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Abstract 

The aim of this paper is to obtain the approximate solution of singularly perturbed ill-posed and sixth-order 

Boussinesq equation by hybrid method (differential transform and finite difference method) as a different 

alternative method. Differential transform method is applied for 𝑡 −time variable and the finite difference method 

(central difference approach) is applied for 𝑥 −position variable. Two examples are presented to demonstrate the 

efficiency and reliability of the hybrid method. Numerical results are given and compared with exact solution and 

in literature RDTM solution. The numerical data show that hybrid method is a powerful, quite efficient and is 

practically well suited for solving nonlinear singular perturbed Boussinesq equations. 

 

Keywords: Sixth-order Boussinesq Equation, Differential Transform Method, Finite Difference Method, 

Approximate Solution. 

 

Hibrit Metot ile Singüler Pertürbe Nonlineer Ill-posed ve Altıncı Mertebe 

Boussinesq Denklemlerinin Yaklaşık Çözümleri 

 
 

Öz 

Bu çalışmanın amacı, singüler pertürbe lineer olmayan ill-posed ve altıncı mertebeden Boussinesq denkleminin 

farklı bir alternatif yöntem olan hibrit metotla (diferansiyel dönüşüm ve sonlu fark metodu) yaklaşık çözümünü 

elde etmektir. 𝑡 −zaman değişkeni için diferansiyel dönüşüm metodu ve 𝑥 −konum değişkeni için sonlu fark 

metodu (merkezi fark yaklaşımı) uygulanmıştır. Hibrit yöntemin etkinliğini ve güvenilirliğini göstermek için iki 

örnek sunulmuştur. Nümerik sonuçlar, kesin çözüm ve literatürde yer alan RDTM çözümü ile karşılaştırılmıştır. 

Sayısal veriler bu yöntemin güçlü, oldukça etkili olduğunu ve nonlineer singüler pertürbe Boussinesq 

denklemlerini çözmek için pratik olarak uygun olduğunu göstermektedir. 

 

Anahtar kelimeler: Altıncı Mertebe Boussinesq Denklemi, Ill-posed Boussinesq Denklemi, Diferansiyel 

Dönüşüm Metodu, Sonlu Fark Metodu, Yaklaşık Çözüm. 

 
1. Giriş 

 

Boussinesq equation was modeled by Boussinesq in 1872 [1]. Singularly perturbed Boussinesq equation 

as a dispersive regularization of the ill-posed classical Boussinesq equation for 𝜀 = 0 was introduced by 

Darapi and Hua [2]. The Boussinesq equation is a classical nonlinear equation, which describes the wave 

phenomenon of physics, and has been widely studied in many fields of physics [3]. There are many 

documents about these equations such as Z. Feng [4] studied the generalized Boussinesq equation 

including the singularly perturbed Boussinesq equation, C. Song, H. Li, and J. Li [5] investigated the 

initial boundary value problem for the singularly perturbed Boussinesq-type equation. Other studies on 

singularly perturbed Boussinesq equation can be seen in references [2,3,5,6,10-12]. Recently, some 

powerful and efficient techniques for solving singular perturbed boussinesq equation have used by many 

mathematicians and physical scientists such as reduced differential transform method [6], homotopy 
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perturbation method [7] and so on. Hybrid method is also  preferred in the solution of many linear and 

nonlinear problems (see, for instance, [7,12,17-23]).  

In this study, the following ill-posed for 𝜀 = 0 in Eq. (1) and sixth-order singularly perturbed 

Boussinesq equation for 𝜀 =
1

2
 in Eq. (2) is examined for the first time by hybrid method: 

                                                                 𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥𝑥
2 + 𝑢𝑥𝑥𝑥𝑥                                                            (1) 

and  

                                                             𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥𝑥
2 + 𝑢𝑥𝑥𝑥𝑥 + 𝜀𝑢𝑥𝑥𝑥𝑥𝑥𝑥.                                           (2) 

The procedure of the method includes the use of differential transform method based on the 

𝑡 −time variable in the ill-posed and sixth order Boussinesq equation and then the central difference 

method based on the 𝑥 −position variable and iteration equation is obtained. Then, 𝑌(𝑖, 𝑘) terms for 

𝑘 = 0,1,2,3, … are obtained. If these terms are written in Equation (4), a series solution or a solution 

based on mesh points is obtained. Finally, the solution is compared to the exact and RDTM solution [6]. 

