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SCREEN SLANT LIGHTLIKE SUBMANIFOLDS

BAYRAM S.AHİN

(Communicated by Aurel BEJANCU)

Abstract. Recently, the present author [10] studied slant lightlike submani-
folds and concluded that, contrary to the Riemannian slant submanifolds [5],
slant lightlike submanifolds do not include invariant and real subcases. To fill
this missing gap, we introduce a new class of lightlike submanifolds, called
screen slant lightlike submanifolds, of an indefinite Hermitian manifold, which
contain screen real and invariant subcases. We give characterization theorems
with examples and study minimal screen slant lightlike submanifolds supported
by an example.

1. Introduction

In 1990, Chen [4, 5] defined a slant submanifold (M, g) of an almost Hermitian
manifold (M̄, ḡ, J̄) as a real submanifold verifying that the Wirtinger angle, i.e.,
the angle between J̄X and TxM is constant for every vector X ∈ TxM and x ∈ M .
In 1996, Duggal-Bejancu presented the theory of lightlike submanifolds in [6] , but
they did not discuss the slant lightlike case.

Motivated by Chen’s work (followed by many others) on the geometry of slant
submanifolds, recently, the present author introduced a new class, called slant light-
like submanifolds of Hermitian manifolds [10] and concluded that these submani-
folds do not include invariant and real sub cases.

Since there is a natural existence of invariant (complex) and real submanifolds
(see Ogiue [9], Yano-Kon [11], Bejancu [3]) in the complex differential geometry,
the objective of this paper is to introduce another new class of lightlike submani-
folds, called screen slant lightlike submanifolds, of an indefinite Hermitian manifolds
which include invariant and screen real lightlike submanifolds. Roughly speaking,
this new lightlike submanifold is a lightlike version of Chen’s slant submanifolds.

Note that one can not define slant submanifolds in the lightlike geometry as
usual, because the angle between a vector field and the tangent space of a lightlike
submanifold can not be defined for a proper degenerate case. A lightlike submani-
fold of an indefinite Kaehler manifold has two distributions, namely, radical (totally
lightlike) and non-degenerate screen distributions. Thus, one way to define a slant
submanifold is to find Riemannian screen distribution. Indeed, we show that the
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screen distribution is Riemannian under a condition on nullity degree of radical dis-
tribution (Lemma 3.1). This enables us to define slant notion on the Riemannian
screen distribution of a lightlike submanifold (Definition 3.1).

The remaining of the paper is arranged as follows. In section 2, we brief basic
formulas and definitions for an indefinite Kaehler manifold and its lightlike sub-
manifolds which we shall use later. In section 3, we introduce screen slant lightlike
submanifold and give a characterization theorem. We show that screen slant light-
like submanifolds include invariant and screen real lightlike submanifolds. Then
we give three examples of proper screen slant submanifolds. After we find integra-
bility conditions for both screen and radical distributions, we obtain a necessary
condition for the induced connection ∇ to be a metric connection. We note that
the induced connection ∇ is not a metric connection on a lightlike submanifold, in
general. In section 4, we obtain characterizations for minimal screen slant lightlike
submanifolds and give an example.

2. Preliminaries

Let (M̄, ḡ) be a 2k-dimensional semi-Riemannian manifold with the semi-Riemannian
metric ḡ of constant index q, 0 < q < 2k. An almost complex structure on M̄ is
a tensor field J̄ of type (1,1) on M̄ such that at every p ∈ M̄ we have J̄2 = −I
where I denotes the identity transformation of TpM̄ . A manifold M̄ endowed with
an almost complex structure is called an almost complex manifold. A Hermitian
metric on M̄ is a semi-Riemannian metric ḡ satisfying

(2.1) ḡ(X, Y ) = ḡ(J̄X, J̄Y ), ∀X, Y ∈ Γ(TM̄).

An almost complex manifold endowed with a Hermitian metric is called an indef-
inite almost Hermitian manifold, denoted by (M̄, J̄ , ḡ). Denote the Levi-Civita
connection on M̄ with respect to ḡ by ∇̄. Then M̄ is called an indefinite Kaehler
manifold if J̄ is parallel with respect to ∇̄,i.e.,

(2.2) (∇̄X J̄)Y = 0, ∀X, Y ∈ Γ(TM̄).

We now recall basic materials for the geometry of lightlike submanifolds from [6].
A submanifold Mm immersed in a semi-Riemannian manifold (M̄m+n, ḡ) is called
a lightlike submanifold if it is a lightlike manifold w.r.t. the metric g induced from
ḡ and the radical distribution Rad(TM) is of rank r, where 1 ≤ r ≤ m. Let S(TM)
be a screen distribution which is a semi-Riemannian complementary distribution of
Rad(TM) in TM , i.e., TM = Rad (TM) ⊥ S(TM).

Consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of Rad(TM) in TM⊥. Since, for any local basis {ξi}
of Rad(TM), there exists a local null frame {Ni} of sections with values in the
orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that ḡ(ξi, Nj) = δij , it fol-
lows that there exists a lightlike transversal vector bundle ltr(TM) locally spanned
by {Ni} [6, page 144]. Let tr(TM) be complementary (but not orthogonal) vector
bundle to TM in TM̄ |M . Then, we have the following decompositions

tr(TM) = ltr(TM) ⊥ S(TM⊥),

T M̄ |M = S(TM) ⊥ [Rad(TM)⊕ ltr(TM)] ⊥ S(TM⊥).

Following are four subcases of a lightlike submanifold (M, g, S(TM), S(TM⊥).
Case 1: r - lightlike if r < min{m, n};
Case 2: Co - isotropic if r = n < m; S(TM⊥) = {0};
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Case 3: Isotropic if r = m < n; S(TM) = {0};
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM⊥).
The Gauss and Weingarten equations are:

∇̄XY = ∇XY + h(X,Y ),∀X, Y ∈ Γ(TM),(2.3)
∇̄XV = −AV X +∇t

XV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)),(2.4)

where {∇XY, AV X} and {h(X,Y ),∇t
XV } belong to Γ(TM) and Γ(ltr(TM)), re-

spectively. ∇ and ∇t are linear connections on M and on the vector bundle
ltr(TM), respectively. The second fundamental form h is a symmetric F(M)-
bilinear form on Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a
linear endomorphism of Γ(TM). Then we have

∇̄XY = ∇XY + hl(X,Y ) + hs(X, Y ),(2.5)

∇̄XN = −ANX +∇l
X(N) + Ds(X,N),(2.6)

∇̄XW = −AW X +∇s
X(W ) + Dl(X, W ), ∀X, Y ∈ Γ(TM),(2.7)

N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Denote the projection of TM on S(TM)
by P . Then, by using (2.3), (2.5)-(2.7) and taking account that ∇̄ is a metric
connection we obtain

ḡ(hs(X, Y ),W ) + ḡ(Y, Dl(X, W )) = g(AW X, Y ),(2.8)
ḡ(Ds(X,N),W ) = ḡ(N, AW X).(2.9)

We set

∇XPY = ∇∗XPY + h∗(X, PY ),(2.10)

∇Xξ = −A∗ξX +∇∗t
Xξ,(2.11)

for X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM). By using above equations we obtain

ḡ(hl(X,PY ), ξ) = g(A∗ξX, PY ),(2.12)

ḡ(h∗(X, PY ), N) = g(ANX,PY ),(2.13)

ḡ(hl(X, ξ), ξ) = 0 , A∗ξξ = 0.(2.14)

In general, the induced connection ∇ on M is not metric connection. Since ∇̄ is
a metric connection, by using (2.5) we get

(2.15) (∇Xg)(Y,Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ).

However, it is important to note that ∇? is a metric connection on S(TM). Finally,
we recall the following result which will be used later.

Theorem 2.1. ([6], P:161) Let M be an r− lightlike submanifold with r < min{m,n}
or a coisotropic submanifold M̄. Then the induced connection ∇ on M is a metric
connection if and only if one of the following conditions is fulfilled:

(i) A∗ξ vanish on Γ(TM) for any ξ ∈ Γ(RadTM).
(ii) RadTM is a Killing distribution.
(iii) RadTM is a parallel distribution with respect to ∇.
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3. Screen slant lightlike submanifolds

In this section, we introduce screen slant lightlike submanifolds, give examples
and obtain characterizations. But we first recall the definitions of invariant lightlike
submanifolds and screen real submanifolds from [7]. Let M̄ be an indefinite Kaehler
manifold and M a real lightlike submanifold of M̄ , then M is called invariant
lightlike submanifold of M̄ if

J̄(RadTM) = Rad TM and J̄(S(TM)) = S(TM).

A lightlike submanifold M is called screen real submanifold if

J̄(RadTM) = Rad TM and J̄(S(TM)) ⊆ S(TM⊥).

We now give the following lemma which will be useful to define slant notion on
the screen distribution.

Lemma 3.1. Let M be a 2q− lightlike submanifold of an indefinite Kaehler mani-
fold M̄ with constant index 2q such that 2q < dim(M). Then the screen distribution
S(TM) of lightlike submanifold M is Riemannian.

