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ABSTRACT

This study is motivated by a real-life application of the multi-trip vehicle routing problem (VRPM). The VRPM relaxes a 
strong assumption that each vehicle can perform only a single trip. Even though this problem setting is more suitable for many 
applications, the literature on the VRPM is limited compared to the other variants of the Vehicle Routing Problem. In this paper, 
we propose a construction matheuristic based on a set covering approach, and provide the results of computational experiments 
for a more involved variant of VRPM.

Keywords: Vehicle routing, matheuristic, real-life application

SANTA FE-ENDONEZYA İÇİN ÇOK-SEFERLİ ARAÇ ROTALAMA PROBLEMİ İÇİN 
KURUCU BİR MAT-SEZGİSEL

ÖZ

Bu çalışma, çok-seferli araç rotalama probleminin (VRPM) gerçek hayattaki bir uygulaması ile motive edilmiştir. VRPM 
her aracın sadece tek bir yolculuk yapabileceği varsayımını gevşetir. Bu problem tipi birçok uygulama için daha uygun olsa da, 
VRPM ile ilgili literatür Araç Rotalama Probleminin diğer çeşitleriyle karşılaştırıldığında sınırlıdır. Bu çalışmada, belirli bir küme 
kaplama yaklaşımına dayanan kurucu bir mat-sezgisel yöntemi geliştirilmiş ve daha kapsamlı bir VRPM varyantı için sayısal 
deneylerin sonuçları sunulmuştur.

Anahtar Kelimeler: Araç rotalama, mat-sezgisel, gerçek hayat uygulaması

* İletişim yazarı
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1. INTRODUCTION 

The vehicle routing problem (VRP) and its variants 
have been vastly studied in the literature. Most of the 
studies assume that vehicles will be assigned to a single 
route. However, when the number of vehicles is rather 
limited as it is observed in the small-sized logistics 
companies or the vehicles have small capacities because 
of the traffic regulations, this assumption does not hold. 
So, we may need to assign multiple routes to a vehicle 
while determining the minimum-cost routes. 

There are many applications where the multi-trip 
VRP (VRPM) is suitable. Distribution problems in city 
logistics are of that kind since generally only small-
capacity vehicles are allowed in urban areas by laws 
and regulations. For example, the routing problem for 
online grocery shopping is a specific application of the 
VRPM gaining popularity especially in cities that has to 
use small vehicles to meet such regulations and customer 
requirements in a timely manner. 

Despite the number of applications which can benefit 
from the VRPM setting, this problem has not received 
as much attention as the other variants of the problem 
in the literature. Taillard et al. [13] propose a three-step 
tabu search heuristic. They assume a fixed number of 
vehicles with a limit on the planning period duration. 
Brandao and Mercer [3] compare the results of their tabu 
search algorithm with Taillard et al. [13]. Although they 
do not provide the details on the solution quality, they 
report that their approach outperforms the competitors 
on the infeasible instances. Salhi and Petch [11] propose 
a multi-step heuristic that iteratively generates a diverse 
set of routes to increase the chance of finding better 
solutions. Olivera and Viera [8] develop an algorithm 
based on adaptive memory programming principle. 
Yang and Tang [14] introduce a filter and fan approach 
to the problem. They first create an initial solution using 
a tabu search based on insertion, swapping, and 2-opt, 
then improve the solution using a dynamic local search 
procedure. Mingozzi et al. [7] present an exact method 
which is based on set-partitioning. Cattaruzza et al. [4] 
develop a hybrid genetic algorithm for the problem. 
They adapt the split procedure developed by Prins [9] 
and introduce a new local search operator. 

The studies integrating the time-windows to the 
problem are much more recent. Azi et al. [1] propose 
the frst exact solution method for the VRPM with time-
windows (VRPMTW). They use column generation 
embedded in a branch and price algorithm. Hernandez 
et al. [6] provide a two-phase exact algorithm for the 
VRPMTW. They enumerate the routes subject to the 
maximum allowable duration in the frst phase and choose 
the best set of routes by a branch and price approach in 
the second phase. Azi et al. [2] propose an adaptive large 
neighborhood search. The underlying mechanism is to 
destroy a part of the current solution and reconstruct it 
to obtain a better solution. 