So the effectiveness and applicability of the hybrid method is shown.  

This study is organized as follows: Ill- posed and sixth order Boussinesq equation are analyzed 

by hybrid method (differential transform and finite difference methods). The properties of the ill-posed 

and sixth order Boussinesq equation are given in the introduction. Hybrid method is defined. The hybrid 

method is applied to two examples. In the series solution, obtained with the above-mentioned 

application, the exact and approximate solution values are presented with graphs and tables for some 

values of 𝑥𝑖 and 𝑡. Then, these solutions are compared with in the literature [6].  

The differential transform method was initially used by Zhou for the solution of linear and 

nonlinear problems in electrical circuit analysis [26]. Based on the definition and properties of the 

differential transform method, solution of 𝑢(𝑥, 𝑡) for the differential transform function 𝑈(𝑖, 𝑘) =
𝑈(𝑥𝑖, 𝑘) that corresponds to the two-variable 𝑢(𝑥, 𝑡) function, where 𝑥𝑖 = 𝑖ℎ, h is the finite difference 

step interval and 𝑖 = 0,1,2,3, …, based on 𝑡 −time variable is described as follows [8,9]: 

                                           𝑢(𝑥, 𝑡) = ∑ 𝑈(𝑖, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(𝑖, 0) + 𝑈(𝑖, 1)𝑡 + 𝑈(𝑖, 2)𝑡2 + ⋯.                    (3) 

The differential transform of 𝑢(𝑥, 𝑡) based on 𝑡 − time variable is defined as follows [8,9]: 

                                                                𝑈(𝑖, 𝑘) =
1

𝑘!
[

𝑑𝑘

𝑑𝑡𝑘
𝑢(𝑥, 𝑡)]

𝑡=0

 .                                                             (4) 

The inverse of the 𝑈(𝑖, 𝑘) differential function based on t is defined as follows [8,9]: 

                                                                    𝑢(𝑥, 𝑡) = ∑ 𝑈(𝑖, 𝑘)𝑡𝑘

∞

𝑘=0

.                                                                   (5) 

Using the above-mentioned equations and certain mathematical operations, some features of the 

differential transform method [8,9,18,25,28] are presented in Table 1. These properties will be used to 

solve the ill-posed and sixth order Boussinesq equation. 

Table 1. Some properties of differential transform based on 𝑡 and 𝑥 variable 

Function Transform 

𝑑2𝑤(𝑥, 𝑡)

𝑑𝑡2
 𝑊(𝑖, 𝑘) = (𝑘 + 1)(𝑘 + 2)𝑊(𝑖, 𝑘 + 2) 

𝑤(𝑥, 𝑡) = 𝑐, 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑊(𝑖, 𝑘) = 𝑐 

 

Central difference derivations are defined as 

𝜕2𝑢

𝜕𝑥2
→

𝑢(𝑖 + 1, 𝑘) − 2𝑢(𝑖, 𝑘) + 𝑢(𝑖 − 1, 𝑘)

ℎ2 , 

𝜕4𝑢

𝜕𝑥4
→

𝑢(𝑖 + 2, 𝑘) − 4𝑢(𝑖 + 1, 𝑘) + 6𝑢(𝑖, 𝑘) − 4𝑢(𝑖 − 1, 𝑘) + 𝑢(𝑖 − 2, 𝑘)

ℎ4 , 
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𝜕6𝑢

𝜕𝑥6

→
𝑢(𝑖 − 3, 𝑘) − 6𝑢(𝑖 − 2, 𝑘) + 15𝑢(𝑖 − 1, 𝑘) − 20𝑢(𝑖, 𝑘) + 15𝑢(𝑖 + 1, 𝑘) − 6𝑢(𝑖 + 2, 𝑘) + 𝑢(𝑖 + 3, 𝑘)

ℎ6 . 

 

2. Application of the Hybrid Method  

 

In this section, we present two examples to show the effectiveness of hybrid method. The results are 

compared with [6] and shown in Table 1 and Table 2. The algorithms are computed by computer 

program. 