Proof. Let M̄ be a real 2k = m + n− dimensional indefinite Kaehler manifold and
ḡ be a semi-Riemannian metric on M̄ of index 2q. Let us assume that M be an
m− dimensional and 2q(< m)− lightlike submanifold of M̄. Then we have a local
quasi orthonormal field of frames on M̄ along M

{ξi, Ni, Xα, Wa}, i ∈ {1, ..., 2q}, α ∈ {2q + 1, ...,m}, a ∈ {2q + 1, ..., n},
where {ξi} and {Ni} are lightlike basis of RadTM and ltr(TM), respectively and
{Xα} and {Wa} are orthonormal basis of S(TM) and S(TM⊥), respectively. From
the null basis {ξ1, ..., ξ2q, N1, ..., N2q} of ltr(TM) ⊕ RadTM , we can construct an
orthonormal basis {U1, ..., U4q} as follows

U1 = 1√
2
(ξ1 + N1) U2 = 1√

2
(ξ1 −N1)

U3 = 1√
2
(ξ2 + N2) U4 = 1√

2
(ξ2 −N2)

... ...

... ...
U4q−1 = 1√

2
(ξ2q + N2q) U4q = 1√

2
(ξ2q −N2q).

Hence, Span{ξi, Ni} is a non-degenerate space of constant index 2q. Thus we
conclude that RadTM ⊕ ltr(TM) is non-degenerate and it has constant index 2q
on M̄. Since

index(TM̄) = index(RadTM ⊕ ltr(TM)) + index(S(TM⊥) ⊥ S(TM)),

we obtain that S(TM) ⊥ S(TM⊥) is constant index zero, that is, S(TM) and
S(TM⊥) are Riemannian vector bundles. Thus proof is complete. ¤

Thus Lemma 3.1 enables us to give the following definition.

Definition 3.1. Let (M, g, S(TM)) be a 2q− lightlike submanifold of an indefinite
Kaehler manifold M̄ with constant index 2q < dim(M). Then we say that M is a
screen slant lightlike submanifold of M̄ if the following conditions are satisfied:

(i) RadTM is invariant with respect to J̄ , i.e. J̄(RadTM) = RadTM.
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(ii) For each non-zero vector field X tangent to S(TM) at x ∈ U ⊂ M , the
angle θ(X) between J̄X and S(TM) is constant, i.e., it is independent of
the choice of x and X ∈ Γ(S(TM)).

We note that θ(X) is called the slant angle. We point out the following features:

(a) RadTM is even dimensional.
(b) Screen slant lightlike submanifolds do not include real hypersurface.

From now on, we suppose that (M, g, S(TM)) is a 2q(< dim(M))− lightlike sub-
manifold of an indefinite Kaehler manifold with constant index 2q and denote it by
M.

Proposition 3.1. Let M be a screen slant lightlike submanifold of M̄. Then M is
invariant (resp.screen real) if and only if θ = 0 (resp. θ = π

2 ).

Proof. If M is invariant, then J̄(RadTM) = RadTM and J̄(S(TM)) = S(TM),
thus θ = 0. Conversely, if M is screen slant lightlike with θ = 0, then it is clear
that J̄(S(TM)) = S(TM). Since RadTM is invariant with respect to J̄ , proof is
complete. The other assertion can be proved in a similar way. ¤

Thus it follows that a screen slant lightlike submanifold is a natural general-
ization of invariant and screen real lightlike submanifolds. A screen slant lightlike
submanifold is said to be proper if it is neither invariant nor screen real lightlike
submanifold.

For any vector field X ∈ Γ(S(TM)), we write

(3.1) J̄X = TX + ωX,

where TX ∈ Γ(TM) and ωX ∈ Γ(tr(TM)).

Corollary 3.1. Let M be a screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. Then, for any X ∈ Γ(TM), we have

(i) If X ∈ Γ(S(TM)) then ωX ∈ Γ(S(TM⊥).
(ii) If X ∈ Γ(RadTM), then ωX = 0.

Proof. It is easy to see that ltr(TM) is invariant with respect to J̄ due to J̄(RadTM) =
RadTM . (ii) is clear. ¤

Proposition 3.1 implies that invariant and screen real lightlike submanifolds are
examples of screen slant lightlike submanifolds. Now, we want to present some
examples of proper screen slant lightlike submanifolds. Let { ∂

∂ x1
, ∂

∂ y1
, ..., ∂

∂ xn
, ∂

∂ yn
}

be a canonical basis for R2n
q . Then we may define J̄ such that

J̄(
∂

∂ xi
) =

∂

∂ yi
, J̄(

∂

∂ yi
) = − ∂

∂ xi
.

Example 3.1. For any α > 0, we consider the following immersion in R8
2:

x(u, v, t, s) = (t, s, u cos α, −v cos α, u sinα, v sin α, t, s, ).

Then RadTM is spanned by

ξ1 =
∂

∂ x1
+

∂

∂ x7
, ξ2 =

∂

∂ x2
+

∂

∂ x8
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and S(TM) is spanned by

X1 = cos α
∂

∂ x3
+ sinα

∂

∂ x5
, X2 = −cos α

∂

∂ x4
+ sinα

∂

∂ x6
.

