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Abstract 

In this study, deflections of orthotropic beams along the beam length are calculated by using static analysis 

according to Euler-Bernoulli and Timoshenko beam theories. Since the mechanical properties of the materials 

change as the orientation angle of fibers changes, the formulation is carried out using the equivalent Young’s 

modulus and the equivalent shear modulus. Orthotropic beams are modeled as isotropic beams by using equivalent 

moduli. Governing equations are derived. Two numerical examples with different orthotropic materials are given 

for different boundary and loading conditions. The effect of changing the orientation angle of the fibers on the 

deflection values is also considered. Orientation angle, material properties, length to depth ratio has been 

considered as parameters in the static analysis of orthotropic beams. Results are also compared with steel which is 

an isotropic material and presented in the form of tables and graphs which may be useful.  

 

Keywords: Euler-Bernoulli Beam Theory, Timoshenko Beam Theory, Fiber Reinforced Composites, Equivalent 

Young’s and Shear Moduli, Orthotropic Beams, Static Analysis. 

 

Çeşitli Parametrelere Göre Ortotrop Euler-Bernoulli ve Timoshenko 

Kirişlerinin Statik Analizi 

 
 

Öz 

Bu çalışmada kiriş uzunluğu boyunca ortotrop kirişlerin çökmeleri Euler-Bernoulli ve Timoshenko kiriş teorilerine 

göre statik analiz yapılarak hesaplanmıştır. Malzemelerin mekanik özellikleri, liflerin oryantasyon açısına bağlı 

olarak değiştiği için, yönetici denklemlerin türetilmesi, eşdeğer elastisite modülü ve eşdeğer kayma modülü 

kullanılarak gerçekleştirilmiştir. Ortotrop kirişler eşdeğer modüller kullanılarak izotrop kirişler olarak 

modellenmiştir. Farklı ortotrop malzemelerden oluşan iki sayısal örnek farklı sınır koşulları ve yükleme durumları 

için verilmiştir. Liflerin oryantasyon açılarının değişiminin çökme değerlerine etkisi de ele alınmıştır. Ortotrop 

kirişlerin statik analizinde oryantasyon açısı, malzeme özellikleri, uzunluk-derinlik oranı parametreler olarak 

alınmıştır. Sonuçlar ayrıca izotrop olan çelik malzemesi ile karşılaştırılmış ve faydalı olabilecek tablo ve grafikler 

şeklinde sunulmuştur. 

 

Anahtar kelimeler: Euler-Bernoulli Kiriş Teorisi, Timoshenko Kiriş Teorisi, Lifli Kompozitler, Eşdeğer 

Elastisite ve Kayma Modülleri, Ortotrop Kirişler, Statik Analiz.  

 
1. Introduction 

 

Areas of use of beams aren’t limited to only structures. It also finds extensive use in different disciplines 

such as mechanical and space engineering. For instance aircraft wings, helicopter propellers, robot arms 

are also analysed as beam elements. 

Many theories have been developed for the analysis of beams. Euler-Bernoulli beam theory 

(EBT) and Timoshenko beam theory (TBT) are the most prominent of these theories. In the literature it 

is possible to come across many studies on this subject. 
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Labuschagne et al. [1] have compared three different models for the dynamic analysis of a 

cantilever beam. Reddy [2] rearranged classical and first order beam and plate theories by using Von 

Karman’s nonlinear strains and Eringen’s nonlocal differential constitutive relations. Sayyad [3] 

compared various improved beam theories for a simply supported thick isotropic beam in terms of 

bending and free vibration analysis. For a fixed beam loaded with uniformly distributed load; Aykanat 

[4] examined the behavior of the beam’s strain and deformation by using nonlocal elasticity theory. 

