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ABSTRACT

In this study, we consider a directed bi-objective Chinese Postman Problem with two additive objectives (like total cost and 
total distance) and propose two solution approaches to generate all non-dominated objective vectors.  The first approach, namely 
classical approach, uses the optimal solutions of the mixed integer linear programs and generates the non-dominated objective 
vectors’ set sequentially. The second approach, namely branch and bound algorithm takes its spirit from the optimal solutions 
of the linear programming relaxations and generates the non-dominated objective vectors’ set simultaneously. The results of our 
extensive computational study show that our approaches are capable of solving large-sized problem instances in reasonable times.

Keywords: Bi-objective programming, chinese postman problem, mixed ınteger linear programming, classical approach, 
branch and bound algorithm

YÖNLÜ İKİ OBJEKTİFLİ ÇİNLİ POSTACI PROBLEMİ İÇİN KESİN ÇÖZÜM YAKLAŞIMLARI 

ÖZ

Bu çalışmada iki toplamsal kriterli (toplam maliyet ve toplam mesafe gibi) yönlü çinli postacı problemi ele alınmış ve tüm 
bastırılamayan objektif vektörlerini yaratmak için iki çözüm yaklaşımı geliştirilmiştir.  Birinci yaklaşım, klasik yaklaşım, karmaşık 
kesikli doğrusal programların optimal çözümlerini kullanmakta ve bastırılamayan objektif vektör setini seri olarak yaratmaktadır. 
İkinci yaklaşım, dal ve sınır algoritması, doğrusal programlama gevşetimlerinin optimal çözümlerini kullanmakta ve bastırılamayan 
objektif vektör setindeki çözümleri aynı anda yaratmaktadır. Deneysel çalışmamızın sonuçları yaklaşımlarımızın büyük boyutlu 
problemleri makul sürelerde çözdüğünü göstermektedir.

Anahtar Kelimeler: İki-objektifli programlama, çinli postacı problemi, karmaşık tam sayılı doğrusal programlama, klasik 
yaklaşım, dal ve sınır algoritması
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INTRODUCTION

The arc routing problems entail determining a 
minimum-cost traversal of a specified subset of arcs on 
a graph.  The earliest study on the arc routing problems 
is the Königsberg Bridge Problem that is concerned 
with the existence and determination of a closed walk 
traversing each of the seven bridges once and exactly 
once.  The bridges of Königsberg are represented as 
arcs and each arc joins a pair of the four junction points 
(nodes) that can be considered as islands and shores. The 
Königsberg Bridge Problem was solved by the Swiss 
mathematician Leonhard Euler in 1736. The Chinese 
Postman Problem (CPP) deals with the situations where 
a closed walk does not exist and determines a minimum 
length walk covering each arc at least once. The CPP 
was initially posed by Guan (1962) and stated as follows: 
Leaving from his post office, a postman needs to visit 
the households on each block in his route, delivering and 
collecting letters, and then returns to the post office. He 
would like to cover this route by traveling the minimum 
possible distance.

A wide range of applications relevant to transpor-
tation, urban planning and manufacturing have been 
mentioned in the literature.  

Some noteworthy transportation and urban planning 
applications of the CPP addressed in the literature and 
are of interest for many countries include postal delivery, 
parcel services, garbage collection, milk delivery, snow 
clearance, street sweeping services, parking meter coins 
collection, meter reading, routing of salt trucks and ins-
pection of streets for maintenance and airline scheduling.

Amine and Djellab (2013) show the meaningfulness 
of the CPP concepts in a wide range of manufacturing 
applications. Dewill et al. (2011) and Han & Na (1999) 
discuss the laser or water cutting technology that use 
water or laser to cut materials and follow Chinese walks 
for efficiency concerns.  

Amine and Djellab (2013) discuss the use of CPP 
walks in programming automatic arm in the surface 
painting, like in cars manufacturing, especially in auto-
motive car body painting. The task consists of using an 
atomizer over a painting surface using a back and forth 
movement so called CPP walk, above materials. 

Manber & Israni (1984) introduce the Cutting Path 
Determination Problem to solve a flame torch paths 
problem of material cutting.  The problem was modeled 
as a dynamic rural postman problem, where the graph can 
be changed each time a piece is cut out.  Imahori et al. 
(2008) and Rodrigues & Ferreira (2012) study the cutting 
hard materials addressing both packing and cutting path 
problems.  They note that their problem motivates an arc 
routing modeling as the cutter head requires more time 
to cut each piece. 

The classical CPP assumes that each arc is represen-
ted by a single weight and the objective is to determine 
the tour with the minimum total weight. The bi-objective 
CPPs assume that each arc is defined by two weights, like 
cost and distance, distance and priority, cost and time.  
Many practical implications might require consideration 
of two weights, thereby two objectives. For example, the 
total distance of the route should be minimized subject 
to the constraint that its total cost is below a threshold 
value. Some other concern might be minimizing the total 
cost subject to the constraint the total travel distance is 
below a specified level.  Moreover, the decision maker 
may like to see the solutions over which he/she could 
make trade-offs among two objectives.  For example one 
may like to see the amount of compromise that should 
be made on the total distance to reduce the total cost to 
some specified level.  

