
Endüstri Mühendisliği Dergisi	 Makale

Cilt: 29 Sayı: 1-2 Sayfa: (15-30)

15

EXACT SOLUTION APPROACHES FOR THE DIRECTED
BI-OBJECTIVE CHINESE POSTMAN PROBLEM

Ezgi Eroğlu1, Meral Azizoğlu2*

1Middle East Technical University, Ankara 06800, Turkey
e-mail: ezgieroglu@metu.edu.tr

2Department of Industrial Engineering
Middle East Technical University, Ankara 06800, Turkey

e-mail: ma@metu.edu.tr

Geliş Tarihi:18.05.2018; Kabul Ediliş Tarihi: 17.09.2018

ABSTRACT

In this study, we consider a directed bi-objective Chinese Postman Problem with two additive objectives (like total cost and
total distance) and propose two solution approaches to generate all non-dominated objective vectors. The first approach, namely
classical approach, uses the optimal solutions of the mixed integer linear programs and generates the non-dominated objective
vectors’ set sequentially. The second approach, namely branch and bound algorithm takes its spirit from the optimal solutions
of the linear programming relaxations and generates the non-dominated objective vectors’ set simultaneously. The results of our
extensive computational study show that our approaches are capable of solving large-sized problem instances in reasonable times.

Keywords: Bi-objective programming, chinese postman problem, mixed ınteger linear programming, classical approach,
branch and bound algorithm

YÖNLÜ İKİ OBJEKTİFLİ ÇİNLİ POSTACI PROBLEMİ İÇİN KESİN ÇÖZÜM YAKLAŞIMLARI

ÖZ

Bu çalışmada iki toplamsal kriterli (toplam maliyet ve toplam mesafe gibi) yönlü çinli postacı problemi ele alınmış ve tüm
bastırılamayan objektif vektörlerini yaratmak için iki çözüm yaklaşımı geliştirilmiştir. Birinci yaklaşım, klasik yaklaşım, karmaşık
kesikli doğrusal programların optimal çözümlerini kullanmakta ve bastırılamayan objektif vektör setini seri olarak yaratmaktadır.
İkinci yaklaşım, dal ve sınır algoritması, doğrusal programlama gevşetimlerinin optimal çözümlerini kullanmakta ve bastırılamayan
objektif vektör setindeki çözümleri aynı anda yaratmaktadır. Deneysel çalışmamızın sonuçları yaklaşımlarımızın büyük boyutlu
problemleri makul sürelerde çözdüğünü göstermektedir.

Anahtar Kelimeler: İki-objektifli programlama, çinli postacı problemi, karmaşık tam sayılı doğrusal programlama, klasik
yaklaşım, dal ve sınır algoritması

* Corresponding Author

Ezgi Eroğlu, Meral Azizoğlu

16

INTRODUCTION

The arc routing problems entail determining a
minimum-cost traversal of a specified subset of arcs on
a graph. The earliest study on the arc routing problems
is the Königsberg Bridge Problem that is concerned
with the existence and determination of a closed walk
traversing each of the seven bridges once and exactly
once. The bridges of Königsberg are represented as
arcs and each arc joins a pair of the four junction points
(nodes) that can be considered as islands and shores. The
Königsberg Bridge Problem was solved by the Swiss
mathematician Leonhard Euler in 1736. The Chinese
Postman Problem (CPP) deals with the situations where
a closed walk does not exist and determines a minimum
length walk covering each arc at least once. The CPP
was initially posed by Guan (1962) and stated as follows:
Leaving from his post office, a postman needs to visit
the households on each block in his route, delivering and
collecting letters, and then returns to the post office. He
would like to cover this route by traveling the minimum
possible distance.

A wide range of applications relevant to transpor-
tation, urban planning and manufacturing have been
mentioned in the literature.

Some noteworthy transportation and urban planning
applications of the CPP addressed in the literature and
are of interest for many countries include postal delivery,
parcel services, garbage collection, milk delivery, snow
clearance, street sweeping services, parking meter coins
collection, meter reading, routing of salt trucks and ins-
pection of streets for maintenance and airline scheduling.

Amine and Djellab (2013) show the meaningfulness
of the CPP concepts in a wide range of manufacturing
applications. Dewill et al. (2011) and Han & Na (1999)
discuss the laser or water cutting technology that use
water or laser to cut materials and follow Chinese walks
for efficiency concerns.

Amine and Djellab (2013) discuss the use of CPP
walks in programming automatic arm in the surface
painting, like in cars manufacturing, especially in auto-
motive car body painting. The task consists of using an
atomizer over a painting surface using a back and forth
movement so called CPP walk, above materials.

Manber & Israni (1984) introduce the Cutting Path
Determination Problem to solve a flame torch paths
problem of material cutting. The problem was modeled
as a dynamic rural postman problem, where the graph can
be changed each time a piece is cut out. Imahori et al.
(2008) and Rodrigues & Ferreira (2012) study the cutting
hard materials addressing both packing and cutting path
problems. They note that their problem motivates an arc
routing modeling as the cutter head requires more time
to cut each piece.

The classical CPP assumes that each arc is represen-
ted by a single weight and the objective is to determine
the tour with the minimum total weight. The bi-objective
CPPs assume that each arc is defined by two weights, like
cost and distance, distance and priority, cost and time.
Many practical implications might require consideration
of two weights, thereby two objectives. For example, the
total distance of the route should be minimized subject
to the constraint that its total cost is below a threshold
value. Some other concern might be minimizing the total
cost subject to the constraint the total travel distance is
below a specified level. Moreover, the decision maker
may like to see the solutions over which he/she could
make trade-offs among two objectives. For example one
may like to see the amount of compromise that should
be made on the total distance to reduce the total cost to
some specified level.