Carrera and Giunta [5] proposed several axiomatic refined theories for the linear static analysis of 

isotropic beams. Elshafei [6] analysed isotropic and orthotropic beams using first order shear 

deformation theory and developed a finite element model. Whitney [7] analysed orthotropic beams 

under single loads according to the classical elasticity theory. With a new approach Li [8] investigated 

the static and dynamic behavior of Timoshenko and Euler-Bernoulli beams that have functionally graded 

material. De Rosa and Franciosi [9] applied the Mohr theory to the computation of displacements and 

rotations of carbon nanotubes, and they derive some formula which allows the direct generalization of 

the Mohr theory to the nonlocal Euler–Bernoulli and Timoshenko beam theories in their paper. Palmeri 

and Cicirello [10] analysed cracked beams under static loads and they offer a novel and physically-based 

modelling of slender Euler–Bernoulli beams and short Timoshenko beams with cracks, conducing in 

both cases to exact closed-form solutions. Saracoglu et al. [11] investigated orthotropic beams with 

different boundary conditions and different loads and also they modeled on computer analytically with 

Mathematica, Matlab software programs. 

In this paper deflections of orthotropic beams along beam length are calculated by using static 

analysis according to EBT and TBT. Unlike other studies; while static analysis are performed 

orthotropic beams are modeled as isotropic beams. The formulations are derived by using equivalent 

Young’s modulus and the equivalent shear modulus. The following materials which shows orthotropic 

character are studied: graphite-epoxy, glass-epoxy, boron-epoxy. Also steel which is an isotropic 

material is studied for comparison. As examples; simply supported beam with a uniformly distributed 

load and cantilever beam loaded by a vertical single load applied at the free tip are considered. 

Deflections are calculated for different orientation angles of the fibers.  

 

2. Beam Theories 

 

The most commonly used beam theory is EBT which is also called classical beam theory. In cases where 

the shear deformations cannot be neglected, TBT is widely used. 

Positive load directions, coordinate system, displacements and parametric dimensions used in 

this study are given in Figure 1.  
 

 
Figure 1. Beam geometry, coordinate system, displacements, dimensions 

 

Orthotropic and composite materials have high strength, low weight and high rigidity. They are 

widely used in disciplines such as civil, mechanical and space engineering. For orthotropic and 

composite materials; the ratio of /E G  is generally much greater than those of isotropic materials. 

The developed beam models have made it possible to solve a large number of engineering 

problems. Figure 2 shows the displacement of a point on the beam and the shape of the plane cross-

section after the deformations in EBT and TBT. 
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Figure 2. Displacement of a point and shape of the cross section after deformation 

 

2.1. Euler-Bernoulli Beam Theory 

 

This theory, first suggested in the 1700, was not accepted until the 19th century Eiffel tower and Ferris 

wheel constructions. The displacement of a selected point on the beam according to the EBT is as given 

in Figure 2. 

The assumptions made by the EBT are; plane sections remain plane and normal to the axis of 

the beam after deformation. 

Under these assumptions we can write 

 

0 , 0 , 0xx x yy y xy x yu u u u
x y y x

  
   

      
   

                         (1) 

 

Functional expressions of displacements in Eq. (2) can be defined in the form of 

1( , , ) ( ),x xu x y z u z  1( , , ) ( )y yu x y z u z  and 1( , , ) ( )z zu x y z u z [12].  

The displacement field of the EBT is; 

 

1
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1
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               (2) 

 

2.1. Timoshenko Beam Theory 

 

The displacement of a selected point on the beam according to the TBT is shown in Figure 2. The basic 

assumptions for TBT are identical to EBT assumptions except for the second assumption of the EBT. 

Instead of that, in TBT; plane cross sections, will remain plane after deformation assumption is made 

[13]. This assumption differs from EBT which presumes that plane cross sections remains normal to the 

axis of the beam after deformation. For Timoshenko beams, plane cross sections will rotate due to shear 

forces. Accordingly, , zz xz  and  zy  strains are non-zero and must be calculated. 

Displacements for TBT can be given as in Eq. (3) 
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Here x  and  y  denotes the angles of rotation relative to x and y axes respectively. Their mathematical 

expressions are, 

 

1 1,x y y xu u
z z

 
 

  
 

              (4) 

 

2.3. Equivalent Moduli  

 

The material constants to be used for the static analysis of orthotropic beams are not the same as isotropic 

ones. For fiber-reinforced orthotropic materials, the constants can be converted to an equivalent modulus 

using the orientation angle of the fibers. 