Then we can see that RadTM is invariant with respect to J̄ and S(TM) is a
slant distribution with slant angle 2α. Thus M is a screen slant hyperplane in R8

2.
Moreover, we obtain screen transversal vector bundle S(TM⊥)

S(TM⊥) = Span{W1 = sinα
∂

∂ x4
+ cos α

∂

∂ x6
, W2 = −sinα

∂

∂ x3
+ cos α

∂

∂ x5
}

and lightlike transversal bundle ltr(TM)

ltr(TM) = Span{N1 =
1
2
{− ∂

∂ x1
+

∂

∂ x7
}, N2 =

1
2
{− ∂

∂ x2
+

∂

∂ x8
}}.

Example 3.2. Consider in R8
2 the submanifold M given by

x(u, v, t, s) = (u, v, s sint, s cost, sin s, cos s, u cosα− v sinα, u sin α + v cosα)

for α, t, s ∈ (0, π
2 ). Then TM is spanned by derive

ξ1 =
∂

∂ x1
+ cos α

∂

∂ x7
+ sinα

∂

∂ x8

ξ2 =
∂

∂ x2
− sinα

∂

∂ x7
+ cos α

∂

∂ x8

X1 = s cos t
∂

∂ x3
− s sin t

∂

∂ x4
,

X2 = sin t
∂

∂ x3
+ cos t

∂

∂ x4
+ cos s

∂

∂ x5
− sin s

∂

∂ x6
.

It follows that RadTM = Span{ξ1, ξ2}, hence M is a 2−lightlike submanifold.
Since J̄RadTM = RadTM , RadTM is invariant. Moreover, we can choose S(TM) =
Span{X1, X2} which is Riemannian vector subbundle and it can be easily proved
that S(TM) is a slant distribution with slant angle θ = π

4 . Finally, the screen
transversal vector bundle S(TM⊥) is spanned by

W1 = sin s
∂

∂ x5
+ cos s

∂

∂ x6

W2 = sin t
∂

∂ x3
+ cos t

∂

∂ x4
− cos s

∂

∂ x5
+ sin s

∂

∂ x6

and the lightlike transversal bundle ltr(TM) is spanned by

N1 =
1
2
{− ∂

∂ x1
+cos α

∂

∂ x7
+sinα

∂

∂ x8
}, N2 =

1
2
{− ∂

∂ x2
−sinα

∂

∂ x7
+cos α

∂

∂ x8
}.

Example 3.3. For any k, α > 0, consider in R12
2 the submanifold M given by

x(u, v, t, s) = (u ch α, v chα, u, v, t, s, k cos t, k sin t, k cos s, k sin s, u sh α, v sh α)

Then TM is spanned by

ξ1 = chα
∂

∂ x1
+

∂

∂ x3
+ shα

∂

∂ x11
, ξ2 = chα

∂

∂ x2
+

∂

∂ x4
+ shα

∂

∂ x12

X1 =
∂

∂ x5
− k sin t

∂

∂ x7
+ k cos t

∂

∂ x8
, X2 =

∂

∂ x6
− k sin s

∂

∂ x9
+ k cos s

∂

∂ x10
.
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Then we can see that RadTM = Span{ξ1, ξ2}. Thus M is a 2− lightlike submani-
fold. It is easy to see J̄RadTM = RadTM , that is, RadTM is invariant. Choose
S(TM) = Span{X1, X2} and we obtain that S(TM) is slant distribution with slant
angle θ = cos−1( 1

1+k2 ). Thus M is a screen slant lightlike submanifold of R12
2 .

Chen ([5]) studied the following important problem in complex geometry:
Given a surface M of a Kaehler manifold M̄ , when is M slant in M̄?

Based on the above problem, there are several interesting results on the geometry
of a slant surface of a Euclidean space R4, see: ([5]). For the screen slant lightlike
case, we have the following result.

Proposition 3.2. There exist no screen slant lightlike surface of an indefinite
Hermitian (or Kaehler) manifold with index 2.

Proof. Let M be a screen slant lightlike surface of an indefinite Hermitian manifold
M̄ with index 2. Then M is 2− lightlike or 1− lightlike. If M is 2− lightlike then
S(TM) = 0 and M is totally lightlike submanifold. Hence M is invariant. Now,
suppose that M is 1− lightlike, then RadTM = span{ξ}. This is not possible,
because RadTM is invariant with respect to J̄ . ¤

Let M be a screen slant lightlike submanifold of an indefinite Kaehler manifold
M̄. We denote the projection morphisms on the distributions RadTM and S(TM)
by Q and P , respectively. Then we have

(3.2) X = QX + PX

for any X ∈ Γ(TM), where QX denotes the component of X in RadTM and PX
denotes the component of X in S(TM). Applying J̄ on (3.2) we obtain

(3.3) J̄X = J̄QX + J̄PX = TQX + TPX + ωPX.