Despite its practical importance, the literature on 
the bi-objective CPP is quite scarce. To the best of our 
knowledge, there is a unique study by Prakash et al. 
(2009) that is limited to the complete enumeration of 
all feasible solutions among which the non-dominated 
ones are selected.  Recognizing this important gap in the 
literature, we study a bi-objective CPP with two additive 
objectives (total cost and total distance) and propose 
two solution approaches: a classical approach and a 
branch and bound algorithm.  The classical approach, 
uses the optimal solutions of the mixed integer linear 
programs.   The branch and bound algorithm generates 
all non-dominated (efficient) points and benefits from 
the optimal solutions of the Linear Programming Rela-
xation (LPR) to define our branching scheme and lower 
and upper bounds. 



Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

17

The rest of the paper is organized as follows: In 
Section 2, we review the related literature.  Section 3 
defines our problem and presents related mathematical 
models.  In Section 4, we first define the efficient so-
lutions together with their properties and then state the 
classical approach that sequentially generates all non-
dominated objective vectors. In Section 5 we first settle 
the complexity of the problem and discuss the branch 
and bound algorithm that simultaneously generates all 
nondominated objective vectors.  Section 6 discusses the 
results of our extensive computational experiment and 
Section 7 concludes the study.

2. BASICS AND THE RELATED RESEARCH

The CPP is an arc routing problem in which a single 
postman serves a number of streets from a post office. 
The classical CPP finds the minimum cost tour passing 
through every arc of graph at least once.  This problem 
is firstly studied by Guan (1962).  To find minimum 
total cost tour, the concept of unicursality is used by 
Ford and Fulkerson (1962).  A directed graph is said to 
be unicursal (Eulerian) if for each node, the number of 
entering arcs is equal to the number of leaving arcs. An 
undirected graph is said to be universal if even number 
of arcs are incident to each node.  To make a graph Eu-
lerian a minimum weight perfect matching is defined 
and optimal solution to the CPP is found. The problem 
is solved by a polynomial time algorithm developed by 
Edmonds and Johnson (1973). 

Eiselt et al. (1995) give two mathematical models for 
the undirected CPP. The first model is based on a perfect 
matching idea that converts a nonunicursal graph into 
a unicursal one by using the shortest paths. The second 
model, on the other hand, is based on Edmonds’ blossom 
inequalities (see Edmonds, 1963) and it depends on the 
density of arcs. 

In the directed case, the problem has a feasible 
solution provided that the graph is strongly connected, 
i.e., there exists a directed path between every pair of 
nodes. The optimal solution is found by a polynomial 
time algorithm as proposed in Eiselt et al (1995). It 
is shown that a minimum cost unicursal graph can be 

constructed using the transportation model where the 
decision variables represent the number of times each 
arc has to be traversed. 

Windy graphs are undirected graphs in which the cost 
of traversing an arc depends on the direction of travel.  
Windy postman problem (WPP) was firstly introduced 
by Minieka (1979). Brucker (1981) shows that the 
WPP is strongly NP-hard and Win (1989) shows that 
the problem is polynomially solvable when the graph is 
unicursal.  Grötschel and Win (1992) describe the cutting 
plane algorithm to solve the WPP.

Mixed graphs contain both undirected and directed 
arcs and consist of determining a least-cost traversal thro-
ugh every arc of the graph at least once. Papadimitriou 
(1976) shows that finding the minimum cost solution to 
the mixed CPP is strongly NP-hard and Edmonds and 
Johnson (1973) show that the problem is polynomially 
solvable when the graph is unicursal. To find the optimal 
solution, some authors, including Christofides et al. 
(1984) and Nobert and Picard (1991), have used integer 
linear programming formulations. The branch and cut 
algorithm is proposed by Corberan et al. (2012) to solve 
large size Mixed CPP instances. 

Prakash et al. (2009) consider two additive objectives 
for the CPP and presents a heuristic procedure that finds 
a set of feasible solutions giving higher priority to the 
first objective. The performance of Prakash et al. (2009)’s 
procedure depends on the choice of the priorities and 
the procedure may return a single nondominated point 
or a subset of all nondominated points or a set of all 
nondominated points. 

The biobjective arc routing problems with multi 
postmen have also been studied in the last decade.  La-
comme et al. (2006), Mei et al. (2011) and Grandinetti 
et al. (2012) propose heuristic approaches that return the 
approximate set of nondominated points with respect to 
the total cost and maximum cost criteria.  

In this study, we propose two approaches each returns 
the set of all nondominated points for the CPP.  To the 
best of our knowledge, our study is the first attempt 
for the exact solution of the bi-objective arc routing 
problems.  
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3. PROBLEM DEFINITION AND THE RELATED 
MODELS

Consider a directed graph G = (N, A) that consists of 
a set of A arcs and a set of N nodes. Arc (i,j) establishes 
a connection between nodes i and j and is characterized 
by two weights, cij and dij.cij may stand for the cost of 
traversing arc (i,j) whereas dij  is its travel time or distan-
ce. The main decision of the problem is explained via 
the variable Xij as follows:

Xij=number of times arc (i,j)  is traversed

The objective of the classical CPP is to minimize the 
total cost that is expressed as

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

  

 

	 (1)

The constraint sets are stated below:

i. Each arc should be traversed at least once:

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ and integer ∀  𝑖𝑖 𝑗𝑗 ∈ 𝐴𝐴  

 

	 (2)

ii. The flow to a node should be conserved that is 
for each entering arc, there should be a departing co-
unterpart.