The angle between the beam axis and the fiber axis called orientation angle ( );  is shown in 

Figure 3. 

 

 
Figure 3. Orientation angle of fibers; a) 0 degree, b)   degree 

 

2.3.1. Equivalent Young’s modulus 

 

The equivalent Young’s modulus of a fiber reinforced orthotropic element can be defined as in Eq. (5) 

depending on the material properties [14]. 

 

3 *

11

12
eqE

h D
                 (5) 

 

where 

 

 

      
22 66 26 26*

11

11 22 66 26 26 12 16 26 12 66 16 12 26 22 16




    

D D D D
D

D D D D D D D D D D D D D D D
        (6) 

 

here ijD  are calculated according to the material properties and the direction of the fibers. 
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2.3.2. Equivalent shear modulus 

 

The equivalent shear modulus of a fiber reinforced orthotropic element can be defined as in the Eq. (8) 

depending on the material properties [14]. 

 

*
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In this equation *

55A  can be calculated from; 
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angles of the fibers.  

 

2. Theoretical Formulation 

 

In this study, two beams are investigated with different loading and boundary conditions. As can be seen 

from Figure 4; the first one is a cantilever beam loaded by a vertical single load applied at the free tip. 

The second one is a simply supported beam with a uniformly distributed load. 

 

 

Figure 4. Internal forces in orthotropic beam examples; (a) Cantilever beam (b) Simply supported beam 
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3.1. Cantilever Beam Solution Based on EBT 

 

Moment-curvature relationship for the orthotropic prismatic cantilever beams of length L  and has 

constant flexural rigidity as given in Figure 4a is according to the EBT as follows; 

 
2

1

2

( ) 1
( )


    



y x

eq x eq x

u M z
P z PL

z E I E I
           (10) 

 

Boundary conditions for this beam are as follows; 

 

1

1 0
0

0 , 0
y

y z
z

u
u

z 



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
            (11) 

 

Deflection formula along the axis of the orthotropic cantilever beam is obtained as; 

 

3 2

1

1
( )

6 2
  y

eq x

P PL
u z z

E I
            (12) 

 

Maximum deflection occurs at the tip of the beam and its value is; 

 
3
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3.2. Simply Supported Beam Solution Based on EBT 

 

Moment-curvature relationship for the orthotropic prismatic simply supported beam of length L  and has 

constant flexural rigidity as given in Figure 4b is according to the EBT as; 
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This beam satisfies the boundary conditions of, 

 

1 10
0 , 0y yz z L

u u
 
                (15) 

 

Deflection formula of a point along the axis of the orthotropic simply supported beam is, 

 
3
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1

1
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Maximum deflection occurs at the midlength of the beam. Calculated value of the maximum deflection 

is, 
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3.3. Cantilever Beam Solution Based On TBT 

 

As an example, in the case of the orthotropic cantilever beam of length L  and has constant flexural 

rigidity as given in Figure 4a, rotation of a point along the axis of the beam can be calculated according 

to the TBT as [12], 

 

1 ( )





  



y y

x

eq xy

u S z

z G A
             (18) 

 

The   in this equation is the shear correction factor that depends on the geometry of the cross section. 

Boundary conditions for this beam are as follows; 
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y z
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Deflection for the orthotropic prismatic cantilever beam of length L  as given in Figure 4a can be 

calculated according to the TBT as follows [12]; 
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If z L  is substituted into Eq. (20), maximum deflection value is obtained as, 
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3.4. Simply Supported Beam Solution Based on TBT 

 

For example, in the case of the orthotropic simply supported beam which carries a uniformly distributed 

load of intensity q  and has constant flexural rigidity, rotation of a point along the axis of the beam can 

be calculated according to the TBT as, 

 

1 ( )





  



y y

x

eq xy

u S z

z G A
             (22) 