Thus we derive

(3.4) J̄QX = TQX, ωQX = 0

and

(3.5) TPX ∈ Γ(S(TM)).

On the other hand, the screen transversal bundle S(TM⊥) has the following de-
composition

(3.6) S(TM⊥) = ωP (S(TM)) ⊥ υ.

Then, for any W ∈ Γ(S(TM⊥)) we write

(3.7) J̄W = BW + CW

where BV ∈ Γ(S(TM) and CV ∈ Γ(υ).
Next, we give an useful characterization of screen slant lightlike submanifolds:

Theorem 3.1. Let M be a 2q− lightlike submanifold of an indefinite Kaehler
manifold M̄ with constant index 2q < dim(M). Then M is a screen slant lightlike
submanifold if and only if

(i) the lightlike transversal bundle ltr(TM) is invariant with respect to J̄ .
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(ii) There exists a constant λ ∈ [−1, 0] such that

(3.8) (P ◦ T )2X = λX

for any X ∈ Γ(S(TM)). Moreover, in this case λ = −cosθ |S(TM) .

Proof. Let M be a 2q− lightlike submanifold of an indefinite Kaehler manifold M̄
with constant index 2q. Then Lemma 3.1 guarantees that S(TM) is a Riemannian
vector bundle. Let M be a screen slant lightlike submanifold of M̄. Then its radical
distribution is invariant with respect to J̄ and from Corollary 3.1, we have ωPX ∈
Γ(S(TM)). Thus, using (2.1) and (3.3) we have

ḡ(J̄N,X) = −ḡ(N, J̄X) = −ḡ(N, TPX)− ḡ(N, ωPX) = 0

for X ∈ Γ(S(TM)). Hence we conclude that J̄N does not belong to S(TM). On
the other hand, from (2.1) and (3.7) we obtain

ḡ(J̄N, W ) = −ḡ(N, J̄W ) = −ḡ(N, BW )− ḡ(N,CW ) = 0

for W ∈ Γ(S(TM⊥)). Thus J̄N does not belong to S(TM⊥). Now suppose that
J̄N ∈ Γ(RadTM). Then we obtain J̄ J̄N = −N ∈ Γ(ltrTM), since RadTM is
invariant with respect to J̄ we get a contradiction which proves (i). With regards
to statement (ii), since M is a screen slant lightlike submanifold, there is a constant
angle θ which is independent X ∈ Γ(STM) and x ∈ U ⊂ M. Thus we derive

(3.9) cosθ(X) =
ḡ(J̄X, TPX)
| J̄X || TPX | = − ḡ(X, J̄TPX)

| J̄X || TPX | = − ḡ(X, (P ◦ T )2X)
| X || TPX | .

On the other hand,we have

(3.10) cosθ(X) =
| TPX |
| J̄X | .

Thus, from (3.9) and (3.10) we obtain

cos2θ(X) = −g(X, (P ◦ T )2X)
| X |2 .

Since θ(X) is a constant, we conclude that (PoT )2X = λX, λ ∈ [−1, 0], which
proves (ii).
(⇐) The converse can be obtained in a similar way. ¤

From Theorem 3.1 we obtain the following corollary:

Corollary 3.2. Let M be a screen slant lightlike submanifold of M̄. Then

(3.11) g(TPX, TPY ) = cos2 θ |S(TM) g(X, Y )

and

(3.12) ḡ(ωPX, ωPY ) = sin2 θ |S(TM) g(X, Y )

for any X, Y ∈ Γ(TM).

Proof. From (2.1) and (3.3) we obtain

g(TPX, TPY ) = −g(X, (PoT )2Y )

for any X, Y ∈ Γ(S(TM)). Then from Theorem 3.1 we derive

g(TPX, TPY ) = cos2θg(X, Y ),

which proves (3.11). In a similar way we obtain (3.12). ¤
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Differentiating (3.3) and comparing the tangent and transversal parts we have

(∇XT )Y = AωPY X + Bhs(X, Y )(3.13)

J̄hl(X,Y ) = hl(X, J̄QY ) + hl(X, TPY ) + Dl(X, ωPY )(3.14)
(∇Xω)Y = −hs(X, J̄QY )− hs(X,TPY ) + Chs(X,Y )(3.15)

for X, Y ∈ Γ(TM), where (∇XT )Y = ∇X J̄QY +∇XTPY − J̄Q∇XY − TP∇XY
and (∇Xω)Y = ∇s

XωPY − ωP∇XY.