Although these methods in the literature are very 
competitive in terms of the solution quality, it is still 
challenging to solve large instances in reasonable 
times. Moreover, the problems in practice often pose 
scenarios that are considerably more complicated than 
the ones studied in the literature. For instance, to the 
best of our knowledge, there is no study in the literature 
on the VRPM with time windows and pickup and 
delivery. Motivated by a real-life problem provided by 
a distribution company in Jakarta which runs a milk run 
system with their heterogeneous feet, in this paper, we 
present a set covering-based construction matheuristic 
for an inclusive variant of the VRPM. Since many 
express delivery companies run a milk run system with 
a large feet of vehicles as high utilization rate is one of 
the main goals, the insights drawn from the case study 
may apply to the express delivery industry. 

The rest of the paper is organized as follows. In 
Section 2, we describe Santa Fe case study in detail. In 
Section 3, we present our set covering-based construction 
matheuristic. In Section 4, we propose new methods 
to create routes and present the computational results. 
Finally, we present our final remarks in Section 5. 

2. DESCRIPTION OF THE CASE STUDY 

Santa Fe Indonesia is a company that offers relocation 
services to individuals as well as companies. They have 
a single warehouse in South Jakarta and heterogeneous 
feet to perform three different types of transportation, 
namely inbound shipments, outbound shipments and 
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local moves. 

Inbound shipments arrive at the (air)port of Jakarta 
and once released from customs, they are brought to 
the warehouse. These shipments are then prepared to 
be transported to their final destinations in Jakarta (or 
beyond). Most shipments arrive in containers at the 
port of Jakarta. After custom procedures are completed, 
shipments are released and transported to the warehouse. 
Goods are transferred to liftvans and delivered to the 
final destination upon request of the customer. Outbound 
shipments are packed into liftvans at the site of origin, 
and then transported to the warehouse. Here the shipment 
is prepared for air or sea-freight transportation. The last 
type of transport is local moves; both the origin and 
the destination are located within the neighborhood of 
Jakarta office. These shipments may be transported to 
the destination directly or via the warehouse. 

Although, Santa Fe is serving a small number of 
customers, the problem they face is quite inclusive. 
Inbound shipments must be handled at a predetermined 
time interval after custom operations are done. Similarly, 
outbound shipments are scheduled for specific vessels, 
so they need to arrive at the airport accordingly. The 
vehicle fleet consists of three types of vehicles, K={1,…, 
k1,k1+1,…, k2, k2 + 1,…, k3}, where kp is the number of 
vehicles of type p. The vehicle distinction is based on 
the capacity differences. The customer set is partitioned 
into two: N1 is the set of customers with positive demand 
(delivery) and N2 is the set of customers with negative 
demand (pick-up). The company generally allows a 
route to have either only delivery or pickup customers. 
This is motivated by the fact that many companies in 
the express delivery industry use milk run systems as 
helps to decrease the inventory holding cost, balance the 
utilization and work-load of the vehicles, and increase 
the speed of transportation. 

Most shipments involve household goods including 
appliances, consumer electronics and other fragile items. 
Valuable items need to be placed into custom-made 
wooden crates before transportation. So, intense labor 
is required at the origin and the destination site. For 
this reason, a joint crew and routing approach would be 
suitable since an item could not be transported before it 

is carefully packed. However, in this case study we do 
not take the crew assignment into consideration because 
temporary crew members can be hired at all times with 
small cost if needed. We consider regular crew working 
hours a day, though. 

In Santa Fe case, the main reason behind assigning 
multi-trips to the vehicles is the capacity restriction. 
Having to connect the routes to arriving and departing 
fights is another reason since it is not preferable or 
feasible to carry a package scheduled for an afternoon 
fight all day in the truck. In addition to those, there 
are many other operational constraints and regulations 
motivating the multi-trip vehicle routes. Companies may 
need to limit the total value of the items they carry on a 
vehicle due to insurance purposes. For example, one of 
the services of Brinks is providing cash distribution to 
ATM’s from banks. In such kind of operations, lowering 
the risk of theft becomes as important as providing a fast 
service, which motivates carrying less on a vehicle and 
operating multiple trips. Similarly, safety regulations in 
city logistics may also require making the distributions 
in smaller amounts. For example, distribution of oil to 
gas stations is subject to such regulations. 

