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Abstract

The main concern of this study is to present a generalization of Banach’s fixed point theorem
in some classes of modular spaces, where the modular is convex and satisfying the ∆2-
condition. In this work, the existence and uniqueness of fixed point for (α,β )− (ψ,ϕ)−
contractive mapping and α−β−ψ−weak rational contraction in modular spaces are proved.
Some examples are supplied to support the usability of our results. As an application, the
existence of a solution for an integral equation of Lipschitz type in a Musielak-Orlicz space
is presented.

1. Introduction and Preliminaries

It is well known fixed point theorems play important roles and have applications in mathematics analysis, particularly in differential and
integral equations. One of the most popular fixed point theorem is Banach fixed point theorem [6]. By using this theorem, most authors have
proved several fixed point theorems for various mappings [13, 21, 28]. Such as, Dutta and Choudhury proved (ψ,φ)−contractive mappings
in complete metric space [11]. Samet et al. introduced the concept of α−ϕ− contractive type mappings and established various fixed point
theorems [32]. Later, Salimi et al. modified the concept of α−ϕ− contractive type mappings [31]. Alizadeh et al. [4] developed a new
fixed point theorem in complete metric spaces. They introduced the concept of cyclic (α,β )−admissible and (α,β )− (ψ,φ)−contractive
mappings and established some fixed point results in metric spaces.
On the other hand, some authors introduced a new concept of modular vector spaces which are natural generalizations of many classical
function spaces. Firstly, Nakano initiated the concept of modular spaces [26]. Later, some authors proved new fixed point theorems of
Banach type in modular spaces [12, 18, 19, 22, 23, 24, 29, 33]. Then, also the concept of the fixed point theory was studied in modular
metric, modular function and modular vector spaces. [1, 2, 3, 5, 8, 9, 10, 14, 15, 16, 17, 20, 30, 34].
In this work, some fixed point results as a generalization of Banach’s fixed point theorem are presented using some convenient constants in
the contraction assumption in modular spaces. Motivated by [4] and [25], some fixed point results for (α,β )− (ψ,φ)−contractive mappings
in modular spaces are proved. Some examples are supplied in order to support the usability of our results. As an application the existence
and uniqueness of solutions for an integral equation of Lipschitz type in a Musielak-Orlicz space are showed.

Definition 1.1. [25, 27] Let X be an arbitrary vector space. A functional ρ : X → [0,∞) is called a modular if, for any x,y in X, the
following conditions hold:

(a) ρ(x) = 0 if and only if x = 0,
(b) ρ(−x) = ρ(x),
(c) ρ(αx+βy)≤ ρ(x)+ρ(y), whenever α +β = 1 and α,β ≥ 0.

If (c) is replaced with ρ(αx+βy)≤ αsρ(x)+β sρ(y) where αs +β s = 1, α,β ≥ 0, and s ∈ (0,1], then ρ is called s-convex modular. If
s = 1, then we say that ρ is convex modular. The following are some consequences of condition (c).

Remark 1.2. [7]
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(a) For a,b ∈ R with |a|< |b| we have
ρ(ax)< ρ(bx) for all x ∈ X.

(b) For a1, ...,an ∈ R+ with ∑
n
i=1 ai = 1, we have

ρ(
n

∑
i=1

aixi) = ρ(
n

∑
i=1

xi) for any x1, ...,xn ∈ X .

Remark 1.3. [26] A modular ρ defines a corresponding modular space, i.e. the space is given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ → 0}.

Definition 1.4. A sequence {xn} in modular space Xρ is said to be:

(a) ρ-convergent to x ∈ Xρ if ρ(xn− x)→ 0 as n→ ∞.

(b) ρ-Cauchy if ρ(xn− xm)→ 0 as n,m→ ∞.

(c) Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

(d) ρ satisfies ∆2-condition if ρ(2xn)→ 0 as n→ ∞, whenever ρ(xn)→ 0 as n→ ∞.

Definition 1.5. [4] Let T : X → X be a mapping and α,β : X →R+ be two functions. We say that T is a cyclic (α,β )-admissible mapping
if

(i) α(x)≥ 1 for some x ∈ X implies β (T x)≥ 1,
(ii) β (x)≥ 1 for some x ∈ X implies α(T x)≥ 1.

