(c) for all n ≥ n1.

Define Bv(xn, c) = {x ∈ X : d(xn, x) � c, xn v x}, n ≥ n1, then obviously Bv(xn, c) 6= ∅. Choose
x ∈ Bv(xn, c) with n ≥ n1, tnen by (5) and the definition of Bv(xn, c) we get

d(xn, T
n0x) � d(xn, xn+n0) + d(xn+n0 , T

n0x)

� c− ϕn0(c) + ϕn0(d(xn, x))

� c− ϕn0(c) + ϕn0(c)

= c.

This means that Bv(xn, c) for n ≥ n1 is Tn0-invariant. Now, for any k ∈ N, we have d(xn, xn+kn0)� c.
Since xn v xn+r for all n ≥ 1, r ≥ 0 by using (3) and properties of ϕ we obtain

d(xi, xi+1) � ϕi(x0, x1), d(xi+1, xi+2) � ϕi(x1, x2), . . .

for all i ∈ N. Therefore,

d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+n0−1, xn+n0)

� ϕn(d(x0, x1)) + ϕn(d(x1, x2)) + · · ·+ ϕn(d(xn0−1, xn0)).

Since each sequence {ϕn(d(xi, xi+1))}, i = 0, 1, . . . , n0 − 1 is a c-sequences, therefore by Lemma 2.8,
{ϕn(d(x0, x1))+ϕ

n(d(x1, x2))+· · ·+ϕn(d(xn0−1, xn0))} is a c-sequence, and so, {d(xn, xn+1)+d(xn+1, xn+2)+
· · · + d(xn+n0−1, xn+n0)} is also a c-sequence. It follows that for the above c � θ, there exists n2 ∈ N such
that

d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+n0−1, xn+n0)� c

for all n > n2.
Let n3 = max{n1, n2}, choose m,n > n3, and assume that

km =

[
m− n3
n0

]
, kn =

[
n− n3
n0

]
,

where [·] denotes the integer part. Then, as

n3 ≤ m− kmn0 < n3 + n0, n3 ≤ n− knn0 < n3 + n0,

we must have

d(xm, xn) � d(xm, xm−kmn0) + d(xm−kmn0 , xn−knn0) + d(xn−knn0 , xn)� 3c.

Therefore, {xn} is a Cauchy sequence. Since X is T -orbitally ordered complete, there exist x∗ ∈ X and a
subsequence {xnk

} such that {d(xnk
, x∗)} is a c-sequence and xnk

v x∗ for all k ∈ X.
We shall show that u is a fixed point of T . Since {d(xnk

, x∗)} is a c-sequence and xnk
v x∗ for all k ∈ X

we obtain from (3) that

d(Tx∗, x∗) � d(Tx∗, xnk+1) + d(xnk+1, xnk
) + d(xnk

, x∗)

= d(Tx∗, Txnk
) + d(xnk+1, xnk

) + d(xnk
, x∗)

� ϕ(d(x∗, xnk
)) + ϕnk(d(x1, x0)) + d(x∗, xn).

Since {d(x∗, xn−1)} and {ϕnk(d(x1, x0))} are c-sequences, it follows from the definition of ϕ and Lemma 2.8
that {d(Tx∗, x∗)} is a c-sequence. Therefore, d(Tx∗, x∗) = θ, i.e., Tx∗ = x∗. Thus, x∗ is a fixed point of
T .
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The following example shows that the fixed point in the above theorem may not be unique and it shows
the existence of mappings on which the result of [15] is be applicable while the new result is.

Example 3.7. Let M be a compact set of Rn and A = C(M), where C(M) denotes the set of all continuous
functions on M . Let P = {u(t) ∈ A : u(t) ≥ 0, t ∈ M} and define a mapping ϕ : P → P by ϕ(u) = u

u+1 .
Then ϕ is a weak comparison. Let X = A and define a mapping d : X ×X → A by

d(u(t), v(t)) = |u(t)− v(t)|, t ∈M

. Then (X, d) is a cone metric space over Banach algebra. Let Q = {u(t) ∈ A : 0 ≤ u(t) ∈ Q for all t ∈M}
and

v= {(u(t), v(t)) ∈ X ×X : u(t), v(t) ∈ Q, v(t) ≤ u(t) for all t ∈M} .
Define a mapping T : X → X by

Tu =

{
u

u+1 , if u ∈ Q;
u sinu, otherwise.

Clearly, T is not a weak ϕ-contraction. For instance, if u =
π

2
, v = π, then we have d(Tu, Tv) = d(u, v),

and so, there is no weak comparison ϕ such that d(Tu, Tv) � ϕ(d(u, v)). On the other hand, T is an ordered
weak ϕ-contraction. Because, if u v v we have u(t), v(t) ∈ Q and 0 ≤ v(t) ≤ u(t) for all t ∈M , and we have

d(Tu, Tv) =

∣∣∣∣ u

u+ 1
− v

v + 1

∣∣∣∣ � v − u
v − u+ 1

=
d(u, v)

d(u, v) + 1

= ϕ (d(x, y)) .