Theorem 3.2. Let M be a screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. Then

(i) the radical distribution RadTM is integrable if and only if the screen transver-
sal second fundamental form of M satisfies

hs(X, J̄Y ) = hs(J̄X, Y ),∀X, Y ∈ Γ(RadTM)

(ii) The screen distribution S(TM) is integrable if and only if

Q(∇XTPY −∇Y TPX) = Q(AωPY X −AωPXY ), ∀X,Y ∈ Γ(S(TM))

Proof. From (3.15) we obtain

hs(X, J̄Y )− Chs(X, Y ) = ω∇XY

for any X,Y ∈ Γ(RadTM). Thus we obtain hs(X, J̄Y ) − hs(J̄X, Y ) = ωP [X, Y ]
which proves assertion (i). On the other hand, from (3.13) we derive

∇XTPY −AωPY X = J̄Q∇XY + TP∇XY + Bhs(X,Y )

for any X, Y ∈ Γ(STM)). Hence we get

∇XTPY −∇Y TPX + AωPXY −AωPY X = J̄Q[X, Y ] + TP [X, Y ].

Thus we obtain

Q(∇XTPY −∇Y TPX) + Q(AωPXY −AωPY X) = J̄Q[X, Y ],

which proves (ii) ¤

Theorem 3.3. Let M be a screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. Then the screen distribution defines a totally geodesic fo-
liation if and only if J̄AωPY X − AωPTPY X has no components in RadTM for
X, Y ∈ Γ(S(TM)).

Proof. Using (2.2) and (2.5) we have ḡ(∇XY, N) = ḡ(∇̄X J̄Y, J̄N), for X,Y ∈
Γ(S(TM)) and N ∈ Γ(ltr(TM)). Thus from (3.3) and (2.7) we obtain ḡ(∇XY,N) =
ḡ(∇̄XTPY, J̄N) − ḡ(AωPY X, J̄N). Using again (2.2), (2.5), (3.3) and (2.7) in the
first expression in the above equation we derive

ḡ(∇XY, N) = g(∇X(P ◦ T )2Y,N)− ḡ(AωPTPY X, N)− ḡ(AωPY X, J̄N).

Thus from Theorem 3.1 we get

ḡ(∇XY, N) = −cos2θḡ(∇XY, N)− ḡ(AωPTPY X, N)− ḡ(AωPY X, J̄N).

Hence we obtain

(1 + cos2θ)ḡ(∇XY,N) = −ḡ(AωPTPY X,N)− ḡ(AωPY X, J̄N).

This completes the proof. ¤
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Next we investigate∇XT = 0 on a screen slant lightlike submanifold. In the non-
degenerate complex geometry, if a slant submanifold satisfies the above property,
it is called a Kaehlerian slant submanifold [5].

Theorem 3.4. Let M be a screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. Then T is parallel if and only if Ds(X, N) ∈ Γ(υ) and

ḡ(hs(X, Y ), ωPZ) = g(hs(X, Z), ωPY )

for X ∈ Γ(TM) and Y, Z ∈ Γ(S(TM)).

Proof. From (3.13) we obtain ḡ((∇XT )Y,N) = 0, for Y ∈ Γ(RadTM) and X ∈
Γ(TM). For Y ∈ Γ(S(TM)), we get ḡ((∇XT )Y,N) = ḡ(AωPY X, N). Using (2.9)
we derive

(3.16) ḡ((∇XT )Y, N) = ḡ(Ds(X, N), ωPY )

for any X ∈ Γ(S(TM)). On the other hand, from (2.12), (3.1) and (2.1) we obtain

g((∇XT )Y,Z) = g(AωPY X, Z)− g(hs(X, Y ), ωPZ)

for any X, Y ∈ Γ(TM) and Z ∈ Γ(S(TM)). By using (2.8) we get

(3.17) g((∇XT )Y,Z) = g(hs(X,Z), ωPY )− g(hs(X, Y ), ωPZ)

for any X, Y ∈ Γ(TM) and Z ∈ Γ(S(TM)). Thus from (3.16) and (3.17) we obtain
our assertion. ¤

It is known that the induced connection ∇ of a lightlike submanifold is not a
metric connection, in general. Next, we give a necessary condition for the induced
connection ∇ to be a metric connection.

Theorem 3.5. Let M be a screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. If (∇XT )Y = 0 for X ∈ Γ(TM) and Y ∈ Γ(RadTM),
then the induced connection ∇ is a metric connection.

Proof. If (∇XT )Y = 0 for X ∈ Γ(TM) and Y ∈ Γ(RadTM), then from (3.13) we
have Bhs(X, Y ) = 0, hence g(Bhs(X, Y ), Z) = 0 for X ∈ Γ(TM), Y ∈ Γ(RadTM)
and Z ∈ Γ(TM). Thus we obtain

(3.18) ḡ(J̄hs(X, Y ), Z) = 0

(3.19) ḡ(hs(X, Y ), ωPZ) = 0.

