
International Electronic Journal of Geometry
Volume 2 No. 1 pp. 34-40 (2009) c©IEJG

CONSTANCY OF φ-HOLOMORPHIC SECTIONAL CURVATURE
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Abstract. S. Tanno [6] provided an algebraic characterization for an almost
Hermitian manifold to reduce to a space of constant holomorphic sectional
curvature, which he later extended for the Sasakian manifolds as well. In the
present paper, we generalize the same characterization for Indefinite Sasakian
manifolds.

1. Introduction

For an almost Hermitian manifold (M2n, g, J) where dimension of M is 2n ≥ 4,
Tanno [6] has proved

Theorem 1.1. Let dimension(M) = 2n ≥ 4, assume that almost Hermitian man-
ifold (M2n, g, J) satisfies

(1.1) R(JX, JY, JZ, JX) = R(X, Y, Z, X)

for every tangent vectors X, Y and Z. Then (M2n, g, J) is of constant holomorphic
sectional curvature at x if and only if

(1.2) R(X, JX)X is proportional to JX

for every tangent vector X at x ∈ M .

Tanno [6] has also proved an analogous theorem for Sasakian manifolds as

Theorem 1.2. A Sasakian manifold of dimension ≥ 5, is of constant φ-sectional
curvature if and only if

(1.3) R(X,φX)X is proportional to φX

for every vector field X such that g(X, ξ) = 0.

Nagaich [5] has proved generalized version of theorem (1.1), for indefinite almost
Hermitian manifolds as
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Theorem 1.3. Let (M2n, g, J), (n ≥ 2) be an indefinite almost Hermitian manifold
satisfying (1.1), then (M2n, g, J) is of constant holomorphic sectional curvature if
and only if

(1.4) R(X, JX)X is proportional to JX

for every tangent vector X at x ∈ M .

The aim of this paper is to generalize the theorem (1.2), for an indefinite Sasakian
manifold by proving the following

Theorem 1.4. Let (M2n+1, φ, η, ξ, g)(n ≥ 2) be an indefinite Sasakian manifold.
Then M2n+1 is of constant φ-sectional curvature if and only if

(1.5) R(X,φX)X is proportional to φX

for every vector field X such that g(X, ξ) = 0.

2. Preliminaries

2.1. Sasakian Manifold. Let M be a (2n + 1)-dimensional Riemannian manifold
endowed with a (1, 1)-type tensor field φ, a vector field ξ, a 1-form η and a metric
g such that

(2.1) φ(ξ) = 0,

(2.2) η(φX) = 0,

(2.3) η(ξ) = 1,

(2.4) φ2(X) = −X + η(X)ξ,

(2.5) η(X) = g(X, ξ),

(2.6) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X, Y ∈ χ(M).
If dφ(X, Y ) = g(X,φY ) then M is said to have a contact Riemannian structure

(φ, ξ, η, g). If, moreover, the structure is normal then the contact Riemannian
structure is called a Sasakian structure and M is called a Sasakian manifold.

Let ∇ be the covariant derivative with respect to g, then the curvature tensor
field R of M satisfies

(2.7) R(X,Y )ξ = η(Y )X − η(X)Y

R(X, Y )φZ = φR(X, Y )Z + g(φX, Z)Y
−g(Y, Z)φX + g(X, Z)φY − g(φY, Z)X(2.8)

Let σ be a plane section in tangent space Tp(M) at a point p of M be spanned by
vectors X and Y then the sectional curvature of σ is given by

(2.9) K(X,Y ) =
R(X, Y,X, Y )

g(X, X)g(Y, Y )− g(X,Y )2

A plane section X,φX where X is orthonormal to ξ is called φ-section and curvature
associated with this is called φ-sectional curvature and is denoted by H(X), where

(2.10) H(X) = K(X,φX) = R(X, φX, X, φX).
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If a Sasakian manifold M has constant φ-sectional curvature c then it is called a
Sasakian space form and is denoted by M2n+1(c). The curvature tensor R of a
Sasakian space form M2n+1(c) is given by

R(X, Y, Z, W ) =
(c + 3)

4
{g(X,Z)g(Y, W )− g(Y, Z)g(X,W )}

+
(c− 1)

4
{η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y, W )

+η(X)η(W )g(Y, Z)− η(Y )η(W )g(X, Z) + g(φX, Z)g(φY,W )
−g(φY,Z)g(φX, W )− 2g(X, φY )g(φZ, W )}.(2.11)