3. A SET COVERING-BASED 
CONSTRUCTION MATHEURISTIC 

We represent the problem on a graph G =(N, A) 
where N = {0,..., n} is the set of nodes and A is the set 
or arcs. Node 0 corresponds to the depot while others 
correspond to customers. 

The matheuristic we propose uses a set covering 
approach: We frst construct a set of feasible routes, J, 
and then choose a subset to ensure that each customer 
is visited once while obeying the allowable service time 
for each vehicle with minimum cost. 

While generating the set of feasible routes, a 
route is allowed to have either only a delivery or 
pickup nodes to align with the company operations. 
Managing the heterogeneous vehicle capacities 
requires partitioning the route set J. The capacity-
based partition is as follows: J = {1,... , r1, r 1 + 1, ..., r2, 
r2 + 1, ..., r3}, where Jp  = {1, ..., rp} is the set of routes 
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that can be assigned to vehicles of type p (pth smallest 
capacity). Note that J1 ⊆ J2 ⊆ J3 since each route in J1 

that can be served by a vehicle having the smallest 
capacity can also be served by a vehicle with medium 
or large capacity as well. The set covering formulation 
ensures the optimal solution if J includes all feasible 
routes, yet solving the problem may not be feasible 
considering the computation-time requirements in 
practice. Therefore an effort must be made to choose 
small number of high-quality routes into set J. For a 
given set of feasible routes J, the set covering [SC] 
formulation for the problem described in the previous 
section is as follows: 

[SC]  min                                                                     (1)        
s. to 
                                            (2) 
                                                                                      
  (3) 

                                                                    (4) 

                                             (5) 

                                                             (6) 

                                        (7) 

                                                                                 (8) 

                                                                                 (9) 

                                                                         (10) 

                                                                    (11) 

                                                                    (12) 

 
where parameter tj is the duration of route j, ej and lj 

are the earliest and latest dispatching times of route j, 
T is the total allowable duration of routes assigned to a 
vehicle, K is the number of vehicles, H is the maximum 
number of routes that can be assigned to a vehicle. By 
slightly abusing the notation, we use K and H also for 
the set of vehicles and set of routes that can be assigned 
to a vehicle, respectively. Recall that N1 is the set of 
nodes with positive demand and N2 is the set of nodes 
with negative demand. aij is a binary parameter whose 
value is 1 if node i is on route j, 0 otherwise.  M is a 
big number.      is the binary decision variable that 
equals 1 if vehicle k serves on route j in the hth order 
within its tour. The nonnegative continuous decision 
variables are    

 
and   .    

 
 is the starting time of 

the hth route served by vehicle k and αk denotes the 
maximum allowable overtime for vehicle k. The 

objective function (1) minimizes the total overtime. 
Constraints (2) impose visiting each customer node. 
Constraints (3) assign at most one route to a position. 
Constraints (4) prevent assigning a route to position 
h +1 before any assignment to h is done. Constraints 
(5)-(7) ensure that each route starts between its earliest 
and latest dispatching time. Constraints (8) and (9) 
ensure the load-vehicle compatibility. Constraints 
(10) and (12) are nonnegativity and constraints (11) 
are the binary set constraints. 

Note that in SC model, as suggested by the real routes 
provided by Santa Fe in the next section, we assume that 
the time windows are large enough such that changes in 
the truck dispatching time do not affect the duration of 
a route. Otherwise, depending on the truck dispatching 
time    , waiting at a customer node would differ and 
constraints (5)-(7) would not work as intended, so 
necessary adjustments should be carried out. 

4. COMPUTATIONAL RESULTS 

In this section, we present the computational results 
of the matheuristic based on an SC approach. Since there 
is no study in the literature which focuses on the same 
SC problem faced by Santa Fe, we do not have a direct 
comparison basis. Therefore, we simplify our model 
ignoring the time windows and assuming a homogeneous 
vehicle feet. We compare our results with the best 
solutions presented in Rochat and Taillard [10] on some 
instances so that we can develop a sense of performance 
of the SC approach. 