 

Boundary conditions for prismatic orthotropic simply supported beams loaded with uniformly 

distributed load are, 
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Deflection formula of a point along the axis of the orthotropic simply supported beam is, 
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Maximum deflection occurs at the midlength of the beam and its value is, 
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4. Numerical Results 

 

In this study, two orthotropic beam examples are solved according to EBT and TBT. In these examples 

different orthotropic materials are used and the results are presented in tables and graphs. By using 

equivalent moduli orthotrophic beams are modeled as if isotropic beams. The results obtained by using 

isotropic steel material and the results obtained by using orthotropic materials are also compared. The 

mechanical properties of the materials used in the examples are given in Table 1 [13-15]. 

 
Table 1. Mechanical properties of materials used in the examples 

  Graphite– Epoxy Glass – Epoxy  Boron – Epoxy Steel 

E1 137.90 GPa 53.78 GPa 206.85 GPa 206.182 GPa 

E2     8.96 GPa 17.93 GPa   20.69 GPa 206.182 GPa 

ν12 0.3 0.25 0.3 0.29 

G12     7.10 GPa 8.96 GPa      6.90 GPa    79.434 GPa 

G13     7.10 GPa 8.96 GPa      6.90 GPa    79.434 GPa 

G23     6.21 GPa 3.45 GPa      4.14 GPa    79.434 GPa 

 

The geometry of the orthotropic beam as given in Figure 1 has a unit cross sectional area and 

its cross sectional dimensions are taken as 1, 1. b h  The length of the example beam is taken as 

1 2 310, 20 and 100  L L L  respectively [14]. A unit vertical load of 1P  is applied at the tip of the 

orthotropic cantilever beam. For the orthotropic simply supported beam, intensity of the applied 

uniformly distributed load is 1.q The maximum deflection values of orthotropic beams are calculated 

by carrying out static analysis based on different beam theories. Firstly; equivalent Young’s modulus 

depending on material properties, is calculated using Eq. (5). For static analysis of orthotropic beams 

according to the TBT also equivalent shear modulus is needed. Equivalent shear modulus, depending 

on the material properties are calculated using Eq. (8). Calculated equivalent modulus are given in Table 

2. The values on the left in Table 2 represent equivalent Young’s moduli and the values on the right 

represent equivalent shear moduli. 

 
Table 2. Equivalent Young’s / Shear Moduli of the materials 

𝜃 Graphite – Epoxy ( GPa ) Glass – Epoxy ( GPa ) Boron – Epoxy ( GPa ) Steel ( GPa ) 

00 137.90 / 7.10 53.78 / 8.96 206.85 / 6.90 206.18 / 79.43 

300 27.29 / 6.85 30.19 / 6.40 30.89 / 5.91 206.18 / 79.43 

450 15.67 / 6.63 22.64 / 4.98 20.49 / 5.18 206.18 / 79.43 

600 11.26 / 6.41 19.34 / 4.08 18.48 / 4.60 206.18 / 79.43 

900 8.96 / 6.21 17.93 / 3.45 20.69 / 4.14 206.18 / 79.43 

 
When the moment of inertia of the related beams is calculated by the equation 

3 3/12 1 1 /12  xI bh  then 1/12.xI  In this case, according to the EBT, the maximum deflections can 

be calculated for the cantilever beam and for the simply supported beam respectively as, 

 
3 3 3
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4 4 4

1 2

1
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         (26) 

 

The deflections are put in a dimensionless form by using Eq. (27) for the cantilever beam and 

simply supported beam respectively as; 
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Using the values given in Table 2, the maximum deflection values for the cantilever beam 

according to EBT are calculated and given in Table 3a. 

 
Table 3a. Maximum dimensionless deflection values along the axis of the cantilever beam according to the 

EBT. 

θ Graphite – Epoxy Glass – Epoxy Boron – Epoxy Steel 

00 25.990 133.358 40.010 400.000 

300 131.343 237.595 267.896 400.000 

450 228.796 316.781 403.856 400.000 

600 318.348 370.916 447.891 400.000 

900 400.000 400.000 400.000 400.000 

 

The maximum deflection values for the simply supported beam according to EBT are calculated 

and given in Table 3b. 