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∣  𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗 ∣  𝑗𝑗 𝑖𝑖 ∈𝐴𝐴

 ∀𝑖𝑖 ∈ 𝑁𝑁  

 

	 (3)

We simply refer to the above CPP model that mi-
nimizes (1) while satisfying (2) and (3) as PC.PD is the 
another CPP model that minimizes (4) below while 
satisfying (2) and (3).

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

 

	 (4)

Solution Procedures for the classical CPP

Eiselt et al (1995) show that the classical CPP can 
be represented by a transportation model, hence can be 
solved in polynomial time.  The decision variable set of 
the transportation model,  Xij  is as defined below: 

Xij = number of  times the shortest path between (i,j)  
is traversed

Thetransportation model uses the following definitions: 

i. 𝑑𝑑𝑖𝑖    

𝑑𝑑𝑖𝑖−    

 Node iis called balanced if 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−.  

ii. The sets below are defined for the unbalanced nodes: 

𝐼𝐼= Set of supply nodes  𝑖𝑖  𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−  
𝐽𝐽 = Set of demand nodes  𝑖𝑖  𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−  

iii. 𝑆𝑆𝑖𝑖 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖− ∀ 𝑖𝑖 ∈ 𝐼𝐼 
𝐷𝐷𝑗𝑗 𝑑𝑑𝑗𝑗− − 𝑑𝑑𝑗𝑗 ∀ 𝑗𝑗 ∈ 𝐽𝐽 

iv. 𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗  

∀ 𝑖𝑖 ∈ 𝐼𝐼 ∀ 𝑗𝑗 ∈ 𝐽𝐽  

The model is as stated below: 

  𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

 𝑐𝑐𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

subject to 

 𝑋𝑋𝑖𝑖𝑗𝑗 𝑆𝑆𝑖𝑖
𝑗𝑗 ∈ 𝐽𝐽

∀ 𝑖𝑖 ∈ 𝐼𝐼  

 𝑋𝑋𝑖𝑖𝑗𝑗 𝐷𝐷𝑗𝑗
𝑖𝑖 ∈ 𝐼𝐼

∀ 𝑗𝑗 ∈ 𝐽𝐽  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ ∀ 𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽  

An optimal objective function value of the above 
transportation model gives the optimal total cost of the 
classical CPP.  

The Constrained Chinese Postman Problem

Consider the following constraint that imposes an 
upper bound k on the second criterion, i.e., total distance 
travelled:

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

≤ 𝑘𝑘  

 

	 (5)

Minimizing (1) subject to the constraint sets (2), (3) 
and (5) is a single constrained CPP model.  We hereafter 
refer to the single constrained CPP as PC ,k.

Figure 1 illustrates the feasible and optimal solutions 
of the PC  and PC,k problems via a 25 nodes and 43 arcs 
instance taken from Malandraki and Daskin (1993).
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The arc weights, i.e. (cij, dij ) values are given in Table 1 below. 

 
Figure 1. The Example Instance 

Table 1. The Arc Weights of the Example Instance

(i, j)  𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗     (i, j)  𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗     (i, j)  𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗     (i, j)  𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗   
(1,2) (40,40)   (8,4) (50,50)   (12,7) (90,90)   (18,17) (30,30) 
(2,3) (30,30)   (8,7) (30,30)   (12,11) (20,20)   (19,13) (40,40) 
(2,4) (40,12)   (8,9) (60,60)   (13,8) (70,70)   (19,14) (70,70) 
(3,9) (40,40)   (9,4) (70,70)   (13,14) (70,21)   (20,18) (30,30) 
(4,3) (40,12)   (9,10) (60,60)   (14,21) (20,80)   (20,19) (30,30) 
(4,5) (30,30)   (10,8) (60,60)   (14,22) (40,40)   (21,20) (20,70) 
(4,7) (50,50)   (10,13) (60,9)   (15,12) (40,20)   (22,23) (30,30) 
(5,1) (50,50)   (10,14) (30,36)   (16,12) (40,60)   (23,24) (30,30) 
(6,5) (50,15)   (11,7) (80,80)   (16,15) (40,20)   (24,25) (80,20) 
(7,5) (50,50)   (11,8) (70,70)   (17,16) (40,40)   (25,20) (70,20) 
(7,6) (30,9)   (11,13) (30,30)   (17,19) (30,30)       
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The optimal solution to the PC problem is stated below: 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗  

and all other  𝑋𝑋∗𝑖𝑖 𝑗𝑗  values are equal to 1. 

 

The optimal total cost  𝑍𝑍𝐶𝐶∗  𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴  

𝑍𝑍𝐶𝐶∗ × × × ⋯ × × ×  

 

The optimal solution to the PD problem is stated below: 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗

, 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗  

and all other  𝑋𝑋∗𝑖𝑖 𝑗𝑗  1. 

 

The optimal total distance  𝑍𝑍𝐷𝐷∗  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴  

𝑍𝑍𝐷𝐷∗ × × ⋯ × × ×  

Now assume k is 3890.  

The constraint  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴 ≤  is not satisfied since  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴 3917. 