Despite its practical importance, the literature on
the bi-objective CPP is quite scarce. To the best of our
knowledge, there is a unique study by Prakash et al.
(2009) that is limited to the complete enumeration of
all feasible solutions among which the non-dominated
ones are selected. Recognizing this important gap in the
literature, we study a bi-objective CPP with two additive
objectives (total cost and total distance) and propose
two solution approaches: a classical approach and a
branch and bound algorithm. The classical approach,
uses the optimal solutions of the mixed integer linear
programs. The branch and bound algorithm generates
all non-dominated (efficient) points and benefits from
the optimal solutions of the Linear Programming Rela-
xation (LPR) to define our branching scheme and lower
and upper bounds.

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

17

The rest of the paper is organized as follows: In
Section 2, we review the related literature. Section 3
defines our problem and presents related mathematical
models. In Section 4, we first define the efficient so-
lutions together with their properties and then state the
classical approach that sequentially generates all non-
dominated objective vectors. In Section 5 we first settle
the complexity of the problem and discuss the branch
and bound algorithm that simultaneously generates all
nondominated objective vectors. Section 6 discusses the
results of our extensive computational experiment and
Section 7 concludes the study.

2. BASICS AND THE RELATED RESEARCH

The CPP is an arc routing problem in which a single
postman serves a number of streets from a post office.
The classical CPP finds the minimum cost tour passing
through every arc of graph at least once. This problem
is firstly studied by Guan (1962). To find minimum
total cost tour, the concept of unicursality is used by
Ford and Fulkerson (1962). A directed graph is said to
be unicursal (Eulerian) if for each node, the number of
entering arcs is equal to the number of leaving arcs. An
undirected graph is said to be universal if even number
of arcs are incident to each node. To make a graph Eu-
lerian a minimum weight perfect matching is defined
and optimal solution to the CPP is found. The problem
is solved by a polynomial time algorithm developed by
Edmonds and Johnson (1973).

Eiselt et al. (1995) give two mathematical models for
the undirected CPP. The first model is based on a perfect
matching idea that converts a nonunicursal graph into
a unicursal one by using the shortest paths. The second
model, on the other hand, is based on Edmonds’ blossom
inequalities (see Edmonds, 1963) and it depends on the
density of arcs.

In the directed case, the problem has a feasible
solution provided that the graph is strongly connected,
i.e., there exists a directed path between every pair of
nodes. The optimal solution is found by a polynomial
time algorithm as proposed in Eiselt et al (1995). It
is shown that a minimum cost unicursal graph can be

constructed using the transportation model where the
decision variables represent the number of times each
arc has to be traversed.

Windy graphs are undirected graphs in which the cost
of traversing an arc depends on the direction of travel.
Windy postman problem (WPP) was firstly introduced
by Minieka (1979). Brucker (1981) shows that the
WPP is strongly NP-hard and Win (1989) shows that
the problem is polynomially solvable when the graph is
unicursal. Grötschel and Win (1992) describe the cutting
plane algorithm to solve the WPP.

Mixed graphs contain both undirected and directed
arcs and consist of determining a least-cost traversal thro-
ugh every arc of the graph at least once. Papadimitriou
(1976) shows that finding the minimum cost solution to
the mixed CPP is strongly NP-hard and Edmonds and
Johnson (1973) show that the problem is polynomially
solvable when the graph is unicursal. To find the optimal
solution, some authors, including Christofides et al.
(1984) and Nobert and Picard (1991), have used integer
linear programming formulations. The branch and cut
algorithm is proposed by Corberan et al. (2012) to solve
large size Mixed CPP instances.

Prakash et al. (2009) consider two additive objectives
for the CPP and presents a heuristic procedure that finds
a set of feasible solutions giving higher priority to the
first objective. The performance of Prakash et al. (2009)’s
procedure depends on the choice of the priorities and
the procedure may return a single nondominated point
or a subset of all nondominated points or a set of all
nondominated points.

The biobjective arc routing problems with multi
postmen have also been studied in the last decade. La-
comme et al. (2006), Mei et al. (2011) and Grandinetti
et al. (2012) propose heuristic approaches that return the
approximate set of nondominated points with respect to
the total cost and maximum cost criteria.

In this study, we propose two approaches each returns
the set of all nondominated points for the CPP. To the
best of our knowledge, our study is the first attempt
for the exact solution of the bi-objective arc routing
problems.

Ezgi Eroğlu, Meral Azizoğlu

18

3. PROBLEM DEFINITION AND THE RELATED
MODELS

Consider a directed graph G = (N, A) that consists of
a set of A arcs and a set of N nodes. Arc (i,j) establishes
a connection between nodes i and j and is characterized
by two weights, cij and dij.cij may stand for the cost of
traversing arc (i,j) whereas dij is its travel time or distan-
ce. The main decision of the problem is explained via
the variable Xij as follows:

Xij=number of times arc (i,j) is traversed

The objective of the classical CPP is to minimize the
total cost that is expressed as

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

	 (1)

The constraint sets are stated below:

i. Each arc should be traversed at least once:

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ and integer ∀ 𝑖𝑖 𝑗𝑗 ∈ 𝐴𝐴

	 (2)

ii. The flow to a node should be conserved that is
for each entering arc, there should be a departing co-
unterpart.

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∣ 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗 ∣ 𝑗𝑗 𝑖𝑖 ∈𝐴𝐴

 ∀𝑖𝑖 ∈ 𝑁𝑁

	 (3)

We simply refer to the above CPP model that mi-
nimizes (1) while satisfying (2) and (3) as PC.PD is the
another CPP model that minimizes (4) below while
satisfying (2) and (3).