Now, by using (2.5) we get

ḡ(ωP∇XY, J̄hs(X, Y )) = ḡ(ωP∇XY, J̄∇̄XY − J̄∇XY − J̄hl(X, Y ))

for X ∈ Γ(TM), Y ∈ Γ(RadTM), since ltr(TM) is invariant, from (2.1) and (3.3)
we get

ḡ(ωP∇XY, J̄hs(X,Y )) = ḡ(ωP∇XY, ∇̄X J̄Y )− ḡ(ωP∇XY, ωP∇XY ).

Then using (2.5) we derive

ḡ(ωP∇XY, J̄hs(X,Y )) = ḡ(ωP∇XY, hs(X, J̄Y )− ḡ(ωP∇XY, ωP∇XY ).

Thus from (3.19) we have

ḡ(ωP∇XY, J̄hs(X,Y )) = −ḡ(ωP∇XY, ωP∇XY ).

Then using (3.12) we obtain

(3.20) ḡ(ωP∇XY, J̄hs(X,Y )) = −sin2 θg(P∇XY, P∇XY )
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for any X ∈ Γ(TM) and Y ∈ Γ(RadTM). On the other hand, from (2.1) and (3.3)
we have

ḡ(ωP∇XY, J̄hs(X, Y )) = −ḡ(TP∇XY, J̄hs(X,Y ))
for any X ∈ Γ(TM) and Y ∈ Γ(RadTM). Then, from (3.18) we derive

(3.21) ḡ(ωP∇XY, J̄hs(X, Y )) = 0.

Then (3.20) and (3.21) imply

sin2 θg(P∇XY, P∇XY ) = 0.

Since M is a proper screen slant lightlike submanifold and S(TM) is Riemannian we
obtain P∇XY = 0, hence ∇XY ∈ Γ(RadTM),i.e. the radical distribution RadTM
is parallel. Thus the assertion of theorem follows from Theorem 2.1. ¤

Remark 3.1. It is clear that radical distribution and screen distribution are orthog-
onal. However, we note that if RadTM is parallel , then it doesn’t imply that the
screen distribution S(TM) is parallel contrary to the non-degenerate case.

4. Minimal Screen Slant Lightlike Submanifolds

A general notion of minimal lightlike submanifold M of a semi-Riemannian man-
ifold M̄ has been introduced by Bejan-Duggal in [2] as follows:

Definition 4.1. We say that a lightlike submanifold (M, g, S(TM)) isometrically
immersed in a semi-Riemannian manifold (M̄, ḡ) is minimal if:

(i) hs = 0 on Rad(TM) and
(ii) trace h = 0, where trace is written w.r.t. g restricted to S(TM).

In the case 2, the condition (i) is trivial. Moreover, it has been shown in [2]
that above definition is independent of S(TM) and S(TM⊥), but it depends on
the choice of the transversal bundle tr(TM). As in the semi-Riemannian case, any
lightlike totally geodesic M is minimal.

Example 4.1. Let M̄ = R8
2 be a semi-Euclidean space of signature (−,−, +, +,

+, +,+, +) with respect to the canonical basis {∂ x1, ∂ x2, ∂ x3, ∂ x4, ∂ x5, ∂ x6,
∂ x7, ∂ x8}. Consider a complex structure J1 defined by

J1(x1, x2, x3, x4, x5, x6, x7, x8) = (−x2, x1, −x4, x3, −x7 cos α− x6 sinα,

−x8cos α + x5 sinα, x5 cos α + x8 sinα,

x6 cos α− x7 sinα).

for α ∈ (0, π
2 ). Let M be a submanifold of (R8

2, J1) given by

x1 = u1, x2 = u2, x3 = u1 cos θ − u2 sin θ, x4 = u1 sin θ + u2 cos θ

x5 = u3, x6 = sin u3 sinhu4 , x7 = u4, x8 = cos u3 cosh u4.

Then TM is spanned by

Z1 = ∂ x1 + cos θ ∂ x3 + sin θ ∂ x4

Z2 = ∂ x2 − sin θ ∂ x3 + cos θ ∂ x4

Z3 = ∂ x5 + cos u3 sinhu4 ∂ x6 + sinu3 cosh u4 ∂ x8

Z3 = sin u3 cosh u4 ∂ x6∂ x6 + ∂ x7 + cos u3 sinhu4 ∂ x8.



52 BAYRAM S.AHİN

Then M is a 2− lightlike submanifold and RadTM = {Z1, Z2}. It follows that
RadTM is J1− invariant. It is easy to see that S(TM) = span{Z3, Z4} is a slant
distribution with respect to J1 with slant angle α. The screen transversal bundle is
spanned by

W1 = −cosh u4 sinhu4 ∂ x5 + cos u3 cosh u4 ∂ x6 − sin u3 cos u3 ∂ x7

−sin u3 sinh u4 ∂ x8

W2 = sin u3 cos u3 ∂ x5 + sin u3 sinhu4 ∂ x6 − cosh u4 sinhu4 ∂ x7

+cos u3 cosh u4 ∂ x8

and the lightlike transversal bundle is spanned by

N1 =
1
2
{−∂ x1 + cos θ ∂ x3 + sin θ ∂ x4}

N2 =
1
2
{−∂ x2 − sin θ ∂ x3 + cos θ ∂ x4}.