It is easy to see that X is T -orbitally ordered complete.
If u v v we have u(t), v(t) ∈ Q and 0 ≤ u(t) ≤ v(t) for all t ∈ M , and so, u(t)

u(t)+1 ,
v(t)

v(t)+1 ∈ Q and

0 ≤ u(t)
u(t)+1 ≤

v(t)
v(t)+1 for all t ∈M , i.e., Tu(t), T v(t) ∈ Q and 0 ≤ Tu(t) ≤ Tv(t) for all t ∈M . It shows that

Tu v Tv, and so, T is nondecreasing.
Finally, for any u0(t) ∈ Q we have Tu0(t) ∈ Q and u0(t)

u0(t)+1 ≤ u0(t) for all t ∈M , i.e., u0(t) v Tu0(t).
Thus, all the conditions of Theorem 3.6 are satisfied, and T has a fixed point in X. Indeed, T has infinitely

many fixed points in X and the set of all fixed points of T is given by F(T ) =
{

0, (1 + 4n)
π

2
: n ∈ Z

}
.

We now ensure the uniqueness of fixed point of mapping T by giving a necessary condition.

Theorem 3.8. Suppose that all the conditions of Theorem 3.6 are satisfied. In addition, suppose, for each
pair x, y ∈ X there exists z ∈ X such that x v z and y v z, then T has a unique fixed point in X.

Proof. The existence of the fixed point x∗ ∈ X follows from Theorem 3.6. Suppose, there are two fixed point
x∗, y∗ ∈ X of T and x∗ 6= y∗. Then by assumption, there exists z ∈ X such that x∗ v z and y∗ v z. Since T
is monotonic we obtain x∗ = Tnx∗ v Tnz and y∗ = Tny∗ v Tnz for all n ∈ N. Since T is an ordered weak
ϕ-contraction we obtain: for every n ∈ N

d(x∗, Tnz) = d(Tnx∗, Tnz) = d(TTn−1x∗, TTn−1z)

� ϕ
(
d(Tn−1x∗, Tn−1z)

)
= ϕ

(
d(x∗, Tn−1z)

)
.

Using the properties of ϕ and the above inequality successively we obtain

d(x∗, Tnz) � ϕn(x∗, z).

Since {ϕn(x∗, z)} is a c-sequence, it follows from the above inequality and Lemma 2.8 that for every given
c ∈ A with θ � c there exists n0 ∈ N such that d(x∗, Tnz) � c for all n > n0. Therefore, Tnz → x∗ as
n → ∞. Similarly, we can show that Tnz → y∗ as n → ∞. By uniqueness of limit, we must have x∗ = y∗.
This contradiction shows that the fixed point must be unique.
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The following corollary is an ordered version of the main result of Liu and Xu [16].

Corollary 3.9. Let (X, d) be a cone metric space over Banach algebra A, v be a partial order on X and
T : X → X be a mapping. Suppose that the following conditions are satisfied:

(i) there exists k ∈ P such that

d(Tx, Ty) � kd(x, y)

for all x, y ∈ X with x v y, where ρ(k) < 1;
(ii) X is T -orbitally ordered complete;
(iii) T is nondecreasing with respect to v;
(iv) there exists x0 ∈ X such that x0 v Tx0.

Then T has a fixed point in X. Moreover, the iterative sequence {Tnx0} converges to a fixed point of T . In
addition, suppose, for each pair x, y ∈ X there exists z ∈ X such that x v z and y v z, then T has a unique
fixed point in X.

Proof. Let ϕ(t) = kt for all t ∈ P , then ϕ is a weak comparison. Now the result follows from Theorem
3.8.

Remark 3.10. The above corollary is an improved ordered vector-valued version of Theorem 2.1 of [16],
as we have removed the assumption of normality of cones of Theorem 2.1 of [16], as well as, we use the
T -orbital ordered completeness, instead, the completeness of space X.

In the next theorem, we use the continuity of mapping T and the completeness of the space, instead,
T -orbital ordered completeness of space.

Theorem 3.11. Let (X, d) be a complete cone metric space over Banach algebra A and v be a partial order
on X. Let T : X → X be an ordered weak ϕ-contraction and the following conditions are satisfied:

(i) T is continuous;
(ii) T is nondecreasing with respect to v;
(iii) there exists x0 ∈ X such that x0 v Tx0.

Then T has a fixed point in X. Moreover, the iterative sequence {Tnx0} converges to a fixed point of T .

Proof. Following the lines of proof of Theorem 3.6 we obtain the sequence {xn} = {Tnx0} is a nondecreasing
Cauchy sequence. By completeness of X, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Now, by
continuity of T we have

lim
n→∞

xn+1 = x∗

=⇒ lim
n→∞

Txn = x∗

=⇒ Tx∗ = x∗.

Thus, x∗ is a fixed point of T .

Following the arguments as used in the proof of Theorem 3.8, one can prove the following result.

Theorem 3.12. Suppose that all the conditions of Theorem 3.11 are satisfied. In addition, suppose, for each
pair x, y ∈ X there exists z ∈ X such that x v z and y v z, then T has a unique fixed point in X.
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