Definition 1.6. [4] Let Ψ be the set of continuous and increasing functions ψ : [0,∞)→ [0,∞) and Φ be the set of lower semicontinuous
functions φ : [0,∞)→ [0,∞) such that φ(t) = 0 iff t = 0. Let X be a metric space and T : X → X be a cyclic (α,β )-admissible mapping. We
say that T is a (α,β )− (ψ,φ)−contractive mapping if

α(x)β (y)≥ 1⇒ ψ(d(T x,Ty))≤ ψ(d(x,y))−φ(d(x,y))

for x,y ∈ X, where ψ ∈Ψ and φ ∈Φ.

2. Main Results

Let Ψ and Φ be defined as in Definition 1.6. Let Xρ be a nonempty set and T : Xρ → Xρ be an arbitrary mapping. We say that x ∈ Xρ is a
fixed point of T , if x = T x. We denote by Fix(T ) the set of all fixed points of T . In the sequel, suppose the modular ρ is convex and satisfies
the ∆2-condition.

Definition 2.1. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping. We say that T is a
(α,β )− (ψ,φ)−contractive mapping if

α(x)β (y)≥ 1⇒ ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y)) (2.1)

for x,y ∈ Xρ , where ψ ∈Ψ and φ ∈Φ.

Theorem 2.2. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a (α,β )− (ψ,φ)−contractive mapping. Suppose that the
following conditions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Proof. Define a sequence {xn} by xn = T nx0 = T xn−1 for all n ∈ N. Since T is a cyclic (α,β )−admissible mapping and α(x0)≥ 1 then
β (x1) = β (T x0)≥ 1 which implies α(x2) = α(T x1)≥ 1. By continuing this process, we get α(x2n)≥ 1 and β (x2n−1)≥ 1 for all n ∈ N.
Again, since T is a cyclic (α,β )-admissible mapping and β (x0)≥ 1, by the similar method, we have β (x2n)≥ 1 and α(x2n−1)≥ 1 for all
n ∈ N. That is, α(xn)≥ 1 and β (xn)≥ 1 for all n ∈ N∪{0}. Equivalently, α(xn−1)β (xn)≥ 1 for all n ∈ N. Therefore by (2.1), we have

ψ(ρ(xn− xn+1))≤ ψ(ρ(xn−1− xn))−φ(ρ(xn−1− xn))

≤ ψ(ρ(xn−1− xn)) (2.2)

and since ψ is increasing, we get

ρ(xn− xn+1)≤ ρ(xn−1− xn)
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for all n ∈ N. So, {ρn := ρ(xn− xn+1)} is a non-increasing sequence of positive real numbers. Then, there exists r ≥ 0 such that lim
n→∞

ρn = r.
We shall show that r = 0. By taking the limsup on both sides of (2.2), we have

limρ
n→∞

(xn− xn+1) = 0. (2.3)

Now, we want to show that {x2n} is a Cauchy sequence. Suppose to the contrary, that {x2n} is not a Cauchy sequence. Then, there are ε > 0
and sequences {m(k)} and {n(k)} such that for all positive integers k, and for n(k)> m(k)> k, we have

ρ(x2n(k)− x2m(k))≥ ε and ρ(2(x2n(k)−1− x2m(k)))< ε. (2.4)

Now for all k ∈ N, we have

ε ≤ ρ(x2n(k)− x2m(k))

≤ ρ(2(x2n(k)− x2n(k)−1))+ρ(2(x2n(k)−1− x2m(k)))

< ρ(2(x2n(k)− x2n(k)−1))+ ε.

Taking the limit as k→+∞ in the above inequality and using (2.3), we get

lim
k→∞

ρ(x2n(k)− x2m(k)) = ε. (2.5)

Since

ρ(x2n(k)+1− x2m(k)+1) = ρ(x2n(k)+1− x2n(k)+ x2n(k)− x2m(k)+1)

≤ ρ(2(x2n(k)+1− x2n(k)))+ρ(2(x2n(k)− x2m(k)+1))

and

ρ(2(x2n(k)− x2m(k)+1)) = ρ(2(x2n(k)− x2m(k)+ x2m(k)− x2m(k)+1))≤ ρ(4(x2n(k)− x2m(k))+ρ(4(x2m(k)− x2m(k)+1))

then by taking the limit as k→+∞ in above inequality and using (2.3) and (2.5), we deduce that

lim
k→∞

ρ(x2n(k)+1− x2m(k)+1) = ε. (2.6)