2.2. Indefinite Sasakian Manifold. Let M be a (2n+1)-dimensional Riemann-
ian manifold endowed with a (1, 1)-type tensor field φ, a vector field ξ, a 1-form η
and an indefinite metric g such that

(2.12) φ(ξ) = 0,

(2.13) η(φX) = 0,

(2.14) η(ξ) = −1,

(2.15) φ2(X) = −X + η(X)ξ,

(2.16) η(X) = g(X, ξ),

(2.17) g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

for all vector fields X, Y ∈ χ(M).
If indefinite contact Riemannian structure (φ, ξ, η, g) is normal then the indefinite

contact Riemannian structure is called an indefinite Sasakian structure and M is
called an indefinite Sasakian manifold.

A non-zero vector is called space-like, time-like or null if it satisfies g(X, X) >
,< or = 0 if X 6= 0 respectively.

Let ∇ be the covariant derivative with respect to g, then the curvature tensor
field R of M satisfies

(2.18) R(X,Y )ξ = η(Y )X − η(X)Y

R(X, Y )φZ = φR(X,Y )Z − g(φX, Z)Y + g(Y, Z)φX

−g(X,Z)φY + g(φY, Z)X(2.19)

And the curvature tensor R of indefinite Sasakian space form is given as, [4]

R(X, Y, Z, W ) =
(c− 3)

4
{g(X,Z)g(Y, W )− g(Y, Z)g(X,W )}

+
(c + 1)

4
{η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y, W )

+η(X)η(W )g(Y, Z)− η(Y )η(W )g(X, Z) + g(φX, Z)g(φY,W )
−g(φY,Z)g(φX, W )− 2g(X, φY )g(φZ, W )}.(2.20)
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3. Proof of the main Theorem

Let (M2n+1, φ, η, ξ, g)(n ≥ 2) be an indefinite Sasakian manifold. To prove the
theorem, we shall consider two different cases.

Also, to prove the theorem for dimension(M) ≥ 5, we shall consider cases when
dimension(M) = 5 and when dimension(M) > 5, that is, when dimension(M) ≥ 7.

3.1. Case I. When the metric is space-like, that is, when g(X,X) = g(Y, Y ).
Let M be of constant φ-sectional curvature then (2.11) gives

(3.1) R(X,φX)X = c φX

Conversely, let {X,Y } be an orthonormal pair of tangent vectors such that
g(φX, Y ) = g(X, Y ) = g(Y, ξ) = 0 and dimension(M) ≥ 7 then X́ = (X + Y )/

√
2

and Ý = (φX −φY )/
√

2 are also form an orthonormal pair of tangent vectors such
that g(φ́X, Ý ) = 0 then (3.1) gives

(3.2) R(X́, φ́X, Ý , X́) = 0

This gives

(3.3) H(X)−H(Y ) + 2R(X, φX, Y, φX)− 2R(X, φY, Y, φY ) = 0.

The hypothesis implies

(3.4) H(X) = H(Y ).

Now, if sp{U, V } is holomorphic then for φU = pU +qV where p and q are constant,
we have

(3.5) sp{U, φU} = sp{U, pU + qV } = sp{U, V }
Similarly

(3.6) sp{V, φV } = sp{U, V }
(3.7) sp{U, φU} = sp{V, φV }
This implies

(3.8) R(U, φU,U, φU) = R(V, φV, V, φV )

Or

(3.9) H(U) = H(V )

If sp{U, V } is not holomorphic section then we can choose unit vectors X ∈
sp{U, φU}⊥ and Y ∈ sp{V, φV }⊥ such that sp{X, Y } is holomorphic. Thus, we get

(3.10) H(U) = H(X) = H(Y ) = H(V )

This shows that any holomorphic section has the same φ-sectional curvature.
Now, let the dimension(M) = 5 and let {X,Y } be a set of orthonormal vectors

such that g(X,φY ) = 0, we have H(X) = H(Y ) as before, then using property
(1.5), we have

R(X,φX)X = H(X)φX

R(X,φX)Y = R(X, φX, Y, φY )φY

R(X,φY )X = R(X, φY, X, Y )Y + R(X, φY, X, φY )φY

R(X,φY )Y = R(X, φY, Y,X)X + R(X, φY, Y, φX)φX
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R(Y, φX)Y = R(Y, φX, Y, X)X + R(Y, φX, Y, φX)φX