Now, by direct calculations, using Gauss formulas we get

hl = 0, hs(X,Z1) = 0, hs(X,Z2) = 0, ∀X ∈ Γ(TM)

and

hs(Z3, Z3) =
−(sinh2 u4 + cos2 u3)

cosh4 u4 − sin4 u3
W2, hs(Z4, Z4) =

sinh2 u4 + cos2 u3

cosh4 u4 − sin4 u3
W2

hs(Z3, Z4) =
sinh2 u4 + cos2 u3

cosh4 u4 − sin4 u3
W1.

Hence the induced connection is a metric connection, M is not totally geodesic
and it is not also totally umbilical, but it is a minimal proper screen slant lightlike
submanifold of R8

2.

Next, we prove two characterization results for minimal slant lightlike submani-
folds. First we give the following lemma which will be useful later.

Lemma 4.1. Let M be a proper screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄ such that F (S(TM)) = S(TM⊥). If {e1, ...., em} is a local
orthonormal basis of S(TM), then {csc θFe1, ..., csc θ Fem} is a orthonormal
basis of S(TM⊥).

Proof. Since e1, ...., em is a local orthonormal basis of S(TM) and S(TM) is Rie-
mannian , from Corollary 3.1, we obtain

ḡ(csc θFei, csc θFej) = csc2 θ sin2 θ g(ei, ej) = δij ,

which proves the assertion. ¤

Theorem 4.1. Let M be a proper screen slant lightlike submanifold of an indefinite
Kaehler manifold M̄. Then M is minimal if and only if

traceA∗ξj
|S(TM)= 0, traceAWα |S(TM)= 0

and

ḡ(Dl(X,W ), Y ) = 0, ∀X, Y ∈ Γ(RaDTM),

where {ξj}r
j=1 is a basis of RadTM and {Wα}m

α=1 is a basis of S(TM⊥).
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Proof. From Proposition 3.1 in [2], we have hl = 0 on RadTM. Thus M is minimal
if and only if

m∑

k=1

h(ek, ek) = 0

and hs = 0 on RadTM Using (2.8) and (2.12) we obtain
m∑

k=1

h(ek, ek) =
m∑

k=1

1
r

r∑

j=1

g(A∗ξj
ek, ek)Nj

+
1
m

m∑
α=1

g(AWα
ek, ek)Wα.(4.1)

On the other hand, from (2.8) we obtain ḡ(hs(X, Y ),W ) = ḡ(Dl(X, W ), Y ) for
X, Y ∈ Γ(RadTM). Thus our assertion follows from (4.1). ¤

Theorem 4.2. Let M be a proper slant lightlike submanifold of an indefinite
Kaehler manifold M̄ such that F (S(TM)) = S(TM⊥). Then M is minimal if
and only if

traceA∗ξj
|S(TM)= 0, traceAFei |S(TM)= 0

and
ḡ(Dl(X,Fei), Y ) = 0,∀X, Y ∈ Γ(RadTM)

where {e1, ..., em} is a basis of S(TM).

Proof. From Lemma 4.1, {csc θFe1, ..., csc θ Fem} is a orthonormal basis of S(TM⊥).
Thus we can write

hs(X,X) =
m∑

i=1

Ai csc θFei, ∀X ∈ Γ(TM).

for some functions Ai, i ∈ {1, ..., m}. Hence we obtain

hs(X,X) =
m∑

i=1

csc θg(AFeiX,X)

for X ∈ Γ(S(TM)). Then the assertion of theorem comes from Theorem 4.1. ¤

Remark 4.1. (a) Observe that between slant lightlike and screen slant lightlike
submanifolds there exists no inclusion relation because a lightlike real hypersurface
is a slant lightlike submanifold and it is not a screen slant lightlike submanifold.
Moreover, invariant and screen real lightlike submanifolds are screen slant lightlike
submanifolds, but they are not slant lightlike submanifolds.

(b) Notice that it follows from the Proposition 3.2 that the screen slant lightlike
geometry is different than its counter part of Chen’s Riemannian case. For example,
there does not exist any screen slant lightlike surface of a semi-Euclidean space R4

2.
(c) Finally, it is important to mention that, as per ([6], Page 157), the second

fundamental forms of a lightlike submanifold M do not depend on the vector bun-
dles S(TM⊥) and ltr(TM). Thus, our results of this paper are stable with respect
to any change in above vector bundles.
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