Now, by (2.1) and α(x2n(k))β (x2m(k))≥ 1 for all k ∈ N, we get

ψ(ρ(x2n(k)+1− x2m(k)+1))≤ ψ(ρ(x2n(k)− x2m(k)))−φ(ρ(x2n(k)− x2m(k))). (2.7)

By taking the limsup on both sides of (2.7), applying (2.4) and (2.6), we obtain

ψ(ε)≤ ψ(ε)−φ(ε).

That is, ε = 0, which is a contradiction. Hence {xn} is a Cauchy sequence. Since Xρ is a complete modular space, then there is a z ∈ Xρ such
that xn→ z as n→ ∞. First, we assume that T is continuous. Hence, we deduce

T z = lim
n→∞

T xn = lim
n→∞

xn+1 = z.

So z is a fixed point of T . Now, assume that (c) holds. That is, α(xn)β (z)≥ 1. From (2.1) we have

ψ(ρ(xn+1−T z))≤ ψ(ρ(xn− z))−φ(ρ(xn− z)). (2.8)

By taking the limsup on both sides of (2.8), we get ψ(ρ(z−T z)) = 0. Then ρ(z−T z) = 0. i.e., z = T z. To prove the uniqueness of fixed
point, suppose that z and z∗ are two fixed points of T . From condition (c) we have, α(z)β (z∗)≥ 1, it follows from (2.1) that

ψ(ρ(z−T z∗))≤ ψ(ρ(z− z∗))−φ(ρ(z− z∗)).

So φ(ρ(z− z∗)) = 0 and hence ρ(z− z∗) = 0 i.e., z = z∗.

Corollary 2.3. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

α(x)β (y)ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y))

for all x,y ∈ Xρ where ψ ∈Ψ and φ ∈Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.
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Proof. Let α(x)β (y)≥ 1 for x,y ∈ Xρ . Then by (2.8), we have

ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y)).

This implies that the inequality (2.1) holds. Therefore, the proof follows from Theorem 2.2.

Corollary 2.4. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )-admissible mapping such that

(α(x)β (y)+1)ψ(ρ( f x− f y)) ≤ 2ψ(ρ(x−y))−φ(ρ(x−y))

for all x,y ∈ Xρ where ψ ∈Ψ and φ ∈Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Example 2.5. Let Xρ = [−2,∞]→ R, ρ(x) = |x| for all x ∈ Xρ , and T : Xρ → Xρ by

T x =
{

x2

3 , x ∈ [−2,2]√
x , otherwise.

Define ψ,φ : [0,+∞)→ [0,+∞) by ψ(t) = 3t,φ(t) = t and α,β : Xρ → [0,+∞) by

α(x) =
{

1 , x ∈ [−2, 4
3 ]

0 , otherwise.

and

β (x) =
{

1 , x ∈ [ 4
3 ,2]

0 , otherwise.

Now, we prove that the hypotheses (a) and (c) of Corollary 2.4 are satisfied by T and hence T has a fixed point. Let α(x)≥ 1 for some x ∈ Xρ .

Then x ∈ [−2, 4
3 ] and so T x ∈ [ 4

3 ,2]. Therefore, β (T x) ≥ 1. Similarly, if β (x) ≥ 1 then α(x) ≥ 1. Then T is a cyclic (α,β )-admissible
mapping and that the hypotheses (a) and (c) of Corollary 2.4 hold.
Now, for all x ∈ [−2, 4

3 ] and y ∈ [ 4
3 ,2], we get

(α(x)β (y)+1)ψ(ρ( f x− f y)) = 23ρ( f x− f y)

= 2
3
∣∣∣ x2

3 −
y2
3

∣∣∣
= 2|x−y||x+y|

≤ 22|x−y| = 23|x−y|−|x−y|

= 2ψ(ρ(x−y))−φ(ρ(x−y))

Otherwise, if α(x)β (y) = 0, we have

(α(x)β (y)+1)ψ(ρ( f x− f y)) = 1≤ 2ψ(ρ(x−y))−φ(ρ(x−y))

Therefore, Corollary 2.4 implies that T has a fixed point.