 

Example 2. 1 

 

We consider the following singularly perturbed sixth-order Boussinesq equation [6] for  𝜀 =
1

2
, where, 

𝜀 ∈ (0,1) is a very small perturbation parameter: 

                                                         𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥𝑥
2 − 𝑢𝑥𝑥𝑥𝑥 +

1

2
𝑢𝑥𝑥𝑥𝑥𝑥𝑥,                                                (6) 

with initial conditions 

                        𝑢(𝑥, 0) =
−105

169
𝑠𝑒𝑐ℎ4 (

𝑥

√26
) ,           𝑢𝑡(𝑥, 0) =

−210

2197
√

194

13
𝑠𝑒𝑐ℎ4 (

𝑥

√26
) 𝑡𝑎𝑛ℎ (

𝑥

√26
),          

(7) 

and exact solution are given by 

𝑢(𝑥, 𝑡) = −
105

169
𝑠𝑒𝑐ℎ4 [

1

√26
(𝑥 − √

97

169
𝑡)]. 

By hybrid method, the solution procedure is given as follows: 

Firstly, differential transforms of terms dependent on 𝑡 − time variable in the sixth-order singularly 

perturbed Boussinesq equation (6)-(7) are found by using the differential transform method. Secondly, 

the central differences of derivative terms dependent on the 𝑥 −position variable are found. The 

𝑥 −position variable is replaced with 𝑥𝑖 mesh points in the equation (6)-(7). Finally, we obtain the 

recurrence relation. 

𝑢𝑡𝑡 → (𝑘 + 1)(𝑘 + 2)𝑈(𝑖, 𝑘 + 2), 

𝑢𝑥𝑥 →
𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘)

ℎ2 , 

𝑢𝑥𝑥𝑥𝑥 →
𝑈(𝑖 + 2, 𝑘) − 4𝑈(𝑖 + 1, 𝑘) + 6𝑈(𝑖, 𝑘) − 4𝑈(𝑖 − 1, 𝑘) + 𝑈(𝑖 − 2, 𝑘)

ℎ4 , 

𝑢𝑥𝑥𝑥𝑥𝑥𝑥

→
𝑈(𝑖 − 3, 𝑘) − 6𝑈(𝑖 − 2, 𝑘) + 15𝑈(𝑖 − 1, 𝑘) − 20𝑈(𝑖, 𝑘) + 15𝑈(𝑖 + 1, 𝑘) − 6𝑈(𝑖 + 2, 𝑘) + 𝑈(𝑖 + 3, 𝑘)

ℎ6 , 

𝑢(𝑥, 0) →
−105

169
𝑠𝑒𝑐ℎ4 (

𝑥𝑖

√26
), 

 𝑢𝑡(𝑥, 0) →
−210

2197
√

194

13
𝑠𝑒𝑐ℎ4 (

𝑥𝑖

√26
) 𝑡𝑎𝑛ℎ (

𝑥𝑖

√26
), 
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𝑈(𝑖, 𝑘 + 2)

=
1

(𝑘 + 1)(𝑘 + 2)
[
𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘)

ℎ2 +
(𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘))

2

ℎ4

−
𝑈(𝑖 + 2, 𝑘) − 4𝑈(𝑖 + 1, 𝑘) + 6𝑈(𝑖, 𝑘) − 4𝑈(𝑖 − 1, 𝑘) + 𝑈(𝑖 − 2, 𝑘)

ℎ4

+
𝑈(𝑖 − 3, 𝑘) − 6𝑈(𝑖 − 2, 𝑘) + 15𝑈(𝑖 − 1, 𝑘) − 20𝑈(𝑖, 𝑘) + 15𝑈(𝑖 + 1, 𝑘) − 6𝑈(𝑖 + 2, 𝑘) + 𝑈(𝑖 + 3, 𝑘)

2ℎ6 ]. 

In this recurrence relation given above, 𝑈(𝑖, 2), 𝑈(𝑖, 3), 𝑈(𝑖, 4), … differential transform coefficients are 

found for 𝑘 = 0,1,2,3, … values with 10 iterations.  When these differential transform coefficients are 

written in Equation (3) for 𝑥𝑖 = 𝑖ℎ,  ℎ = 0.1 and 𝑖 = 0,1,2, …, we obtain as 

𝑥𝑖 = 0, 𝑢(0, 𝑡) = ∑ 𝑈(0, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(0,0) +  𝑈(0,1)𝑡 + 𝑈(0,2)𝑡2 + ⋯  

  = −0.6213017751 + 0𝑡 + (0.5486233244𝑒 − 1)𝑡2 + … − 0.6213017749𝑡10, 

𝑥𝑖 = 0.1, 𝑢(0.1, 𝑡) = ∑ 𝑈(0.1, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(0.1,0) + 𝑈(0.1,1)𝑡 + ⋯ 