The (𝑃𝑃𝐶𝐶 𝑘𝑘) problem with k value of 3890 returns the following optimal solution: 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ ,  𝑋𝑋∗  where all other  𝑋𝑋∗𝑖𝑖 𝑗𝑗  
values are equal to 1. 

The optimal total cost, which is denoted by  𝑍𝑍𝐶𝐶 𝑘𝑘 ∗, is equal to: 

𝑍𝑍𝐶𝐶 𝑘𝑘∗  𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

× × × ⋯ × ×  

The travel distance constraint is also satisfied: 

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

Note that  𝑍𝑍𝐶𝐶 𝑘𝑘 ∗ is bigger than 𝑍𝑍𝐶𝐶∗ , i.e.,𝑍𝑍𝐶𝐶∗ 𝑍𝑍𝐶𝐶 𝑘𝑘∗  
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The steps our study can be summarized as follows: 
We first define the properties of the efficient solutions 
and use them in our mixed integer linear model and its 
linear programming relaxation. We use mixed integer 
linear model in classical approach for sequential gene-
ration of all nondominated objective vectors. We use the 
linear programming relaxation of the model in branch 
and bound algorithm for simultaneous generation of 
all nondominated objective vectors. The final step of 
the study evaluates the performances of the classical 
approach and branch and bound algorithm.

4. NONDOMINATED OBJECTIVE VECTORS 
AND THE CLASSICAL APPROACH

A solution u is called efficient if there is no other 
solution v, having 𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢   

 

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 . 

 

and  

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢   

 

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 . 

 

with strict 
inequality holding at least once. The resulting objective 
function vector 

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢   

 

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 . 

 

is said to be nondominated and 
we say objective vector 

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢   

 

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 . 

 

dominates the objective 
vector 

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢   

 

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢   

 

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣   

 

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 . 

 

.

In subsection 4.1 we define the properties of the effi-
cient solutions.  In subsection 4.2 we define a way to find 
a single nondominated objective vector and subsection 
4.3 we discuss the procedure that finds all nondominated 
objective vectors.

4.1 Properties of the Efficient Solutions

We present three properties of the efficient solutions. 

Property 1. In all efficient solutions, for any node i 
whose indegree is 1, i.e.,𝑑𝑑𝑖𝑖 , 𝑥𝑥𝑗𝑗𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖− where arc 
(j, i) is incident to node i. 

Proof. There are at least 𝑑𝑑𝑖𝑖−  inflows to node i; hence, 
at least 𝑑𝑑𝑖𝑖− outflows from node i.  The only way of rea-
lizing outflows is traversing arc (j, i), at least 𝑑𝑑𝑖𝑖− times. 
It follows that in all feasible, hence efficient, solutions, 
𝑥𝑥𝑗𝑗𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖−   	

Property 2. In all efficient solutions, for any node i 
whose outdegree is 1, i.e. 𝑑𝑑𝑖𝑖− =1, 𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖   for the arc 
(i, j) incident to node i. 

Proof. Similar to that of Property 1; hence, it is 
omitted.

Property 3. In all efficient solutions, an arc incident 
to node r is traversed exactly once if node r is not on 
any shortest path that connects i∈I to j∈J. 

Proof.  An optimal solution to the transportation 
problem (discussed in Section 3) that is equivalent to 
the PC problem (PD problem) with arc weights cij (arc 
weights dij) traverses any incident arc to a balanced node 
r exactly once.  This follows that if any balanced node is 
not on any shortest path between i∈I to j∈J, relative to 
botharc weights, i.e., cij and dij then it is traversed exactly 
once in all efficient solutions.

Using the result of Property 3, if node r is not on 
any shortest path between i∈I to j∈J, relative to both 
arc weights we set the flows of all arcs incident to node 
r to 1, and call node r as eliminated node.  We define 

𝐴𝐴𝑖𝑖𝑟𝑟  𝑖𝑖  𝑎𝑎𝑟𝑟𝑐𝑐  𝑟𝑟 𝑖𝑖 𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠  
𝐵𝐵𝑗𝑗𝑟𝑟  𝑗𝑗  𝑎𝑎𝑟𝑟𝑐𝑐  𝑗𝑗 𝑟𝑟 𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠  

 We thereafter refer set E as the set of eliminated nodes 
and redefine N as N / E. 

As Xj,r = Xr,i  for all (j, r) and (r, i) the flow conservation 
relations are rewritten as: 

 𝐴𝐴𝑖𝑖𝑟𝑟   𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟   

∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident to r 

Using the results of Property 1 and Property 2, the 
following constraints are added.

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖   ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖
−  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖
−  ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖  

 4.2 Finding A Nondominated Objective Vector

Consider the following modified Pc model.

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

  

subject to 
𝑋𝑋𝑖𝑖𝑗𝑗 ≥  

  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖   ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖−   

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖−  ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖   

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁  

 𝐴𝐴𝑖𝑖𝑟𝑟   𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟   ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor  

 

(5)

(6)

(7)

(8)

(9)
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 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

  

subject to 
𝑋𝑋𝑖𝑖𝑗𝑗 ≥  

  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖   ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖−   

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖−  ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖   

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁  

 𝐴𝐴𝑖𝑖𝑟𝑟   𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟   ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor  

 

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

  

subject to 
𝑋𝑋𝑖𝑖𝑗𝑗 ≥  

  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖   ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖−   

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖−  ∀ 𝑖𝑖  𝑑𝑑𝑖𝑖   

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁  

 𝐴𝐴𝑖𝑖𝑟𝑟   𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟   ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor  

 

	 (10)

We hereafter refer to constraint sets (6) through (10) 
as x∈X.