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

	 (4)

Solution Procedures for the classical CPP

Eiselt et al (1995) show that the classical CPP can
be represented by a transportation model, hence can be
solved in polynomial time. The decision variable set of
the transportation model, Xij is as defined below:

Xij = number of times the shortest path between (i,j)
is traversed

Thetransportation model uses the following definitions:

i. 𝑑𝑑𝑖𝑖

𝑑𝑑𝑖𝑖−

 Node iis called balanced if 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−.

ii. The sets below are defined for the unbalanced nodes:

𝐼𝐼= Set of supply nodes 𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−
𝐽𝐽 = Set of demand nodes 𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−

iii. 𝑆𝑆𝑖𝑖 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖− ∀ 𝑖𝑖 ∈ 𝐼𝐼
𝐷𝐷𝑗𝑗 𝑑𝑑𝑗𝑗− − 𝑑𝑑𝑗𝑗 ∀ 𝑗𝑗 ∈ 𝐽𝐽

iv. 𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗

∀ 𝑖𝑖 ∈ 𝐼𝐼 ∀ 𝑗𝑗 ∈ 𝐽𝐽

The model is as stated below:

 𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

 𝑐𝑐𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to

 𝑋𝑋𝑖𝑖𝑗𝑗 𝑆𝑆𝑖𝑖
𝑗𝑗 ∈ 𝐽𝐽

∀ 𝑖𝑖 ∈ 𝐼𝐼

 𝑋𝑋𝑖𝑖𝑗𝑗 𝐷𝐷𝑗𝑗
𝑖𝑖 ∈ 𝐼𝐼

∀ 𝑗𝑗 ∈ 𝐽𝐽

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ ∀ 𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽

An optimal objective function value of the above
transportation model gives the optimal total cost of the
classical CPP.

The Constrained Chinese Postman Problem

Consider the following constraint that imposes an
upper bound k on the second criterion, i.e., total distance
travelled:

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

≤ 𝑘𝑘

	 (5)

Minimizing (1) subject to the constraint sets (2), (3)
and (5) is a single constrained CPP model. We hereafter
refer to the single constrained CPP as PC ,k.

Figure 1 illustrates the feasible and optimal solutions
of the PC and PC,k problems via a 25 nodes and 43 arcs
instance taken from Malandraki and Daskin (1993).

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

19

The arc weights, i.e. (cij, dij) values are given in Table 1 below.

Figure 1. The Example Instance

Table 1. The Arc Weights of the Example Instance

(i, j) 𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗 (i, j) 𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗 (i, j) 𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗 (i, j) 𝑐𝑐𝑖𝑖𝑗𝑗 𝑑𝑑𝑖𝑖𝑗𝑗
(1,2) (40,40) (8,4) (50,50) (12,7) (90,90) (18,17) (30,30)
(2,3) (30,30) (8,7) (30,30) (12,11) (20,20) (19,13) (40,40)
(2,4) (40,12) (8,9) (60,60) (13,8) (70,70) (19,14) (70,70)
(3,9) (40,40) (9,4) (70,70) (13,14) (70,21) (20,18) (30,30)
(4,3) (40,12) (9,10) (60,60) (14,21) (20,80) (20,19) (30,30)
(4,5) (30,30) (10,8) (60,60) (14,22) (40,40) (21,20) (20,70)
(4,7) (50,50) (10,13) (60,9) (15,12) (40,20) (22,23) (30,30)
(5,1) (50,50) (10,14) (30,36) (16,12) (40,60) (23,24) (30,30)
(6,5) (50,15) (11,7) (80,80) (16,15) (40,20) (24,25) (80,20)
(7,5) (50,50) (11,8) (70,70) (17,16) (40,40) (25,20) (70,20)
(7,6) (30,9) (11,13) (30,30) (17,19) (30,30)

Ezgi Eroğlu, Meral Azizoğlu

20

The optimal solution to the PC problem is stated below:

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ ,

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗

and all other 𝑋𝑋∗𝑖𝑖 𝑗𝑗 values are equal to 1.

The optimal total cost 𝑍𝑍𝐶𝐶∗ 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

𝑍𝑍𝐶𝐶∗ × × × ⋯ × × ×

The optimal solution to the PD problem is stated below:

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗

, 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ ,

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗

and all other 𝑋𝑋∗𝑖𝑖 𝑗𝑗 1.

The optimal total distance 𝑍𝑍𝐷𝐷∗ 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

𝑍𝑍𝐷𝐷∗ × × ⋯ × × ×

Now assume k is 3890.

The constraint 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴 ≤ is not satisfied since 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗ 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴 3917.

The (𝑃𝑃𝐶𝐶 𝑘𝑘) problem with k value of 3890 returns the following optimal solution:

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ ,

𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ , 𝑋𝑋∗ where all other 𝑋𝑋∗𝑖𝑖 𝑗𝑗
values are equal to 1.

The optimal total cost, which is denoted by 𝑍𝑍𝐶𝐶 𝑘𝑘 ∗, is equal to:

𝑍𝑍𝐶𝐶 𝑘𝑘∗ 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

× × × ⋯ × ×

The travel distance constraint is also satisfied:

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗∗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

Note that 𝑍𝑍𝐶𝐶 𝑘𝑘 ∗ is bigger than 𝑍𝑍𝐶𝐶∗ , i.e.,𝑍𝑍𝐶𝐶∗ 𝑍𝑍𝐶𝐶 𝑘𝑘∗

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

21

The steps our study can be summarized as follows:
We first define the properties of the efficient solutions
and use them in our mixed integer linear model and its
linear programming relaxation. We use mixed integer
linear model in classical approach for sequential gene-
ration of all nondominated objective vectors. We use the
linear programming relaxation of the model in branch
and bound algorithm for simultaneous generation of
all nondominated objective vectors. The final step of
the study evaluates the performances of the classical
approach and branch and bound algorithm.

4. NONDOMINATED OBJECTIVE VECTORS
AND THE CLASSICAL APPROACH

A solution u is called efficient if there is no other
solution v, having 𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 .

and

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 .

with strict
inequality holding at least once. The resulting objective
function vector

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 .

is said to be nondominated and
we say objective vector

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 .

dominates the objective
vector

𝑍𝑍𝐶𝐶𝑣𝑣 ≤ 𝑍𝑍𝐶𝐶𝑢𝑢

𝑍𝑍𝐷𝐷𝑣𝑣 ≤ 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢

𝑍𝑍𝐶𝐶𝑣𝑣 𝑍𝑍𝐷𝐷𝑣𝑣

𝑍𝑍𝐶𝐶𝑢𝑢 𝑍𝑍𝐷𝐷𝑢𝑢 .

.

In subsection 4.1 we define the properties of the effi-
cient solutions. In subsection 4.2 we define a way to find
a single nondominated objective vector and subsection
4.3 we discuss the procedure that finds all nondominated
objective vectors.