We frst describe the methods we use to create the 
set of feasible routes J, and then present the simplified 
SC formulation. The frst group of methods we use to 
generate feasible routes are the ones from literature. 
These are namely savings heuristics [5], insertion 
heuristic [12] and route-frst cluster-second method. 
In route-frst cluster-second method, given a VRPM 
instance, we frst solve the traveling salesman problem 
(TSP) in the route-frst phase for the entire node set. 
Then, following the order of the nodes on the TSP tour 
and obeying the vehicle capacity and maximum duration 
constraints, we create the feasible routes. That is, each 
feasible route rij which starts from the depot and visits all 
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the nodes between (i+1)th  and jth nodes on the giant tour 
is accepted to the set J, where 0 ≤ i < j. In addition to 
these classical methods, we also use some new methods 
to enrich the feasible route set J avoiding to increase the 
cardinality undesirably. These methods can be listed as 
follows. 

1. Modified savings algorithm: Instead of computing 
the savings just considering the distances as in the 
classical savings algorithm, we also consider the polar 
angles between the nodes and the depot while merging 
the routes with the aim of decreasing the zigzags around 
the depot. We compute the savings in this modified 
version as follows: 

         
                                                
             

  
     

                  
         (13)

where dip is the distance between nodes i and p and 
θi is the polar angle between node i and the depot. 

2. Distance -polar angle insertion: While generating 
the routes using the insertion method, we frst initialize a 
route, then at each iteration we determine the next node 
u to insert between nodes i and p on the existing routes. 
In our insertion methods, we use different rules than the 
ones in the literature. Distance - polar angle insertion 
method considers the polar angle difference between the 
nodes i and u in addition to the increase in the distance 
caused by this insertion. The criterion we use for this 
insertion rule is as follows: 

                                   (14)

At each iteration, we choose the nodes (i, u, p) with 
the minimum       for insertion. 

3. Segment -polar angle insertion: In this method, 
we define a new criterion to determine the next node 
to insert into the existing routes. Assuming that all the 
nodes in the node set are enclosed with a circle whose 
diameter is the maximum node-to-node distance, we try 
to minimize the movements between the segments along 
with the movements around the polar angle with the 
depot. For this purpose, we use the following criterion to 
measure the movement while inserting node u between 
nodes  and  is as follows: 

     
                                                                

        
        (15)

where dmax is the maximum distance in the graph and 
θmax is the maximum polar angle between the customer 
nodes and the depot node. 

4. Route -patching: In the SC formulation, we try 
to keep the number of routes in set  as small as possible 
due to computation-time concerns. Even though small 
number of arcs can result in infeasibility, increasing 
the number of routes to ensure feasible solutions can 
be avoided by generating node-patches for the existing 
routes. We create the node-patches as follows. After 
generating the routes according to the aforementioned 
rules, for each node u we search for a possible insertion 
with the minimum-cost. The cost of insertion is the 
increase in the distance. Node u can be patched to 
a current route only if the vehicle capacity and the 
allowable route duration limit are not violated in the 
case of patching and it is not already on that route. By 
using node-patching we avoid generating more routes 
and storing more data. We denote the set of node-patches 
by JP. 

Having defined the route generation rules, the 
simplified SC formulation is as follows: 

[Simplified SC]   min                  (16) 

s. to 
                                                 (17) 
                                                         (18) 

                                                         (19) 

                                                 (20) 

                                                                  (21) 

 
where brj is a binary parameter which equals to 1 if 
route r is patched to route j, 0 otherwise, cj(wj) is the 
total cost (demand) of the customers on route j, C is the 
vehicle capacity, V is the set of nodes.      is the binary 
decision variable that equals to 1 if route j is assigned 
to vehicle k. The objective function (16) minimizes the 
travel distance. Constraints (17) make sure that each 
node is visited, and constraints (18) ensure that allowable 
duration for a vehicle is obeyed. Constraints (19) impose 
that a patched route cannot be chosen unless the route 
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it is patched to is chosen. Constraints (20) satisfy that 
the total demand on a route and its patches will not 
exceed the vehicle capacity. Constraints (21) are binary 
set constraints. 