R(Y, φX)X = R(Y, φX, X, Y )Y + R(Y, φX, X, φY )φY

R(Y, φY )X = R(Y, φY, X, φX)φX

R(Y, φY )Y = H(Y )φY = H(X)φY

Now, define X∗ = aX + bY such that a2 + b2 = 1 and a2 6= b2. Then, using above
relations, we get

(3.11) R(X∗, φX∗)X∗ = C1X + C2Y + C3φX + C4φY

Where C1 and C2 are not necessary for argument and

(3.12) C3 = a3H(X) + ab2C5

(3.13) C4 = b3H(X) + a2bC5

Where C5 = R(X,φX, Y, φY ) + R(X, φY, X, φY ) + R(X, φY, Y, φX). On the other
hand

R(X∗, φX∗)X∗ = H(X∗)φX∗

= H(X∗){aφX + bφY }(3.14)

Comparing (3.11) and (3.14) we get

(3.15) a2H(X) + b2C5 = H(X∗)

(3.16) b2H(X) + a2C5 = H(X∗)

On solving (3.15) and (3.16) we get

H(X) = H(X∗)

Similarly, we can prove
H(Y ) = H(Y ∗)

Thus, M has constant φ-sectional curvature.

3.2. Case II. When the metric is time-like, that is, when g(X, X) = −g(Y, Y ).
Here if X is space-like then Y is a time-like vector or vice versa.

Initially assume that M be of constant φ-sectional curvature then (2.20) gives

(3.17) R(X,φX)X = cφX

Conversely, let {X,Y } be an orthonormal pair of tangent vectors such that

g(φX, Y ) = g(X, Y ) = g(Y, ξ) = 0 and dimension(M) ≥ 7 then ´́
X = (X + iY )/

√
2

and ´́
Y = (iφX + φY )/

√
2 also form an orthonormal pair of tangent vectors such

that g( ´́
φX,

´́
Y ) = 0 then (3.17) gives

(3.18) R( ´́
X,

´́
φX,

´́
Y,

´́
X) = 0

This gives

(3.19) H(X) = H(Y )

Then using the same argument as in Case I, we get any holomorphic section has
same φ-sectional curvature.
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Now, let the dimension(M) = 5 and g(X, X) = −g(Y, Y ) such that g(X,φY ) = 0
then we have H(X) = H(Y ) as before then using property (1.5), we have

R(X,φX)X = H(X)φX

R(X, φX)Y = −R(X,φX, Y, φY )φY

R(X, φY )X = −R(X,φY,X, Y )Y −R(X,φY,X, φY )φY

R(X,φY )Y = R(X, φY, Y,X)X + R(X, φY, Y, φX)φX

R(Y, φX)Y = R(Y, φX, Y, X)X + R(Y, φX, Y, φX)φX

R(Y, φX)X = −R(Y, φX, X, Y )Y −R(Y, φX, X, φY )φY

R(Y, φY )X = R(Y, φY, X, φX)φX

R(Y, φY )Y = −H(Y )φY = −H(X)φY

Now, define X∗∗ = aX + bY such that a2 − b2 = 1 and a2 6= b2. Then, using above
relations, we get

(3.20) R(X∗∗, φX∗∗)X∗∗ = Ć1X + Ć2Y + Ć3φX + Ć4φY

Where Ć1 and Ć2 are not necessary for argument and

(3.21) Ć3 = a3H(X) + ab2Ć5

(3.22) Ć4 = −b3H(X)− a2bĆ5

Where Ć5 = R(X,φX, Y, φY ) + R(X, φY, X, φY ) + R(X, φY, Y, φX). On the other
hand

R(X∗∗, φX∗∗)X∗∗ = H(X∗∗)φX∗∗

= H(X∗∗){aφX + bφY }(3.23)

Comparing (3.20) and (3.23) we get

(3.24) a2H(X) + b2Ć5 = H(X∗∗)

(3.25) −b2H(X)− a2Ć5 = H(X∗∗)

On solving (3.24) and (3.25) we get

H(X) = H(X∗∗)

Similarly, we can prove
H(Y ) = H(Y ∗∗)

Thus, M has constant φ-sectional curvature.

Remark 3.1. In the present paper, we have considered the cases of space-like and
time-like vectors only. However, we are still investigating the same results for light-
like (or null) vectors.
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