4.1 Properties of the Efficient Solutions

We present three properties of the efficient solutions.

Property 1. In all efficient solutions, for any node i
whose indegree is 1, i.e.,𝑑𝑑𝑖𝑖 , 𝑥𝑥𝑗𝑗𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖− where arc
(j, i) is incident to node i.

Proof. There are at least 𝑑𝑑𝑖𝑖− inflows to node i; hence,
at least 𝑑𝑑𝑖𝑖− outflows from node i. The only way of rea-
lizing outflows is traversing arc (j, i), at least 𝑑𝑑𝑖𝑖− times.
It follows that in all feasible, hence efficient, solutions,
𝑥𝑥𝑗𝑗𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖− 	

Property 2. In all efficient solutions, for any node i
whose outdegree is 1, i.e. 𝑑𝑑𝑖𝑖− =1, 𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖 for the arc
(i, j) incident to node i.

Proof. Similar to that of Property 1; hence, it is
omitted.

Property 3. In all efficient solutions, an arc incident
to node r is traversed exactly once if node r is not on
any shortest path that connects i∈I to j∈J.

Proof. An optimal solution to the transportation
problem (discussed in Section 3) that is equivalent to
the PC problem (PD problem) with arc weights cij (arc
weights dij) traverses any incident arc to a balanced node
r exactly once. This follows that if any balanced node is
not on any shortest path between i∈I to j∈J, relative to
botharc weights, i.e., cij and dij then it is traversed exactly
once in all efficient solutions.

Using the result of Property 3, if node r is not on
any shortest path between i∈I to j∈J, relative to both
arc weights we set the flows of all arcs incident to node
r to 1, and call node r as eliminated node. We define

𝐴𝐴𝑖𝑖𝑟𝑟 𝑖𝑖 𝑎𝑎𝑟𝑟𝑐𝑐 𝑟𝑟 𝑖𝑖 𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠
𝐵𝐵𝑗𝑗𝑟𝑟 𝑗𝑗 𝑎𝑎𝑟𝑟𝑐𝑐 𝑗𝑗 𝑟𝑟 𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠

 We thereafter refer set E as the set of eliminated nodes
and redefine N as N / E.

As Xj,r = Xr,i for all (j, r) and (r, i) the flow conservation
relations are rewritten as:

 𝐴𝐴𝑖𝑖𝑟𝑟 𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟

∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident to r

Using the results of Property 1 and Property 2, the
following constraints are added.

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖 ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖
−

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖
− ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖

 4.2 Finding A Nondominated Objective Vector

Consider the following modified Pc model.

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to
𝑋𝑋𝑖𝑖𝑗𝑗 ≥

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖 ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖−

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖− ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁

 𝐴𝐴𝑖𝑖𝑟𝑟 𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟 ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor

(5)

(6)

(7)

(8)

(9)

Ezgi Eroğlu, Meral Azizoğlu

22

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to
𝑋𝑋𝑖𝑖𝑗𝑗 ≥

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖 ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖−

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖− ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁

 𝐴𝐴𝑖𝑖𝑟𝑟 𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟 ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to
𝑋𝑋𝑖𝑖𝑗𝑗 ≥

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖 ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖−

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖− ∀ 𝑖𝑖 𝑑𝑑𝑖𝑖

 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗𝑖𝑖
𝑗𝑗

 ∀ 𝑖𝑖 ∈ 𝑁𝑁

 𝐴𝐴𝑖𝑖𝑟𝑟 𝑋𝑋𝑖𝑖 𝑗𝑗
𝑗𝑗

 𝑋𝑋𝑗𝑗 𝑖𝑖
𝑗𝑗

 𝐵𝐵𝑗𝑗𝑟𝑟 ∀ 𝑟𝑟 ∈ 𝐸𝐸 ∀ 𝑖𝑖 𝑗𝑗incident tor

	 (10)

We hereafter refer to constraint sets (6) through (10)
as x∈X.

Let 𝑍𝑍𝐶𝐶∗ be the its optimal ZC value. 𝑍𝑍𝐶𝐶∗ is a valid lower
bound on the ZC values of all efficient solutions. Any
optimal solution to the PC problem may not be efficient
since there may exist alternative optimal solutions having
smaller ZD values.

Among the alternative optimal solutions to the PC
problem, the one having the smallest ZD value requires
the solution of the following problem.

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to 𝑥𝑥 ∈ 𝑋𝑋

 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

𝑍𝑍𝐶𝐶∗

 We hereafter refer to the above model as 𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗ .
Note that 𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗ requires solving the PC problem. In
place of solving the PC problem and then the 𝑃𝑃𝐷𝐷 𝑍𝑍𝐶𝐶∗

problem, one may solve the following problem:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

∈𝐷𝐷 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

subject to𝑥𝑥 ∈ 𝑋𝑋

 The value of ∈D should be small enough that the
smallest smallest 𝑐𝑐𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴 value should not increase
even for the largest possible value of 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴 ,.
Accordingly,

𝑍𝑍𝐶𝐶∗ ∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 ≤ 𝑍𝑍𝐶𝐶∗ ∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛 	 (11)

where Dmin and Dmax are the smallest and largest possible
value of the total distance, respectively. The inequality
(11) follows that

∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛 ≤

∈𝐷𝐷 ≤ 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛

Dmin is the optimal ZD value of the PD problem. Dmax is
an upper bound on the ZD value of all efficient solutions;
hence, it is the 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴) value of the (PC) prob-
lem. In other words, first we solve the PC problem and
obtain optimal Xij values, then by using those Xij values
in equation of 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴), we obtain theDmax value.

In our experiments, we set ∈𝐷𝐷 to 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛

4.3 Finding the Set of All Nondominated
Objective Vectors

An optimal solution to the following constrained
problem, PC, k, gives a nondominated objective vector
and a corresponding efficient solution (see Haimes et
al., 1971).

𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

subject to 𝑥𝑥 ∈ 𝑋𝑋

𝑍𝑍𝐷𝐷 ≤ 𝑘𝑘

 This follows, all nondominated objective vectors
and corresponding efficient solutions can be generated
by solving (PC, k) for all k in [Dmin, Dmax]. The following
procedure systematically varies the value of k and returns
the set of all nondominated objective vectors.

Procedure 1. The Classical Approach (CA)

Step 0.Solve 𝑃𝑃𝐶𝐶 𝑍𝑍𝐶𝐶 subject to𝑥𝑥 ∈ 𝑋𝑋

Let 𝐷𝐷 be the 𝑍𝑍𝐷𝐷 value of the 𝑃𝑃𝐶𝐶

 Solve 𝑃𝑃𝐷𝐷 𝑍𝑍𝐷𝐷 𝑥𝑥 ∈ 𝑋𝑋

Let 𝐷𝐷 be the 𝑍𝑍𝐷𝐷 value of the 𝑃𝑃𝐷𝐷

Let ∈𝐷𝐷 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛

Step 1. Solve 𝑃𝑃𝐶𝐶 𝑘𝑘 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

 subject to𝑥𝑥 ∈ 𝑋𝑋

 𝑍𝑍𝐷𝐷 ≤ 𝑘𝑘

Let 𝑍𝑍𝐶𝐶
∗ 𝑍𝑍𝐷𝐷

∗ be the solution.

Set 𝑟𝑟 𝑟𝑟

Step 2. If ∗ 𝐷𝐷 then stop, all r nondominated

objective vectors are generated.

 Else set 𝑘𝑘 𝑍𝑍𝐷𝐷
∗ − and go to Step 1.

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

23

Note that each iteration Procedure 1 generates a
nondominated objective vector. When the procedure
terminates, the set of all nondominated objective vectors
are generated.

The number of nondominated objective vectors, r, is
at most Dmax - Dmin + 1. Hence, the Procedure 1 iterates
pseudo polynomial number of times.

5. COMPLEXITY AND THE BRANCH AND
BOUND ALGORITHM

In this section, we first settle the complexity of the
constrained CPP, i.e., PC, k and then present a Branch
and Bound algorithm for its exact solution.

Theorem 1. The constrained CPP is strongly NP-hard.

Proof. Recall that the CPP reduces to the following
‘Transportation Problem’ (see Section 3).

 𝑆𝑆𝑃𝑃𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

 𝑐𝑐𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

 𝑋𝑋𝑖𝑖𝑗𝑗 𝑆𝑆𝑖𝑖
𝑗𝑗 ∈ 𝐽𝐽

∀ 𝑖𝑖 ∈ 𝐼𝐼

 𝑋𝑋𝑖𝑖𝑗𝑗 𝐷𝐷𝑗𝑗
𝑖𝑖 ∈ 𝐼𝐼

∀ 𝑗𝑗 ∈ 𝐽𝐽

𝑋𝑋𝑖𝑖𝑗𝑗 ≥ ∀ 𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽

Hence, our constrained CPP problem is equivalent
to a ‘Capacitated Transportation Problem’ with the fol-
lowing capacity constraint.

 𝑑𝑑𝑖𝑖𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗 ≤ 𝐷𝐷
𝑗𝑗 ∈𝐽𝐽𝑖𝑖 ∈ 𝐼𝐼

𝐷𝐷 𝑘𝑘 − 𝑑𝑑𝑖𝑖𝑗𝑗
 𝑖𝑖 𝑗𝑗 ∈𝐴𝐴

 When all supply and demand amounts are ‘1’, the
‘Capacitated Transportation Problem’ reduces to the
Generalized Assignment Problem (GAP). It follows that
the PC, k problem reduces to the GAP. The GAP is NP-
hard in the strong sense (see, Martello and Toth, 1990),
so is the PC, k problem.		

The problem of generating a single nondominated
objective vector is strongly NP-hard as the constrained
CPP is strongly NP-hard. It follows that the problem
of generating all nondominated objective vectors with
respect to two objectives is strongly NP-hard.

Attributing to the complexity of the problem, Proce-
dure 1 that generates all nondominated objective vectors
is likely to fall into computational burden. To dispel the
burden to some extent, we present an implicit enumera-
tion technique –a Branch and Bound (BAB) algorithm.
Our aim is to attain optimal solutions to the large sized
instances in reasonable solution times.

Our BAB algorithm generates one nondominated
objective vector at a time. It starts with an initial upper
bound (incumbent solution) and updates it whenever a
complete solution with a better objective function value
is reached.

We solve the Linear Programming Relaxation (LPR),
i.e., first relax the integrality constraints on the Xij values
and then solve the resulting problem to optimality. We
benefit from the optimal solution of the LPR to find an
initial upper bound on the ZC value. Below is the stepwise
description of our upper bounding procedure.

Procedure 2 - Finding an Initial Upper Bound

Step 1. Solve the LPR.

Step 2. Let cτ be a cycle that resides all fractional va-
riables. Let 𝑋𝑋𝑟𝑟𝑠𝑠

𝐿𝐿 be the smallest fractional variable in cτ.

Step 3. Let Xrs= 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿  and update the fractional vari-

ables around cτ so as to preserve the flow conservation
relations.

Step 4. IfXrs = 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿  gives a feasible solution, then

go to Step 5.

Else let Xrs = 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿  and update the fractional vari-

ables around.

Step 5. If all variables are integers, stop.

Else go to Step 2.

At each node of the BAB tree, we solve the LPR
and explore the tree using the fractional variables of the
optimal LPR solution. We let Xrs be the maximum frac-
tional value and generate the following two child nodes:

Child Node I. Add constraint Xrs > 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿 

Child Node II. Add constraint Xrs ≤ 𝑋𝑋𝑟𝑟𝑠𝑠
𝐿𝐿 

We use the optimal solution value of the LPR model

Ezgi Eroğlu, Meral Azizoğlu

24

as a lower bound. We select the node having the smaller
lower bound. For the selected node, we find an upper
bound using the upper bounding procedure. Figure 2
illustrates our BAB tree.