 
Table 3b. Maximum dimensionless deflection values along the axis of the simply supported beam according to 

the EBT. 

θ Graphite – Epoxy Glass – Epoxy Boron – Epoxy Steel 

00 1.015 5.209 1.563 15.625 

300 5.131 9.281 10.465 15.625 

450 8.937 12.374 15.776 15.625 

600 12.436 14.489 17.496 15.625 

900 15.625 15.625 15.625 15.625 

 

Since the example cantilever beam has a rectangular cross section, its shear correction factor is 

5/6.   Cross sectional area is 1 1 1.  A  In this case, according to the TBT, the maximum deflections 

can be calculated for the cantilever beam and for the simply supported beam respectively as, 
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     (28) 

 

Using the values given in Table 2, the maximum deflection values at the tip of the cantilever 

beam according to the TBT are calculated and are given in Table 4a. The length / depth ratio  /L h  for 

each composite material is calculated for 10, 20 and 100, respectively. 
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Table 4a. Maximum dimensionless deflection values along the axis of the cantilever beam according to the 

TBT. 

Material L/h 
θ  

00 300 450 600 900 

Graphite – Epoxy 

10 27.504 132.912 230.419 320.026 401.731 

20 26.368 131.735 229.202 318.768 400.433 

100 26.005 131.359 228.812 318.365 400.017 

Glass – Epoxy 

10 135.759 240.955 321.100 376.194 406.237 

20 133.958 238.435 317.861 372.236 401.559 

100 133.382 237.629 316.825 370.969 400.062 

Boron – Epoxy 

10 43.608 272.094 408.654 453.288 405.997 

20 40.909 268.945 405.055 449.240 401.499 

100 40.046 267.938 403.904 447.945 400.060 

Steel 

10 403.115 403.115 403.115 403.115 403.115 

20 400.779 400.779 400.779 400.779 400.779 

100 400.000 400.000 400.000 400.000 400.000 

 

The maximum deflection values for the simply supported beam according to TBT are calculated 

and given in Table 4b. 

 
Table 4b. Maximum dimensionless deflection values along the axis of the simply supported beam according to 

the TBT 

Material L/h 
θ  

00 300 450 600 900 

Graphite – Epoxy 

10 1.205 5.327 9.140 12.645 15.841 

20 1.063 5.180 8.988 12.488 15.679 

100 1.017 5.133 8.939 12.438 15.627 

Glass – Epoxy 

10 5.509 9.701 12.914 15.149 16.405 

20 5.284 9.386 12.509 14.654 15.820 

100 5.212 9.285 12.380 14.496 15.633 

Boron – Epoxy 

10 2.013 10.989 16.375 18.170 16.375 

20 1.675 10.596 15.926 17.664 15.812 

100 1.567 10.470 15.782 17.503 15.633 

Steel 

10 16.014 16.014 16.014 16.014 16.014 

20 15.722 15.722 15.722 15.722 15.722 

100 15.629 15.629 15.629 15.629 15.629 

 

Maximum dimensionless deflection values along the axis of the cantilever beam by using Table 

3a and Table 4a are given graphically in Figure 5. 
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Figure 5. Maximum dimensionless deflection values of the cantilever beam (a) according to EBT (b) according 

to TBT. 

 

Maximum dimensionless deflection values along the axis of the simply supported beam by using 

Table 3b and Table 4b are given graphically in Figure 6. 

 

 
Figure 6. Maximum dimensionless deflection values of the simply supported beam (a) according to EBT (b) 

according to TBT. 

 

Deflections for a simply supported and a cantilever orthotropic beam for orientation angles of 

0  o
 and 60  o

 with 20L  is given in Figure 7. 