Let 𝑍𝑍𝐶𝐶∗  be the its optimal ZC value. 𝑍𝑍𝐶𝐶∗  is a valid lower 
bound on the ZC values of all efficient solutions. Any 
optimal solution to the PC problem may not be efficient 
since there may exist alternative optimal solutions having 
smaller ZD values.

Among the alternative optimal solutions to the PC 
problem, the one having the smallest ZD value requires 
the solution of the following problem.

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

subject to  𝑥𝑥 ∈ 𝑋𝑋 

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

𝑍𝑍𝐶𝐶∗  

 We hereafter refer to the above model as 𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗  . 
Note that  𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗   requires solving the PC problem. In 
place of solving the PC problem and then the 𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗  

problem, one may solve the following problem:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒  𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

∈𝐷𝐷  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

subject to𝑥𝑥 ∈ 𝑋𝑋 

 The value of  ∈D should be small enough that the 
smallest smallest  𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴  value should not increase 
even for the largest possible value of  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴 ,.    
Accordingly,

𝑍𝑍𝐶𝐶∗ ∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 ≤ 𝑍𝑍𝐶𝐶∗ ∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛  	 (11)

where Dmin  and Dmax are the smallest and largest possible 
value of the total distance, respectively.  The inequality 
(11) follows that

∈𝐷𝐷  𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛  ≤  

∈𝐷𝐷 ≤  𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛   

 

Dmin is the optimal ZD value of the PD problem. Dmax is 
an upper bound on the ZD value of all efficient solutions; 
hence, it is the  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴 ) value of the (PC) prob-
lem. In other words, first we solve the PC  problem and 
obtain optimal Xij values, then by using those Xij values 
in equation of  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴 ), we obtain theDmax value.  

In our experiments, we set ∈𝐷𝐷   to   𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛   

 

 

4.3 Finding the Set of All Nondominated 
Objective Vectors

An optimal solution to the following constrained 
problem, PC, k, gives a nondominated objective vector 
and a corresponding efficient solution (see Haimes et 
al., 1971).

𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

subject to 𝑥𝑥 ∈ 𝑋𝑋 

𝑍𝑍𝐷𝐷 ≤ 𝑘𝑘 

 This follows, all nondominated objective vectors 
and corresponding efficient solutions can be generated 
by solving (PC, k) for all k in [Dmin, Dmax]. The following 
procedure systematically varies the value of k and returns 
the set of all nondominated objective vectors.

Procedure 1. The Classical Approach (CA)

Step 0.Solve 𝑃𝑃𝐶𝐶  𝑍𝑍𝐶𝐶 subject to𝑥𝑥 ∈ 𝑋𝑋 

Let 𝐷𝐷 be the 𝑍𝑍𝐷𝐷  value of the 𝑃𝑃𝐶𝐶  

 Solve 𝑃𝑃𝐷𝐷  𝑍𝑍𝐷𝐷 𝑥𝑥 ∈ 𝑋𝑋

Let 𝐷𝐷 be the 𝑍𝑍𝐷𝐷  value of the 𝑃𝑃𝐷𝐷

Let ∈𝐷𝐷  𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛   

Step 1. Solve 𝑃𝑃𝐶𝐶 𝑘𝑘  𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

  subject to𝑥𝑥 ∈ 𝑋𝑋 

  𝑍𝑍𝐷𝐷 ≤ 𝑘𝑘 

Let 𝑍𝑍𝐶𝐶
∗ 𝑍𝑍𝐷𝐷

∗  be the solution. 

Set 𝑟𝑟 𝑟𝑟  

Step 2. If ∗ 𝐷𝐷 then stop, all r nondominated  

objective vectors are generated. 

           Else set 𝑘𝑘 𝑍𝑍𝐷𝐷
∗ −  and go to Step 1. 

 



Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

23

Note that each iteration Procedure 1 generates a 
nondominated objective vector. When the procedure 
terminates, the set of all nondominated objective vectors 
are generated.

The number of nondominated objective vectors, r, is 
at most Dmax - Dmin + 1. Hence, the Procedure 1 iterates 
pseudo polynomial number of times.

5. COMPLEXITY AND THE BRANCH AND 
BOUND ALGORITHM

In this section, we first settle the complexity of the 
constrained CPP, i.e., PC, k and then present a Branch 
and Bound  algorithm for its exact solution. 

Theorem 1. The constrained CPP is strongly NP-hard.

Proof. Recall that the CPP reduces to the following 
‘Transportation Problem’ (see Section 3). 

  𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

 𝑐𝑐𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

 𝑋𝑋𝑖𝑖𝑗𝑗 𝑆𝑆𝑖𝑖
𝑗𝑗 ∈ 𝐽𝐽

∀ 𝑖𝑖 ∈ 𝐼𝐼  

 𝑋𝑋𝑖𝑖𝑗𝑗 𝐷𝐷𝑗𝑗
𝑖𝑖 ∈ 𝐼𝐼

∀ 𝑗𝑗 ∈ 𝐽𝐽  

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ ∀ 𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽  

Hence, our constrained CPP problem is equivalent 
to a ‘Capacitated Transportation Problem’ with the fol-
lowing capacity constraint. 

  𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 𝐷𝐷 
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

𝐷𝐷 𝑘𝑘 −  𝑑𝑑𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗  ∈𝐴𝐴

 

 When all supply and demand amounts are ‘1’, the 
‘Capacitated Transportation Problem’ reduces to the 
Generalized Assignment Problem (GAP). It follows that 
the PC,  k problem reduces to the GAP. The GAP is NP-
hard in the strong sense (see, Martello and Toth, 1990), 
so is the PC,  k problem.		

The problem of generating a single nondominated 
objective vector is strongly NP-hard as the constrained 
CPP is strongly NP-hard. It follows that the problem 
of generating all nondominated objective vectors with 
respect to two objectives is strongly NP-hard.

Attributing to the complexity of the problem, Proce-
dure 1 that generates all nondominated objective vectors 
is likely to fall into computational burden. To dispel the 
burden to some extent, we present an implicit enumera-
tion technique –a Branch and Bound (BAB) algorithm. 
Our aim is to attain optimal solutions to the large sized 
instances in reasonable solution times.

Our BAB algorithm generates one nondominated 
objective vector at a time. It starts with an initial upper 
bound (incumbent solution) and updates it whenever a 
complete solution with a better objective function value 
is reached.

We solve the Linear Programming Relaxation (LPR), 
i.e., first relax the integrality constraints on the Xij values 
and then solve the resulting problem to optimality. We 
benefit from the optimal solution of the LPR to find an 
initial upper bound on the ZC value. Below is the stepwise 
description of our upper bounding procedure.

Procedure 2 - Finding an Initial Upper Bound

Step 1. Solve the LPR.

Step 2. Let cτ be a cycle that resides all fractional va-
riables. Let 𝑋𝑋𝑟𝑟𝑠𝑠

𝐿𝐿  be the smallest fractional variable in cτ.

Step 3. Let Xrs= 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿   and update the fractional vari-

ables around cτ so as to preserve the flow conservation 
relations.

Step 4. IfXrs = 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿   gives a feasible solution, then 

go to Step 5.

Else let Xrs  = 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿   and update the fractional vari-

ables around.

Step 5. If all variables are integers, stop.

Else go to Step 2.

At each node of the BAB tree, we solve the LPR 
and explore the tree using the fractional variables of the 
optimal LPR solution.  We let Xrs be the maximum frac-
tional value and generate the following two child nodes:

Child Node I. Add constraint Xrs > 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿  

Child Node II. Add constraint Xrs ≤ 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿  

We use the optimal solution value of the LPR model 
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as a lower bound. We select the node having the smaller 
lower bound. For the selected node, we find an upper 
bound using the upper bounding procedure. Figure 2 
illustrates our BAB tree.

Nodes 1 and 2 are generated based on the optimal 
solution of the LPR solved at Node 0. Node 2 is selected 
for further branching as 𝑍𝑍𝐿𝐿𝑃𝑃 ≤ 𝑍𝑍𝐿𝐿𝑃𝑃  . The child nodes 
of Node 2, i.e., Node 3 and Node 4, use the additional 
constraints 𝑋𝑋𝑟𝑟𝑠𝑠 ≥  𝑋𝑋𝑟𝑟𝑠𝑠   and 𝑋𝑋𝑟𝑟𝑠𝑠 ≤  𝑋𝑋𝑟𝑟𝑠𝑠  ,  respectively. 
The tree explores either from Node 3 if 𝑍𝑍𝐿𝐿𝑃𝑃 ≤ 𝑍𝑍𝐿𝐿𝑃𝑃  or 
from Node 4 if 𝑍𝑍𝐿𝐿𝑃𝑃 𝑍𝑍𝐿𝐿𝑃𝑃 . 

A node is fathomed if one of the following condi-
tions holds:

i. 	 The resulting LPR leads to an infeasible solution.

ii. 	The resulting LPR gives all integer decision variab-
les. In such a case, the solution  

	ii. 𝑍𝑍𝐶𝐶𝐼𝐼 𝑍𝑍𝐷𝐷𝐼𝐼  is updated if 𝑍𝑍𝐶𝐶 𝑍𝑍𝐶𝐶𝐼𝐼  or 𝑍𝑍𝐶𝐶 𝑍𝑍𝐶𝐶𝐼𝐼  and𝑍𝑍𝐷𝐷 𝑍𝑍𝐷𝐷𝐼𝐼 . 

 iii.	The objective function value of the resulting LPR 
is no better than the incumbent solution. That is, 
𝑍𝑍𝐶𝐶𝐿𝐿𝑃𝑃 𝑍𝑍𝐶𝐶𝐼𝐼  or 𝑍𝑍𝐶𝐶𝐿𝐿𝑃𝑃 𝑍𝑍𝐶𝐶𝐼𝐼  and 𝑍𝑍𝐷𝐷𝐿𝐿𝑃𝑃 𝑍𝑍𝐷𝐷𝐼𝐼 . 