Corollary 2.6. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )-admissible mapping. Assume that there exists
` > 1 such that

(ψ(ρ(T x−Ty))+ `)α(x)β (y) ≤ ψ(ρ(x− y))−φ(ρ(x− y))+ `

for all x,y ∈ Xρ where ψ ∈Ψ and ϕ ∈Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.
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Example 2.7. Let Xρ = R+, ρ(x) = |x| for all x ∈ Xρ , and T : Xρ → Xρ by

T x =
{

x2+x
4 , x ∈ [0,1]

2x , otherwise.

Define ψ,φ : [0,+∞)→ [0,+∞) by ψ(t) = t,φ(t) = t
4 and α,β : Xρ → [0,+∞) by

α(x) = β (x) =
{

1 , x ∈ [0,1]
0 , otherwise.

Now, we prove that the hypotheses (a) and (c) of Corollary 2.6 are satisfied by T and hence T has a fixed point. Proceeding as in the Example
2.5, we deduce that T is a cyclic (α,β )-admissible mapping and that the hypotheses (a) and (c) of Corollary 2.6 hold.
Now, for all x ∈ [0,1] and all y ∈ [0,1], we get

(ψ(ρ(T x−Ty))+ `)α(x)β (y) = |T x−Ty|+ `

≤ 1
4
|x− y| |x+ y+1|+ `

≤ 3
4
|x− y|+ `

= |x− y|− 1
4
|x− y|+ `

= ψ(ρ(x− y))−φ(ρ(x− y))+ `.

Otherwise, if α(x)β (y) = 0, we have

(ψ(ρ(T x−Ty))+ `)α(x)β (y) = 1≤ ψ(ρ(x− y))−φ(ρ(x− y))+ `.

Therefore, Corollary 2.6 implies that T has a fixed point.

Definition 2.8. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping. We say that T is
α−β −ψ− weak rational contraction if α(x)β (y)≥ 1 for some x,y ∈ Xρ such that

ρ(T x−Ty)≤M(x,y)−ψ(M(x,y))

where ψ ∈Ψ and

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Theorem 2.9. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be α−β −ψ−weak rational contraction. Assume that the following
assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Proof. Define a sequence {xn} by xn = T nx0 = T xn−1 for all n ∈ N. Since T is a cyclic (α,β )−admissible mapping and α(x0)≥ 1 then
β (x1) = β (T x0)≥ 1 which implies α(x2) = α(T x1)≥ 1. By continuing this process, we get α(x2n)≥ 1 and β (x2n−1)≥ 1 for all n ∈ N.
Again, since T is a cyclic (α,β )−admissible mapping and β (x0)≥ 1, by the similar method, we have β (x2n)≥ 1 and α(x2n−1)≥ 1 for all
n ∈ N. That is, α(xn)≥ 1 and β (xn)≥ 1 for all n ∈ N∪{0}. Equivalently, α(xn−1)β (xn)≥ 1 for all n ∈ N. Since T is α−β −ψ−weak
rational contraction, we get

ρ(xn− xn+1)≤M(xn−1,xn)−ψ(M(xn−1,xn)) (2.9)

where

M(xn−1,xn) = max{ρ(xn−1− xn),ρ(xn−1−T xn−1),ρ(xn−T xn),
[1+ρ(xn−1−T xn−1)]ρ(xn−T xn)

ρ(xn−1− xn)+1
}

= max{ρ(xn−1− xn),ρ(xn− xn+1)}.

Now, suppose that there exists n0 ∈ N such that ρ(xn0 − xn0+1)> ρ(xn0−1 − xn0). Therefore M(xn0−1 ,xn0) = ρ(xn0 − xn0+1) and so from (2.9),
we get

ρ(xn0 − xn0+1)≤ ρ(xn0 − xn0+1)−ψ(ρ(xn0 − xn0+1)).