= −0.6208240650 + (−0.7235058176𝑒 − 2)𝑡
+ (0.5488338737𝑒 − 1)𝑡 + ⋯ − 0.6208247882𝑡10,   

… 

𝑥𝑖 = 1, 𝑢(1, 𝑡) = ∑ 𝑈(1, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(1,0) +  𝑈(1,1)𝑡 + 𝑈(1,2)𝑡2 + ⋯ 

= −0.5755821336 ± (0.6623964847𝑒 − 1)𝑡 + (0.5654247317𝑒 − 1)𝑡2 … − 0.5755887573𝑡10 . 

 Approximate solutions on 𝑥𝑖 mesh points for  𝑡 = 0.01 are obtained and presented in Table 2. 

When the results are compared to RDTM [6], as seen from Table 2, the difference between the results 

is quite low. Figure 1 shows hybrid method, exact solution and comparison of them for different values 

of 𝑥. 

 
Tablo 2. Comparison of numerical results with literature [6] for 𝑡 = 0.01 

𝑥 Exact solution Hybrid approximate solution      Error RDTM solution [6] 

0.0 -0.6213017749 -0.6213639113 0.621364e-4   -0.6210321299  

 0.1 -0.6208247882 -0.6208868769 0.620887e-4   

0.2 -0.6193949466 -0.6194568923 0.619457e-4  

0.3 -0.6170199269 -0.6170816351 0.617082e-4  

0.4 -0.6137124382 -0.6137738155 0.613773e-4   -0.6139924936 

0.5 -0.6094900924 -0.6095510475 0.609551e-4  

0.6 -0.6043752245 -0.6044356680 0.604435e-4  

0.7 -0.5983946672 -0.5984545127 0.598455e-4  

0.8 -0.5915794829 -0.5916386467 0.591638e-4   -0.5921188393  

0.9 -0.5839646569 -0.5840230592 0.584023e-4  

1.0 -0.5755887573 -0.5756463220 0.575647e-4   -0.5762424655  
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Şekil 1. Comparison of exact and approximate solution curves for example 1 
 

 

Example 2. 2  

 

Now, we will give the following ill-posed Boussinesq equation [6] for 𝜀 = 0: 

                                               𝑢𝑡𝑡  =  𝑢𝑥𝑥 +  3𝑢𝑥𝑥
2  −  𝑢𝑥𝑥𝑥𝑥,                                                                               (8) 

with the initial conditions  

                           𝑢(𝑥, 0) =
2𝑎𝑘2𝑒𝑘𝑥

(1 + 𝑎𝑒𝑘𝑥)2
,    𝑢𝑡(𝑥, 0) =

2𝑎𝑠3𝑒𝑠𝑥(1 − 𝑎𝑒𝑠𝑥)√1 + 𝑠2

(1 + 𝑎𝑒𝑠𝑥)3
,                               (9) 

where 𝑎 and 𝑠 are arbitrary constants. The exact solution of this problem is given as 

 

𝑢(𝑥, 𝑡) =
2𝑎𝑘2𝑒𝑘𝑥+𝑘√1+𝑘2𝑡

(1 + 𝑎𝑒𝑘𝑥+𝑘√1+𝑘2𝑡)
2. 

The following differential transforms and the central differences are written by hybrid method in the 

(8)-(9) 

𝑢𝑡𝑡 → (𝑘 + 1)(𝑘 + 2)𝑈(𝑖, 𝑘 + 2), 

𝑢𝑥𝑥 →
𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘)

ℎ2 , 

𝑢𝑥𝑥𝑥𝑥 →
𝑈(𝑖 + 2, 𝑘) − 4𝑈(𝑖 + 1, 𝑘) + 6𝑈(𝑖, 𝑘) − 4𝑈(𝑖 − 1, 𝑘) + 𝑈(𝑖 − 2, 𝑘)

ℎ4 , 

𝑢(𝑥, 0) → 𝑈(𝑖, 0) =
2𝑎𝑘2𝑒𝑘𝑥𝑖

(1 + 𝑎𝑒𝑘𝑥𝑖)2
, 

 𝑢𝑡(𝑥, 0) → 𝑈𝑡(𝑖, 0) =
2𝑎𝑠3𝑒𝑠𝑥𝑖(1 − 𝑎𝑒𝑠𝑥𝑖)√1 + 𝑠2

(1 + 𝑎𝑒𝑠𝑥𝑖)3
, 

and then the recurrence relation is obtained as following: 