We employ a depth first strategy due to its relatively 
low memory requirements. According to the strategy, we 
start form the root node and explore branching from the 
node having smaller ZC value or smaller ZD value when 
the ZC  values are equal.

If both nodes are fathomed, we backtrack to the 
previous level. We stop when we backtrack to Level 1. 
The best solution at termination, i.e., incumbent solution 
is the optimal solution.

We illustrate our branching scheme on example 
instance I. The optimal solution of the LPR at the initial 
level is 4211 when k = 3794. The initial upper bound is 
found as 4400.

The BAB tree of the instance is presented in Figure 3. 

The figures on the nodes indicate the order at which 
they are created. At each node, the lower and upper 
bound values are reported.  At Node 1, the following 
LPR is solved:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤  

 The optimal objective function value of the associa-
ted LPR is found as ZC,k = 4250 for k = 3794. We update 
the upper bound at that node. According to the optimal 
solution of the LPR, the cycle that resides the fractional 
variables is given in Figure 4. 

We choose the smallest fractional variable in the 
cycle, i.e., X10,13 = 1.5. We letX10,13 = 2 and update the frac-
tional variables around the cycle as shown in Figure 5. 

 
Figure 2. The BAB Tree



Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

25

 Fi
gu

re
 3

. T
he

 B
A

B
 T

re
e 

of
 th

e 
In

st
an

ce



Ezgi Eroğlu, Meral Azizoğlu

26

The upper bounds for the total cost and total distance 
are found as:

𝑈𝑈𝐵𝐵𝐶𝐶  −   

𝑈𝑈𝐵𝐵𝐷𝐷  −   

 Then, we update the best upper bound from (UBC, 
UBD) = (4400, 3794) to (4300, 3791). At Node 2, we 
solve the following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤ 𝑋𝑋 ≤
 The upper bound in terms of total cost and total 

distance is then equal to:
𝑈𝑈𝐵𝐵𝐶𝐶  −   

𝑈𝑈𝐵𝐵𝐷𝐷  −   

 Then, we update the upper bound from (UBC, UBD) 
= (4400, 3794) to (4300, 3791).  

At Node 2, we solve the following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤ 𝑋𝑋 ≤

 

The optimal solution of the above LPR is found           
ZC,k = 4275 for k = 3794. The upper bound is not updated 
as it is no better than the one found in Node 1.  Accor-
ding to the solution of the LPR at Node 2, the cycle 
that resides fractional variables are X2,3=1.5, X2,4=3.5, 
X4,3=3.5. We choose the smallest fractional variable in 
the cycle, i.e., X2,3 = 1.5. Then, at Node 3, we solve the 
following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤  

 The optimal solution of the above LPR is found as 
ZC,k =4294 for k = 3794. 

According to the solution of LPR at Node 3, X15,12 = 
2.85, X16,12 = 1.15, X16,15=2.85 resides fractional cycle. We 
choose the smallest fractional variable in the cycle, i.e., 
X16,12 = 1.15. Then, at Node 4, we solve the following 
LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤  

 The optimal solution of the LPR is found as ZC,k = 
4296,538 for k = 3794. According to the solution of LPR 

Figure 4. The Illustration of the Upper Bounding Procedure
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at Node 4, the cycle that resides fractional variables are 
X6,5 = 2.885, X7,5 = 1.115, X7,6 = 2.885.

At Node 5, when we solve the following LPR by 
choosing the smallest fractional variable in the cycle, 
the optimal solution is equal to the updated upper bound 
value at Node 1, i.e., (LBC, LBD) = (4300, 3791).  Since 
the resulting LPR gives all integer decision variables, we 
stop branching and continue to explore from the other 
node at the same level. 

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷  

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋 

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤  

 
Nodes 6, 7, 8 and 10 are fathomed since the objective 

functions of the resulting LPRs are greater than or equal 
to those of the incumbent solution. Nodes 11 and 12 are 
also fathomed as their since the resulting LPRs leads to 
an infeasible solution. The best solution at termination  
is optimal and it is found at Node 5.

6. COMPUTATIONAL EXPERIMENT

We design an experiment to evaluate the performan-
ces of our algorithms. The number of nodes and number 
of arcs used in our experiment are tabulated in Table 2.

Table 2.The (N, M) Values

N 100 100 300 300 300 500 500

M 200 400 600 675 750 1200 1300

The networks with 100 nodes are from http://www.
ing.unibs.it/~orgroup/instances.html. The networks with 
300 and 500 nodes are from http://www.uv.es/corberan/
instancias.html.  We generate the arc weights (cij and dij 
values) from discrete uniform distributions in [1, 100].

All experiments are carried out on an Intel(R) 
Core(TM) i5-3317U and clocked at 1.70 GHz with 4 
GB RAM. The BAB algorithm is coded in Java, Eclipse 
Luna version 4.4.0.

For each (N, M) combination, we generate 10 
problem instances. Hence, our experiment resides 60 
problem instances. For each instance, we generate the 
set of all nondominated objective vectors; hence solve 
many combinatorial optimization problems.  

We set a termination limit of 3600 seconds for the 
BAB algorithm and CA.

Table 3. The Number of the Nondominated Objective Vectors

Number of nondominated objective 
vectors

N M Average Maximum

100 200 43 150

100 400 237 425

300 600 106 152

300 750 426 904

500 1200 162 294

500 1300 355 503
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Figure 5. The Average Number of the Nondominated Objective Vectors
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The number of nondominated objective vectors is 
reported in Table 3. The table includes the average and 
maximum number of nondominated objective vectors 
for each problem combination.