This implies that ψ(ρ(xn0 − xn0+1)) = 0, i.e., ρ(xn0 − xn0+1) = 0, which is a contradiction. Hence, ρ(xn− xn+1) ≤ ρ(xn−1− xn) for all
n ∈N. That is the sequence {ρn : ρ(xn−xn+1)} is decreasing and so there exists r≥ 0 such that ρn→ r as n→∞. Taking the limit as n→∞

in (2.9), we have

r ≤ r−ψ(r).
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This implies that ψ(r) = 0. Therefore, the property of ψ implies that r = 0. That is

lim
n→∞

ρ(xn+1− xn) = 0. (2.10)

Now, we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then there are ε > 0 and sequences
{m(k)} and {n(k)} such that for all positive integers k, for n(k)> m(k)> k, we have

ρ(x2n(k)− x2m(k))≥ ε and ρ(2(x2n(k)−1− x2m(k)))< ε. (2.11)

For all k ∈ N, we have

ε ≤ ρ(x2n(k)− x2m(k))≤ ρ(2(x2n(k)− x2n(k)−1))+ρ(2(x2n(k)−1− x2m(k)))< ρ(2(x2n(k)− x2n(k)−1))+ ε.

Taking the limit as k→ ∞ in above inequality and from (2.10), we have

lim
k→∞

ρ(x2n(k)− x2m(k)) = ε. (2.12)

Then, we get

ρ(x2n(k)+1− x2m(k)+1) = ρ(x2n(k)+1− x2n(k)+ x2n(k)− x2m(k)+1)≤ ρ(2(x2n(k)+1− x2n(k)))+ρ(2(x2n(k)− x2m(k)+1))

and

ρ(2(x2n(k)− x2m(k)+1)) = ρ(2(x2n(k)− x2m(k)+ x2m(k)− x2m(k)+1))≤ ρ(4(x2n(k)− x2m(k))+ρ(4(x2m(k)− x2m(k)+1)).

Taking the limit as k→+∞ in above inequality and using (2.12) and (2.11), we deduce that

lim
k→∞

ρ(x2n(k)− x2m(k)+1) = ε. (2.13)

Now, by (2.1), we get

ρ(x2n(k)+1− x2m(k)+1)≤M(x2n(k)− x2m(k))−ϕ(M(x2n(k)− x2m(k))) (2.14)

where

M(x2n(k)− x2m(k)) = max{ρ(x2n(k)− x2m(k)),ρ(x2n(k)− x2n(k)+1),ρ(x2m(k)− x2m(k)+1),
[1+ρ(x2n(k)− x2n(k)+1)]ρ(x2m(k)− x2m(k)+1)

ρ(x2n(k)− x2m(k))+1
}.

Letting k→ ∞ in (2.14) and using (2.10), (2.12) and (2.13), we get

ε ≤ ε−ψ(ε).

That is ε = 0, which is a contradiction. Hence, {xn} is a Cauchy sequence. Since Xρ is complete, then there exists a z ∈ Xρ such that xn→ z.
Suppose that (c) holds. That is, α(x2n)β (z)≥ 1. Since T is α−β −ψ−weak rational contradiction, then we have

ρ(x2n+1−T z)≤M(x2n,z)−ψ((x2n,z)) (2.15)

where

M(x2n,z) = max{ρ(x2n− z),ρ(x2n−T z),ρ(z−T z),
[1+ρ(x2n− xn+1)]ρ(z−T z)

ρ(x2n− z)+1
}.

Taking the limit as n→ ∞ in (2.15), we have z = T z. Now, let show that T has at most one fixed point. Indeed, if x,y ∈ Xρ be two fixed
points of T, that is, T x = x 6= y = Ty. From condition (c) we have, α(x)β (y)≥ 1, it follows that

ψ(ρ(x− y))≤ ψ(M(x,y))−φ(M(x,y))

where

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Then, we obtain

ψ(ρ(x− y))≤ ψ(ρ(x− y))−φ(ρ(x− y)).

So φ(ρ(x− y)) = 0 and hence, ρ(x− y) = 0, that is, x = y.