We compared the construction results of the 
simplified version of our set covering formulation with 
Rochat and Taillard [10] on the nine instances from the 
literature shown in Table 1. Algorithms are coded in C 
and the problems are solved using Cplex 12.6 on Xeon 
X5660 or near equivalent processors. 

To generate the routes for the simplified SC model, 
we run the six aforementioned heuristics once for 
capacity C. Since the construction heuristics try to insert 
a node into an existing route as long as the constraints 
are not violated, the final routes’ loads are close to the 
maximum allowable capacity. Therefore, it is difficult to 
patch a node to these routes. To create more opportunities 
for node-patching, we created additional routes using 
smaller capacities. We tested different combinations of 
different capacities for the six construction heuristics. To 
generate additional routes, we ran the savings heuristic 
with 0.8C and Solomon’s insertion heuristic [12] with 
0.5C and 0.8C as we obtained the best results on average 
among the others. We also used the entire set of routes 
generated by the set partitioning method. The number of 
routes generated is determined by the number of nodes, 
capacity of vehicles, demand of each node, distances 
between the nodes, maximum allowable driving duration 
and number of node patched. The number of routes for 
each run is also provided in the Table 2 below for K = 
1. zSC.  denotes the objective function value of the model 

based on the SC approach, t(sec) is the computation time 
in seconds, and #routes is the cardinality of the route set  
J. 

In these experiments, as the allowable driving 
duration T, we used the results found by Rochat and 
Taillard with 10% slack, i.e., T = 1.1rRT, where zRT is the 
solution obtained by Rochat and Taillard [10]. Despite 
being limited to a small number of routes, simplified SC 
model can still find good initial solutions in seconds. 
Moreover, we see that creating node-patches can improve 
the solution. Comparing to Rochat and Taillard [10], we 
see that the SC model can create good initial solutions, 
which would make the improvement process faster 
especially on larger instances. 

Table 3 provides further computational results for 
different numbers of vehicles. We can still find solutions 
in less than a second for many instances.

Even though our focus is on a more involved 
problem, the computational results of the simplified 
model show that the SC approach can provide good 
initial solutions within very short times. This stands out 
as an advantage of the SC approach since the problem 
described in Santa Fe case study is a computationally 
more demanding version of the VRPM. 

Having shown that the SC-based matheuristic is 
promising for the VRPM, we now provide computational 
results for Santa Fe instances, which are small in size, 
and the larger instances we obtained by modifying the 
instances in the literature. An example data for a typical 
working day of Santa Fe is given in Table 4. The type 
column specifies which kind of service is requested by 
the customer. Load is the space requested. Time windows 
indicate when the customer is available. Driving time is 
how long it takes from the depot to the customer location. 
Service time is the estimated material handling time at 
the customer site. 

In Table 5, we provide the computational results. In 
this table, N is the number of customers, #routes is the 
cardinality of route set, which is created by accepting 
all feasible routes due to small number of customers, 
U% is the fleet utilization rate, as the ratio of the total 
operational time to the total time available, and t (sec)
as the computation-time to solve the problem using 
CPLEX 10. 

Table 1. Test Instances From the Literature

Instance Number of customers Vehicle Capacity

CMT1 50 160

CMT2 75 140

CMT3 100 200

CMT4 150 200

CMT5 199 200

CMT11 120 200

CMT12 100 200

F11 71 30,000

F12 134 2,210
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Table 2. Comparison of Simplified SC Model with Rochat and Taillard [10] with Different Number of Patches

Table 3. Computational Results of Simplified SC Model for Different Number 
of Vehicles for one Node-Patch

Instance                 #routes 

CMT1 

1 604 579.11* 0.24 557 
2 303 579.11* 0.99 557 
3 202 597.38* 5.59 559 

CMT2 

1 919 907.39 0.06 716 
2 460 907.39 3.51 716 
3 307 907.39 10.26 716 

CMT3 

1 909 886.83 0.17 1425 
2 455 886.83 0.59 1425 
3 303 886.83 1.11 1425 

CMT4 

1 1198 1134.74 0.4 2156 
2 599 1134.74 2.19 2156 
3 400 1134.74 3.31 2156 

CMT5 

1 1421 1395.74 0.26 2717 
2 710 1395.74 0.86 2717 
3  -   -   -  - 

CMT11 

1 1147 1071.07 0.17 2069 
2 573 1071.07 0.76 2069 
3 382 1071.07 23.11 2070 

CMT12 

1 902 828.59 0.07 1202 
2 451 828.59 0.32 1202 
3 301 828.59 0.68 1202 

F11 

1 267 256.19 0.13 1295 
2 133 256.19 0.43 1297 
3 89 256.19 0.57 1141 

F12 

1 1280 1219.32 0.32 2961 
2 640 1219.32 1.47 2961 
3  -   -   -   - 

(*            ) 
 