The average number of the nondominated objective 
vectors for each combination is also represented in 
Figure 5. The figure shows the effect of the problem 
size parameters on the number of the nondominated 
objective vectors.

Note from Figure 5 that the number of the nondo-
minated objective vectors is highly dependent on the 
problem size.  Note from the figure that for N = 100, the 
average number of the nondominated objective vectors 
increases from 43 to 237 as M increases from 200 to 
400. For N = 300, these increases are from 106 to 426 
when M increases from 600 to 750. For N = 500, the 
average CPU times increases more than two times when 
M increases by 100.   

Table 4 reports the average and maximum CPU times 
in seconds and the number of nodes generated BAB 
algorithm in generating a nondominated objective vector. 

We observe from Table 4 that as N or M increases, 
the CPU time to find a nondominated objective vector 
increases significantly. Finding a nondominated ob-
jective vector takes 0.382 seconds on average for the 
networks with 100 nodes and 200 arcs, while it reaches 
to 1.854 seconds for the network with (N, M) values of 
(500, 1200).  When N = 100 and M = 200, the average 
number of nodes generated is 16 and the average CPU 
time to find a nondominated objective vector is 0.382 
seconds. For N = 100, when M increases to 400, the 
average number of nodes and CPU time rise to 141 
and 1.243 seconds, respectively. The increases in the 
complexity of the solutions with increases in N or M 
can be attributed to the increases in the complexity of 
the LPR models.

CA  CPU Time BAB  CPU Time BAB Nodes

N M Average Maximum Average Maximum Average Maximum

100 200 0.298 0.490 0.382 1.069 16 27

100 400 0.287 0.311 1.243 1.613 141 197

300 600 2.593 3.115 1.01 1.319 70 96

300 750 2.292 2.993 2.779 3.765 177 235

500 1200 5.183 5.727 1.854 2.431 187 384

500 1300 5.286 5.696 4.224 5.563 152 202

Table 4. The Performance of the BAB and CA-per Nondominated Objective Vector

Table 5.The Performance of the BAB and CA-per Nondominated Objective Vector

CA CPU Time BAB CPU Time BAB Nodes

N M Average Maximum Average Maximum Average Maximum

100 200 11.448 33.43 8.543 19.097 848 3138

100 400 67.179 118.23 306.863 634.37 35030 70660

300 600 267.643 352.9 107.245 182.76 7505 13478

300 750 1017.37 2210.95 1254.83 2812.6 79855 175564

500 1200 833.533 1506.47 306.508 561.688 24377 32992

500 1300 1879.3 2604.95 1528.88 2716.86 54747 93794
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Table 5 reports on the performance of generating the 
set of nondominated objective vectors. 

Note from Table 5 that when N or M increases, the 
number of nondominated objective vectors and time to 
generate a single nondominated objective vector increase 
significantly. These in turn, increase the time to generate 
the set of all nondominated objective vectors.  For the 
(N, M) values of (100, 400), (300, 750) and (500, 1300), 
the average CPU times are about 307, 1255 and 1539 
seconds, respectively.  The CPU times are almost tripled 
when the problem sizes are increased from (100, 400) 
to (500, 1300). 

Tables 4 and 5 also report on the performance of the 
CA. We observe that as N or M increases, the CA finds 
the exact nondominated objective vector set in consi-
derably higher CPU times.  The significant increases in 
the CPU times can be attributed to the increases in the 
complexity of the integer models that return a single 
nondominated objective vector and increases in the 
number of nondominated objective vectors. 

The differences between the performances of the 
BAB algorithm and CA increase as N increases.  Note 
from Table 4 that when N = 300 and M = 600, the average 
CPU times per nondominated objective vector are 2.593 
and 1.01 seconds for the CA and BAB algorithm, respec-
tively. As another notable example, for (N, M) values of 
(500, 1200), the average CPU times are 5.183 and 1.854 
seconds for the CA and BAB algorithm, respectively. 

We also observe that the BAB algorithm behaves 
more consistent than the CA. Note from Table 5 that, 
for (N, M) values of (500, 1200), the average and ma-
ximum CPU times by the BAB algorithm are 306.508 
and 561.688 seconds, respectively. For the CA, the res-
pective average and maximum CPU times are 833.533 
and 1506.47 seconds.

7. CONCLUSIONS

In this study, we consider a bi-objective CPP with 
two additive objectives, like total cost and total distance, 
total distance and total priority, total cost and total time.  

We propose two algorithms to generate the exact set 
of all nondominated objective vectors.  The Classical 
Approach uses the optimal solutions of the mixed integer 
programs and BAB Algorithm uses the optimal soluti-
ons of the linear programming relaxations. The BAB 
Algorithm returns the set of all nondominated objective 
vectors for problem instances with up to 500 nodes and 
1300 arcs in less than one hour and is superior to the 
Classical Approach. 

To the best of our knowledge, our study is the first 
attempt for the exact solutions of the bi-objective arc 
routing problems. Our results derived for the CPP can 
be extended to more general arc routing problems with 
more than one postman. 
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