Nodes 1 and 2 are generated based on the optimal
solution of the LPR solved at Node 0. Node 2 is selected
for further branching as 𝑍𝑍𝐿𝐿𝑃𝑃 ≤ 𝑍𝑍𝐿𝐿𝑃𝑃 . The child nodes
of Node 2, i.e., Node 3 and Node 4, use the additional
constraints 𝑋𝑋𝑟𝑟𝑠𝑠 ≥ 𝑋𝑋𝑟𝑟𝑠𝑠 and 𝑋𝑋𝑟𝑟𝑠𝑠 ≤ 𝑋𝑋𝑟𝑟𝑠𝑠 , respectively.
The tree explores either from Node 3 if 𝑍𝑍𝐿𝐿𝑃𝑃 ≤ 𝑍𝑍𝐿𝐿𝑃𝑃 or
from Node 4 if 𝑍𝑍𝐿𝐿𝑃𝑃 𝑍𝑍𝐿𝐿𝑃𝑃 .

A node is fathomed if one of the following condi-
tions holds:

i. 	 The resulting LPR leads to an infeasible solution.

ii. 	The resulting LPR gives all integer decision variab-
les. In such a case, the solution

	ii. 𝑍𝑍𝐶𝐶𝐼𝐼 𝑍𝑍𝐷𝐷𝐼𝐼 is updated if 𝑍𝑍𝐶𝐶 𝑍𝑍𝐶𝐶𝐼𝐼 or 𝑍𝑍𝐶𝐶 𝑍𝑍𝐶𝐶𝐼𝐼 and𝑍𝑍𝐷𝐷 𝑍𝑍𝐷𝐷𝐼𝐼 .

 iii.	The objective function value of the resulting LPR
is no better than the incumbent solution. That is,
𝑍𝑍𝐶𝐶𝐿𝐿𝑃𝑃 𝑍𝑍𝐶𝐶𝐼𝐼 or 𝑍𝑍𝐶𝐶𝐿𝐿𝑃𝑃 𝑍𝑍𝐶𝐶𝐼𝐼 and 𝑍𝑍𝐷𝐷𝐿𝐿𝑃𝑃 𝑍𝑍𝐷𝐷𝐼𝐼 .

We employ a depth first strategy due to its relatively
low memory requirements. According to the strategy, we
start form the root node and explore branching from the
node having smaller ZC value or smaller ZD value when
the ZC values are equal.

If both nodes are fathomed, we backtrack to the
previous level. We stop when we backtrack to Level 1.
The best solution at termination, i.e., incumbent solution
is the optimal solution.

We illustrate our branching scheme on example
instance I. The optimal solution of the LPR at the initial
level is 4211 when k = 3794. The initial upper bound is
found as 4400.

The BAB tree of the instance is presented in Figure 3.

The figures on the nodes indicate the order at which
they are created. At each node, the lower and upper
bound values are reported. At Node 1, the following
LPR is solved:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤

 The optimal objective function value of the associa-
ted LPR is found as ZC,k = 4250 for k = 3794. We update
the upper bound at that node. According to the optimal
solution of the LPR, the cycle that resides the fractional
variables is given in Figure 4.

We choose the smallest fractional variable in the
cycle, i.e., X10,13 = 1.5. We letX10,13 = 2 and update the frac-
tional variables around the cycle as shown in Figure 5.

Figure 2. The BAB Tree

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

25

 Fi
gu

re
 3

. T
he

 B
A

B
 T

re
e

of
 th

e
In

st
an

ce

Ezgi Eroğlu, Meral Azizoğlu

26

The upper bounds for the total cost and total distance
are found as:

𝑈𝑈𝐵𝐵𝐶𝐶 −

𝑈𝑈𝐵𝐵𝐷𝐷 −

 Then, we update the best upper bound from (UBC,
UBD) = (4400, 3794) to (4300, 3791). At Node 2, we
solve the following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤ 𝑋𝑋 ≤
 The upper bound in terms of total cost and total

distance is then equal to:
𝑈𝑈𝐵𝐵𝐶𝐶 −

𝑈𝑈𝐵𝐵𝐷𝐷 −

 Then, we update the upper bound from (UBC, UBD)
= (4400, 3794) to (4300, 3791).

At Node 2, we solve the following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤ 𝑋𝑋 ≤

The optimal solution of the above LPR is found
ZC,k = 4275 for k = 3794. The upper bound is not updated
as it is no better than the one found in Node 1. Accor-
ding to the solution of the LPR at Node 2, the cycle
that resides fractional variables are X2,3=1.5, X2,4=3.5,
X4,3=3.5. We choose the smallest fractional variable in
the cycle, i.e., X2,3 = 1.5. Then, at Node 3, we solve the
following LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤

 The optimal solution of the above LPR is found as
ZC,k =4294 for k = 3794.

According to the solution of LPR at Node 3, X15,12 =
2.85, X16,12 = 1.15, X16,15=2.85 resides fractional cycle. We
choose the smallest fractional variable in the cycle, i.e.,
X16,12 = 1.15. Then, at Node 4, we solve the following
LPR model:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤

 The optimal solution of the LPR is found as ZC,k =
4296,538 for k = 3794. According to the solution of LPR

Figure 4. The Illustration of the Upper Bounding Procedure

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

27

at Node 4, the cycle that resides fractional variables are
X6,5 = 2.885, X7,5 = 1.115, X7,6 = 2.885.

At Node 5, when we solve the following LPR by
choosing the smallest fractional variable in the cycle,
the optimal solution is equal to the updated upper bound
value at Node 1, i.e., (LBC, LBD) = (4300, 3791). Since
the resulting LPR gives all integer decision variables, we
stop branching and continue to explore from the other
node at the same level.

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑍𝑍𝐶𝐶 ∈𝐷𝐷 𝑍𝑍𝐷𝐷

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑜𝑜 𝑥𝑥 ∈ 𝑋𝑋

𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤ 𝑋𝑋 ≤

Nodes 6, 7, 8 and 10 are fathomed since the objective

functions of the resulting LPRs are greater than or equal
to those of the incumbent solution. Nodes 11 and 12 are
also fathomed as their since the resulting LPRs leads to
an infeasible solution. The best solution at termination
is optimal and it is found at Node 5.