Instance         
Simplified SC (1patch) Simplified SC (7 patches) 

           #routes            #routes 

CMT1 524.61 579.11* 2.99 557 571.59 3.32 857 

CMT2 835.26 907.39 0.06 716 903.26 4.20 1166 

CMT3 826.14 886.83 0.17 1425 886.83 0.90 2025 

CMT4 1028.42 1134.74* 0.21 2156 1134.74* 5.22 3056 

CMT5 1291.44 1395.74 0.26 2717 1395.74 4.21 3911 

CMT11 1042.11 1071.07 0.17 2069 1068.09 0.26 2789 

CMT12 819.56 828.59 0.07 1202 825.87 0.59 1802 

F11 241.97 256.19 0.13 1295 256.19 0.31 1721 

F12 1162.96 1219.32 0.32 2916 1219.32 8.07 3765 

(*            ) 
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Since the Santa Fe instances are small in size, 
we performed further computational experiments to 
better observe the behavior of our SC formulation on 
larger-sized problems with similar attributes. For these 
experiments, we generated new instances by modifying 

CMT1 and CMT11. The reason we chose these two 
instances to modify is that CMT1 is representative of 
randomly distributed nodes and CMT11 is representative 
of clustered nodes (Figures 1 and 2). 

Table 4. A Typical Working Day of Santa Fe

    Load   Driving time Service time 
Customer Type (liftvan) Time window (min) (min) 

1 Pick-up 4 9am - 3pm 30 90 
2 Delivery 3 8am - 11am 60 60 
3 Pick-up 3 12am - 4pm 60 75 
4 Pick-up 1 8am - 11am 30 60 
5 Delivery 1 12am - 4pm 60 90 
6 Pick-up 2 8am - 4pm 90 30 
7 Pick-up 2 8am - 4pm 90 30 
8 Pick-up 2 8am - 4pm 90 30 
9 Delivery 3 8am - 4pm 30 30 

10 Delivery 3 8am - 4pm 30 30 
11 Delivery 1 10am - 6pm 90 60 

 

Table 5. Results of Scheduling Santa Fe activities

Day   #routes             
1 11 22 66 6.2 
2 7 18 38 1.2 
3 8 20 51 1.6 
4 7 18 35 1 

 

 
 

Figure 1. CMT11 Figure 2. CMT1
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For each instance, we divided the nodes into two 
groups such that one group contains the nodes for 
delivery and the other group contains the nodes for 
pickup. This division is done in three different ways and 
we name the new instances as CMT11, CMT12, CMT13, 
CMT111, CMT112, and CMT113. 

To create CMT11, CMT12 and CMT13, the first 15, 
25 and 35 customers of CMT1 are assumed to request 
delivery while the rest are assumed to request a pickup 
service respectively. To create the variants of CMT11, 
customers in the clusters 1-2-3, 1-3-5 and 2-4-6 are 

assumed to request a delivery while the rest request a 
pickup service. For these new instances, we assume that 
there are two vehicles available with capacities C[1] and 
C[2], where C[1] + C[2] is equal to the original vehicle 
capacity for the corresponding instance, and we use the 
same T as before. We do not include the time window 
attribute since node patches cannot be used when there 
are time windows. The results are shown in Tables 6 and 
7. For these instances, the optimal solution values are 
not know. Our observations regarding the behavior of the 
SC-based model are as follows. Required computation 