We obtain the following corollaries from Theorem 2.9.
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Corollary 2.10. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

α(x)β (y)ρ(T x−Ty)≤M(x,y)−ψ(M(x,y)),

where ψ ∈Ψ and

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Corollary 2.11. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

(α(x)β (y)+1)ρ(T x−Ty) ≤ 2M(x,y)−ψ(M(x,y))

for all x,y ∈ Xρ where ψ ∈Ψ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Corollary 2.12. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

(αx)(βx)+ `)(αx)(βx) ≤M(x,y)−ψ(M(x,y))+ `

for all x,y ∈ Xρ where ψ ∈Ψ and l > 1. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn→ x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

3. Application

In this section, firstly we shall apply Corollary 2.3 to show the existence of solution of integral equation. Let ϕ be a Musielak-Orlicz
function on a measurable space C = ([0,1],Λ,µ), where ρϕ is a modular defined by

ρϕ (u) =
∫ 1

0
ϕ(s, |u(s)|)ds

for ∈ u L ϕ and α0 > e and c0 ∈ [ e
α0
,1). Assume that ρϕ is convex satisfying the ∆2-condition. Now, we investigate the existence and

uniqueness of solution of integral equation:

u(t) = e−t f +
∫ t

0
es−t(

∫ 1

0
K(ξ ,u(s))dξ )ds,

where K : [0,1]×L ϕ →L ϕ is a measurable function satisfying:

(1) lim
λ→0+

∫ 1
0 ϕ(ξ ,λ

∣∣∣(∫ 1
0 K(s,u)ds)ξ

∣∣∣dξ = 0 for any u ∈L ϕ .

(2)
∣∣∣∫ 1

0 (K(ξ ,u(s))−K(ξ ,v(s)))dξ

∣∣∣≤ k |(u− v)(s)| for any u,v ∈L ϕ with k ∈ (0,1).

(3) We denote by B =C([0,1],A) the space of all ρ-continuous function from [0,1] into A which is a convex, closed, bounded subset of L ϕ .
So, B is a closed, bounded, convex subset of C([0,1],L ϕ ) satisfying the ∆2-condition.
Let T : B→ B defined by

T (u) =
∫ 1

0

c0

e
K(s,u)ds.

(4) f ∈ B.
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(5) There exists u0 ∈ B such that θ(u0)≥ 0, η(u0)≥ 0 and

θ(u)≥ 0 for some u ∈ B implies η(Tu)≥ 0,

η(u)≥ 0 for some u ∈ B implies θ(Tu)≥ 0.

(6) if {un} is a sequence in B such that θ(un)≥ 0 for all n ∈ N∪{0} and un→ u as n→ ∞, then θ(u)≥ 0.
(7) Let α,β : B→ [0,∞) by

α(u) =
{

1, θ(u)≥ 0
0, otherwise

and β (v) =
{

1, η(u)≥ 0
0, otherwise.

Theorem 3.1. Under the above assumptions (1)-(7), the integral equation has a solution in C([0,1],L ϕ ).

Proof. Firstly, we show that T is ρ-Lipschitz. By assumption (1), we have
∫ 1

0 ϕ(ξ ,λ |Tu(ξ )|dξ → 0 as λ → 0+. Hence the definition of
L ϕ , we get Tu ∈L ϕ for any u ∈L ϕ .
Let x,y ∈ B, then we have

ρ f (Tu−T v) = ρ f (
c0

e
(

e
c0

(Tu−T v)))

≤ c0

e
ρ f (

e
c0

(Tu−T v))

=
c0

e

∫ 1

0
ϕ(s,

e
c0
|(Tu−T v)(s)|ds

=
c0

e

∫ 1

0
ϕ(s,

e
c0

∣∣∣∣∫ 1

0
(K(ξ ,u(s))−K(ξ ,v(s)))dξ

∣∣∣∣)ds.

Therefore by assumption (2)

ρ f (Tu−T v)≤ c0

e

∫ 1

0
ϕ(s,k |(u− v)(s)|)ds

=
c0

e
ρϕ (k(u− v))

=
c0

e
kρϕ (u− v).

Then, we get T is ρ-Lipschitz (see Theorem 1.3 in [33]). Also define ψ,φ : C([0,1],L ϕ )→C([0,1],L ϕ ) by

ψ(u) = u, and φ(u) = (1− c0

e
k)u for

c0

e
k ∈ (0,1).

Consequently, for all u,v ∈ B we have

α(u)β (v)ψ(ρϕ (Tu−T v))≤ ψ(ρϕ (u− v))−φ(ρϕ (u− v)).

It shows that all the hypotheses of Corollary 2.3 are satisfied, hence T has a solution u ∈C([0,1],L ϕ ).
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