6. COMPUTATIONAL EXPERIMENT

We design an experiment to evaluate the performan-
ces of our algorithms. The number of nodes and number
of arcs used in our experiment are tabulated in Table 2.

Table 2.The (N, M) Values

N 100 100 300 300 300 500 500

M 200 400 600 675 750 1200 1300

The networks with 100 nodes are from http://www.
ing.unibs.it/~orgroup/instances.html. The networks with
300 and 500 nodes are from http://www.uv.es/corberan/
instancias.html. We generate the arc weights (cij and dij
values) from discrete uniform distributions in [1, 100].

All experiments are carried out on an Intel(R)
Core(TM) i5-3317U and clocked at 1.70 GHz with 4
GB RAM. The BAB algorithm is coded in Java, Eclipse
Luna version 4.4.0.

For each (N, M) combination, we generate 10
problem instances. Hence, our experiment resides 60
problem instances. For each instance, we generate the
set of all nondominated objective vectors; hence solve
many combinatorial optimization problems.

We set a termination limit of 3600 seconds for the
BAB algorithm and CA.

Table 3. The Number of the Nondominated Objective Vectors

Number of nondominated objective
vectors

N M Average Maximum

100 200 43 150

100 400 237 425

300 600 106 152

300 750 426 904

500 1200 162 294

500 1300 355 503

0
100
200
300
400
500

N
o

of
 n

on
do

m
in

te
d

ob
je

ct
iv

e v
ec

to
rs

(N, M) values

Figure 5. The Average Number of the Nondominated Objective Vectors

Ezgi Eroğlu, Meral Azizoğlu

28

The number of nondominated objective vectors is
reported in Table 3. The table includes the average and
maximum number of nondominated objective vectors
for each problem combination.

The average number of the nondominated objective
vectors for each combination is also represented in
Figure 5. The figure shows the effect of the problem
size parameters on the number of the nondominated
objective vectors.

Note from Figure 5 that the number of the nondo-
minated objective vectors is highly dependent on the
problem size. Note from the figure that for N = 100, the
average number of the nondominated objective vectors
increases from 43 to 237 as M increases from 200 to
400. For N = 300, these increases are from 106 to 426
when M increases from 600 to 750. For N = 500, the
average CPU times increases more than two times when
M increases by 100.

Table 4 reports the average and maximum CPU times
in seconds and the number of nodes generated BAB
algorithm in generating a nondominated objective vector.

We observe from Table 4 that as N or M increases,
the CPU time to find a nondominated objective vector
increases significantly. Finding a nondominated ob-
jective vector takes 0.382 seconds on average for the
networks with 100 nodes and 200 arcs, while it reaches
to 1.854 seconds for the network with (N, M) values of
(500, 1200). When N = 100 and M = 200, the average
number of nodes generated is 16 and the average CPU
time to find a nondominated objective vector is 0.382
seconds. For N = 100, when M increases to 400, the
average number of nodes and CPU time rise to 141
and 1.243 seconds, respectively. The increases in the
complexity of the solutions with increases in N or M
can be attributed to the increases in the complexity of
the LPR models.

CA CPU Time BAB CPU Time BAB Nodes

N M Average Maximum Average Maximum Average Maximum

100 200 0.298 0.490 0.382 1.069 16 27

100 400 0.287 0.311 1.243 1.613 141 197

300 600 2.593 3.115 1.01 1.319 70 96

300 750 2.292 2.993 2.779 3.765 177 235

500 1200 5.183 5.727 1.854 2.431 187 384

500 1300 5.286 5.696 4.224 5.563 152 202

Table 4. The Performance of the BAB and CA-per Nondominated Objective Vector

Table 5.The Performance of the BAB and CA-per Nondominated Objective Vector

CA CPU Time BAB CPU Time BAB Nodes

N M Average Maximum Average Maximum Average Maximum

100 200 11.448 33.43 8.543 19.097 848 3138

100 400 67.179 118.23 306.863 634.37 35030 70660

300 600 267.643 352.9 107.245 182.76 7505 13478

300 750 1017.37 2210.95 1254.83 2812.6 79855 175564

500 1200 833.533 1506.47 306.508 561.688 24377 32992

500 1300 1879.3 2604.95 1528.88 2716.86 54747 93794

Exact Solution Approaches for the Directed Bi-Objective Chinese Postman Problem

29

Table 5 reports on the performance of generating the
set of nondominated objective vectors.

Note from Table 5 that when N or M increases, the
number of nondominated objective vectors and time to
generate a single nondominated objective vector increase
significantly. These in turn, increase the time to generate
the set of all nondominated objective vectors. For the
(N, M) values of (100, 400), (300, 750) and (500, 1300),
the average CPU times are about 307, 1255 and 1539
seconds, respectively. The CPU times are almost tripled
when the problem sizes are increased from (100, 400)
to (500, 1300).

Tables 4 and 5 also report on the performance of the
CA. We observe that as N or M increases, the CA finds
the exact nondominated objective vector set in consi-
derably higher CPU times. The significant increases in
the CPU times can be attributed to the increases in the
complexity of the integer models that return a single
nondominated objective vector and increases in the
number of nondominated objective vectors.

The differences between the performances of the
BAB algorithm and CA increase as N increases. Note
from Table 4 that when N = 300 and M = 600, the average
CPU times per nondominated objective vector are 2.593
and 1.01 seconds for the CA and BAB algorithm, respec-
tively. As another notable example, for (N, M) values of
(500, 1200), the average CPU times are 5.183 and 1.854
seconds for the CA and BAB algorithm, respectively.

We also observe that the BAB algorithm behaves
more consistent than the CA. Note from Table 5 that,
for (N, M) values of (500, 1200), the average and ma-
ximum CPU times by the BAB algorithm are 306.508
and 561.688 seconds, respectively. For the CA, the res-
pective average and maximum CPU times are 833.533
and 1506.47 seconds.