Table 6. SC Results on Versions of CMT1

Instance Patch                        #routes 

CMT11  

1 50 110 812.35 1.02 514 
5 50 110 812.35 3.67 714 
15 50 110 812.35 26.07 1214 

CMT11 

1 60 100 840.26 1.73 475 
5 60 100 839.32 3.6 1075 
15 60 100 828.73 37.95 1175 

CMT11 

1 70 90 842.74 0.93 434 
5 70 90 842.74 4.62 634 
15 70 90 839.94 99.29 1134 

CMT12 

1 50 110 837.64 1.57 494 
5 50 110 837.64 5.51 694 
15 50 110 815.64 21.22 1194 

CMT12 

1 60 100 831.75 1.9 459 
5 60 100 831.75 3.84 659 
15 60 100 821.75 35.66 1159 

CMT12 

1 70 90 841.41 0.67 420 
5 70 90 839.62 4.48 620 
15 70 90 837.74 65.21 1120 

CMT13 

1 50 110 861.87 1.31 492 
5 50 110 859.19 4.73 692 
15 50 110 857.02 50.84 942 

CMT13 

1 60 100 871.25 1.6 456 
5 60 100 868.28 3.76 656 
15 60 100 857.4 43.7 1156 

CMT13 

1 70 90 889.26 1.21 421 
5 70 90 884.44 4.5 621 
15 70 90 876.29 80.39 1121 
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times to solve the SC model on these instances are 
still very short. Different capacity allocations result 
in different solutions; yet, we do not observe a pattern 
between the change in the vehicle capacities and the 
solution values. Using node-patches helps improving the 
solution for randomly distributed nodes (CMT1), while it 
has very little effect in the clustered case (CMT11). The 
reason is that when the nodes are clustered, the routes 
are more likely to be composed of the nodes belonging 
to the same cluster. In that case, the patching procedure 
will try to patch a node from another cluster and fail 

due to exceeding the travel duration limit. Therefore, it 
becomes more difficult to find a proper patch when the 
nodes are clustered. 

5. CONCLUSION 

Motivated by a real-life application provided by a 
distribution company in Jakarta and lack of a solution 
method in the literature for involved multi-trip vehicle 
routing problems with different attributes, in this paper 
we study a variant of the VRPM. We present a cons-

Table 7. SC Results on Versions of CMT11

Instance Patch                        #routes 

CMT111 

1 50 150 1624.01 25.45 1785 
5 50 150 1624.01 39.5 2265 
10 50 150 1623.52 68.64 2865 

CMT111 

1 70 130 1693.84 17.89 1546 
5 70 130 1693.84 33.77 2026 
10 70 130 1693.45 64.98 2626 

CMT111 

1 90 110 1805.3 13.48 1346 
5 90 110 1805.3 27.65 1826 
10 90 110 1805.17 55.3 2426 

CMT112 

1 50 150 1729.18 25.48 1780 
5 50 150 1728.92 43.91 2260 
10 50 150 1728.92 75.59 2860 

CMT112 

1 70 130 1726.64 18.14 1558 
5 70 130 1726.64 34.21 2038 
10 70 130 1726.64 80.94 2638 

CMT112 

1 90 110 1807.02 14.56 1341 
5 90 110 1802.41 27.89 1821 
10 90 110 1798.13 59.5 2421 

CMT113 

1 50 150 1605.53 24.55 1800 
5 50 150 1602.4 39.36 2280 
10 50 150 1601.44 65.65 2880 

CMT113 

1 70 130 1674.31 18.71 1571 
5 70 130 1674.31 34.49 2051 
10 70 130 1671.33 60.97 2651 

CMT113 

1 90 110 1817.17 14.4 1370 
5 90 110 1816.87 29.12 1850 
10 90 110 1811.55 163.43 2450 
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truction matheuristic based on set covering approach. 
Since this is the frst study on the VRPM with time 
windows and delivery and pickup, we did not have a 
direct comparison basis in the literature. Therefore, we 
simplified our approach and compared it with Rochat 
and Taillard’s [10]. This comparison showed that our 
SC approach can provide good solutions in seconds. We 
presented the results for the real-life instances provided 
by Santa Fe and also on the instances which are created 
by modifying the instances from the literature which are 
larger in size. Even though this is not the frst time a set 
covering approach is considered as a solution method in 
a routing problem, to the best of our knowledge this is 
the frst study integrating different attributes in a VRPM
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