 

When the orientation angle   increases deflection values for orthotropic beams also increases 

as seen in Figure 7. Also deflection values for orthotropic beams with TBT are greater than EBT. It 

could be easily seen from Figure 7; deflection values for isotropic beam produced from steel material 

are greater than orthotropic beams produced from composite materials for 0 .  o When the orientation 

angle 60 ,  o
 beams produced with Boron-Epoxy composite material has the maximum deflection value 

and beams produced with Graphite Epoxy composite material has the minimum displacement value. 
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Figure 7. Displacements for simply supported and cantilever orthotropic beams for orientation angle 0  o  and 

60  o  with 20L according to Timoshenko Beam Theory 

 

4.1. Verification 

 

The suitability of the presented approach (isotropic solution using the Equivalent Module) has been 

verified by comparing the solution of one case with finite element analysis software ANSYS. 

 

 
Figure 8. ANSYS solution for cantilever Graphite-Epoxy beam for orientation angle 0  o  with 10L h   

 

In ANSYS program, discussed sample is modeled as orthotropic Graphite-Epoxy material as 

seen in Figure 8. Cross sectional dimensions of the cantilever beam are taken as 100 mm, 100 mm.b h    

The length of the example beam is taken as 1 2 31000 mm, 2000 mm  and  10000 mmL L L     respectively. 

A vertical load of  1000 NP   is applied at the tip of the orthotropic cantilever beam. After calculating 

the maximum deflection values along the axis of the cantilever beam according to the EBT, the 

deflections are put in a dimensionless form by using Eq. (27). Dimensionless deflection calculation 

results for 10L h   is 27.492 , for 20L h   is 26.358  and for 100L h   is 26.001 . Fair agreement was 

obtained between the results calculated from this study and ANSYS software. 
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5. Conclusion 

 

In this study, by developing computer programs orthotropic beams are analysed statically according to 

EBT and TBT. According to the EBT and TBT, the deflection values of the orthotropic beam are 

calculated and presented in the form of tables and graphs.  

Equivalent Young's modulus and equivalent shear modulus values are calculated since the 

mechanical properties of orthotropic material, such as Young's modulus and shear modulus, changes 

depending on the direction. By using these calculated values, a static analysis of a cantilever beam 

loaded by a vertical force applied at the free tip and a simply supported beam with a uniformly 

distributed load is performed. In the analysis, three different orthotropic materials and an isotropic steel 

material, namely graphite-epoxy, glass-epoxy, boron-epoxy and steel are considered. Calculations are 

made for different orientation angles of these materials. 

The problems are considered separately according to the EBT and the TBT. In the calculations 

made according to the EBT, it is seen that the dimensionless maximum deflection value increases as the 

orientation angle in the orthotropic composite cantilever beam increases. If the orientation angle is 00 

the fibers are parallel to the beam axis. In this case, the values of dimensionless deflection values are 

almost the same for all but glass-epoxy material. For glass-epoxy material this has a greater value. The 

authors believe that this is due to the fact that the E1 value of the glass-epoxy material is lower than the 

others. If the angle of orientation is 900 the fibers are perpendicular to the axis of the beam, and all 

materials have the same dimensionless deflection value. This value is the maximum dimensionless 

deflection value for non-boron-epoxy materials. For the boron-epoxy material, the maximum 

dimensionless value of deflection is obtained at the angle of orientation of 600.  

In the calculations made according to the TBT, it is seen that as the orientation angle increases, 

the maximum dimensionless deflection value also increases. For the four different materials, 

calculations are made separately for the length / depth ratio (L/h) of 10, 20 and 100 respectively. For the 

materials, in the case of fibers parallel to the beam axis, the values of the dimensionless deflection values 

are almost the same except for the glass-epoxy material. When the fibers are perpendicular to the beam 

axis, the dimensionless deflection values of all materials are approximately the same. As the length / 

depth ratio decreases, the dimensionless deflection values increase. Thus the difference between the 

deflection results obtained from TBT and EBT are more significant. In this study, an orthotropic 

cantilever and simply supported beam with different materials are treated and the results are examined. 

Analyses can also be made using beams with other boundary conditions and different materials.  
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