𝑈(𝑖, 𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[
𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘)

ℎ2

+
3(𝑈(𝑖 + 1, 𝑘) − 2𝑈(𝑖, 𝑘) + 𝑈(𝑖 − 1, 𝑘))

2

ℎ4

−
𝑈(𝑖 + 2, 𝑘) − 4𝑈(𝑖 + 1, 𝑘) + 6𝑈(𝑖, 𝑘) − 4𝑈(𝑖 − 1, 𝑘) + 𝑈(𝑖 − 2, 𝑘)

ℎ4 ], 

where 𝑈(𝑖, 2), 𝑈(𝑖, 3), 𝑈(𝑖, 4), … differential transform coefficients are obtained for 𝑘 = 0,1,2,3, …. If 

these differential transform coefficients are written in the equation (3) for 𝑥𝑖 = 𝑖ℎ, ℎ = 0.1 and 𝑖 =
0,1,2, …, we have the following solutions 
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𝑥𝑖 = 0, 𝑢(0, 𝑡) = ∑ 𝑈(0, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(0,0) +  𝑈(0,1)𝑡 + 𝑈(0,2)𝑡2 + ⋯  

= 1 + 0𝑡 + ⋯ + 0.3923166756𝑡10, 

𝑥𝑖 = 0.01, 𝑢(0.01, 𝑡) = ∑ 𝑈(0.01, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(0.01,0) +  𝑈(0.01,1)𝑡 + 𝑈(0.01,2)𝑡2 + ⋯  

                                                = 1 − 0.03523773790𝑡 + ⋯ + 0.4272669580𝑡10, 

… 

𝑥𝑖 = 1, 𝑢(1, 𝑡) = ∑ 𝑈(1, 𝑘)𝑡𝑘 =

∞

𝑘=0

 𝑈(1,0) +  𝑈(1,1)𝑡 + 𝑈(1,2)𝑡2 + ⋯ 

                  = 1 − 0.2569845178𝑡 + ⋯ + 0.9194087280𝑡10. 

We only use 10 iterations to get a very good error. Then, approximate solutions on 𝑥𝑖 mesh 

points for 𝑡 = 0.01, 𝑎 = 1, 𝑠 = 1 are obtained. Numerical comparison between RDTM [6] and hybrid 

method are found in Table 3 which shows hybrid method is more promising. The plot of exact, hybrid 

solution and comparison of them are shown in Figure 2. 

 

Tablo 3. Comparison of numerical results with literature [6] for 𝑡 = 0.01 

𝑥 Exact solution Hybrid approximate solution      Error  RDTM solution [6] 

0.0 0.3923166756 0.3962794703 0.0039627947    0.4999750000  

 0.1 0.3738036936 0.3420113793 0.0317923143  

0.2 0.3548355830 0.2941070357 0.0607285473  

0.3 0.3356369702 0.2520482790 0.0835886912  

0.4 0.3164133330 0.2153102515 0.1011030815    0.4791589895  

0.5 0.2973483516 0.1833742217 0.1139741299  

0.6 0.2786023734 0.1557379550 0.1228644184  

0.7 0.2603118678 0.1319236644 0.1283882034  

0.8 0.2425897230 0.1114837044 0.1311060186    0.4255084686 

0.9 0.2255262178 0.0940042490 0.1315219687  

1.0   0.2091905022 0.0791072428 0.1300832593    0.3906469564  

 

 

 

 
Şekil 2. Comparison of exact and approximate solution curves for example 2 

 

3. Conclusion 

 

In this study, we applied hybrid method to construct approximate solution of singularly perturbed ill-

posed and sixth-order Boussinesq equations. Present approximate solution converged to the exact 

solution of the singularly perturbed ill-posed and sixth-order Boussinesq equations and also compared 

with RDTM approximate solution of [6]. According to obtained results from examples, it was observed 

that the hybrid method was very convenient to apply and very useful for finding solutions of nonlinear 

problems. The main advantage of the hybrid method was to provide the user an analytical approximation 
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to the solution, in many cases, an exact solution, in a rapidly convergent sequence with elegantly 

computed terms. We can definitely say that hybrid method should be preferred for solving other partial 

differential equations. 
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