7. CONCLUSIONS

In this study, we consider a bi-objective CPP with
two additive objectives, like total cost and total distance,
total distance and total priority, total cost and total time.

We propose two algorithms to generate the exact set
of all nondominated objective vectors. The Classical
Approach uses the optimal solutions of the mixed integer
programs and BAB Algorithm uses the optimal soluti-
ons of the linear programming relaxations. The BAB
Algorithm returns the set of all nondominated objective
vectors for problem instances with up to 500 nodes and
1300 arcs in less than one hour and is superior to the
Classical Approach.

To the best of our knowledge, our study is the first
attempt for the exact solutions of the bi-objective arc
routing problems. Our results derived for the CPP can
be extended to more general arc routing problems with
more than one postman.

REFERENCES

1.	 	 Amine, K. & Djellab, R. 2013. Industrial and Urban
Applications of Eulerian and Chinese Walks, In Graph
Theory for Operations Research and Management: App-
lications in Industrial Engineering, IGI-Global, Hershey,.
271-279.

2.	 	 Brucker, P. 1981. "The Chinese Postman Problem For
Mixed Graphs. Graph Theoretic Concepts in Computer
Science," Springer Berlin Heidelberg.

3.	 	 Christofides, N., Benavent, E., Campos, V., Corberán,
A., & Mota, E. 1984. "An Optimal Method for the Mixed
Postman Problem." System Modelling and Optimization.
Springer Berlin Heidelberg.

4.	 	 Corberán, A., Oswald, M., Plana, I., Reinelt, G., &
Sanchis, J. M. 2012. "New Results on the Windy Post-
man Problem." Mathematical Programming, vol. 132, p.
309-332.

5.	 	 Dewil, R., Vansteenwegen, P., & Cattrysse, D. 2011.
Cutting path optimization using Tabusearch. Key Engi-
neering Materials, vol. 473, p. 739–748.

6.	 	 Edmonds, J. 1963. Chinese postmen problem. Operations
Research, 13, B73-B77.

7.	 	 Edmonds, J., & Johnson, E. L. 1973. "Matching, Euler
Tour and the Chinese Postman Problem." Mathematical
Programming, vol. 5, p. 88-124.

8.	 	 Eiselt, H. A., Gendreau, M., & Laporte, G. 1995. "Arc

Ezgi Eroğlu, Meral Azizoğlu

30

Routing Problems, Part I: The Chinese Postman Prob-
lem." Operations Research, vol. 43, p. 231-242.

9.	 	 Ford, L. R., Fulkerson, D. R. 1962. "Flows in Net-
works," Princeton University Press: Princeton.

10.		 Grandinetti, L., Guerriero, F., Laganà, D., & Pisacane,
O. 2012. "An Optimization-Based Heuristic for the Multi-
objective Undirected Capacitated Arc Routing Problem."
Computers & Operations Research, 39, 2300-2309.

11.	 	 Grötschel, M., & Win, Z. 1992. "A Cutting Plane Al-
gorithm for the Windy Postman Problem." Mathematical
Programming, vol. 55, p. 339-358.

12.		 Guan, M. 1962. Graphic programming using odd or even
points. Chinese Math, vol. 110, p. 273-277.

13.		 Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. 1971. "On
a Bicriterion Formulation of the Problems of Integrated
System Identification and System Optimization." IEEE
Transactions on Systems Man and Cybernetics, vol. 1,
p. 296-297.

14.		 Han, G., & Na, S. 1999. "A Study on Torch Path Plan-
ning in Laser Cutting Processes Part 2: Cutting Path
Optimization Using Simulated Annealing." Journal of
Manufacturing Processes, 1, 62–70.

15.		 Imahori, S., Kushiya, M., Nakashima, T., & Sugihara,
K. 2008. "Generation of Cutter Paths" Processing Tech-
nology, vol. 206 (1-3), p. 453–461.

16.		 Lacomme, P., Prins, C., & Sevaux, M. 2006. "A Genetic
Algorithm for a Bi-objective Capacitated Arc Routing
Problem." Computers & Operations Research, vol. 33,
p. 3473-3493.

17.		 Malandraki, C., & Daskin, M. S. 1993. "The Maximum
Benefit Chinese Postman Problem and the Maximum
Benefit Traveling Salesman Problem." European Journal
of Operational Research, vol. 65, p. 218-234.

18.		 Manber, U., & Israni, S. 1984. "Pierce Point Minimi-
zation and Optimal Torch Path Determination in Flame
Cutting." Journal of Manufacturing Systems, vol. 3,
p.81–89.

19.		 Martello, S., & Toth, P. 1990. "An Exact Algorithm
for Large Unbounded Knapsack Problems." Operations
Research Letters, vol. 9, p. 15-20.

20.		 Mei, Y., Tang, K., & Yao, X. 2011. "Decomposition-Ba-
sed Memetic Algorithm for Multiobjective Capacitated
Arc Routing Problem." IEEE Transactions on Evolutio-
nary Computation, vo. 15, p. 151-165.

21.		 Minieka, E. 1979. "The Chinese Postman Problem For
Mixed Networks." Management Science, vol. 25, p. 643-
648.

22.		 Nobert, Y. & Picard, J. 1991. "An Optimal Algorithm
for the Mixed Chinese Postman Problem." Centre de
Recherche Sur Les Transports Publication.

23.		 Papadimitriou, C. H. 1976. "On the Complexity of Edge
Traversing." Journal of the ACM, vol. 23, p. 544-554.

24.		 Prakash, S., Sharma, M. K., & Singh, A. 2009. "A
Heuristic For Multi-Objective Chinese Postman Prob-
lem." Computers & Industrial Engineering Conference
Proceedings, p. 596-599.

25.		 Rodrigues, A. M., & Ferreira, J. S. 2012. "Cutting
path as a Rural Postman Problem: Solutions by memetic
algorithms." International Journal of Combinatorial Op-
timization Problems and Informatics, vol. 3, p. 31–46.

26.		 Win, Z. 1989. "On the Windy Postman Problem on
Eulerian Graphs." Mathematical Programming, vol. 44,
p.97-112.

