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ABSTRACT. Let (M, g) be a Riemannian manifold and G a g-natural metric on
its tangent bundle TM. In this paper we prove first that the space (T'M, G) has
constant sectional curvature if and only if it is flat Riemannian, and then we
give, for dim M > 3, a characterization of flat Riemannian g-natural metrics
on tangent bundles.

Introduction

In [1], K.M.T. Abbassi and M. Sarih introduced the notion of g-natural metrics
on the tangent bundle TM of a Riemannian manifold (M, g). A metric G on
TM is called a g-natural metric if it comes from g by a first order natural operator
S2T* ~ (S*T*)T, where S2T* and (S?T*)T denote respectively the natural bundle
of Riemannian metrics and the natural bundle of (0, 2)-tensor fields on the tangent
bundles (cf. [6] for the definitions of natural bundles and operators and associated
notions). They gave a characterization of g-natural metrics on TM in terms of
functions defined on R*, and obtained a necessary and sufficient conditions for
g-natural metrics to be either nondegenerate or Riemannian. But they did not give
an explicit expression for the inverse of nondegenerate g-natural metrics although
it is important to compute some geometrical analysis tools like the Ricci tensor,
the scalar curvature, the Laplace operator, etc ... .

Some geometrical properties could be inherited on the g-natural metrics from
the basic metric g and conversely. In [2] the authors proved that if a tangent
bundle equipped with a g-natural metric (T'M, G) is of constant sectional curvature
then the same holds for (M,g). Furthermore, making some restrictions on the
Riemannian g-natural metrics on 7'M, the same authors gave the characterization
of flat Riemannian g-natural metrics on TM (cf. [3]).

In this paper we prove that if (M, g) is non flat, its tangent bundle T M equipped
with a g-natural metric G has non constant sectional curvature, and also that only
flat g-natural metrics are of constant sectional curvature. In the next section 1
we give some preliminaries and some known results on g-natural metrics. In the
section 2 we compute explicitly the inverse of any nondegenerate g-natural metric.
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In section 3 using this inverse expression and Koszul’s formula, we determine the
Levi-Civita connection of any nondegenerate g-natural metric. Finally in section 4,
we show that the flat Riemannian g-natural metrics are the only g-natural metrics
that have a constant sectional curvature, then we give a characterization of these
metrics.

1. Preliminaries

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection of g.
Then the tangent space of TM at any point (x,u) € TM splits into the horizontal
and vertical subspaces with respect to V :

T(LU)TM = H(LU)M D V(mﬁu)M.

If (x,u) € TM is given then, for any vector X € T, M, there exists a unique
vector X" € H(z,u)yM such that T X" = X, where 7 : TM — M is the natural
projection. X" denotes the horizontal lift of X at the point (z,u) € TM. The
vertical lift of a vector X € T, M at (x,u) € TM is a vector X" € V(, )M such
that Xv.(df) = X.f, for all functions f on M. Here we consider 1-forms df on
M as functions on TM (i.e. (df)(z,u) = u.f). Note that the map X — X"
is an isomorphism between the vector spaces T,,M and H(,,)M. Similarly, the
map X — X" is an isomorphism between the vector spaces T, M and V(, ) M.
Obviously, each tangent vector Z € T, (z,u)T'M can be written in the form
Z =X"4+Y", where X,Y € T, M are uniquely determined vectors.

If ¢ is a smooth function on M, then

(L.1) XMpom)=(Xg)omand X*(pom) =0
hold for every vector field X on M.

A system of local coordinates (U; z;, i =1,---,m) in M induces on TM a
system of local coordinates (w‘l(U) s ub, =1, ,m).

Let X =31, Xia%i be the local expression in U of a vector field X on M. Then,

the horizontal lift X" and the vertical lift XV of X are given, with respect to the
induced coordinates, by :

(1.2) X=X ax ZFkuJXk and
i Y gk

(1.3) XU = ini

' N - out’

where the (Fé-k) are the Christoffel’s symbols of g.

Next, we introduce some notations which will be used to describe vectors ob-
tained from lifted vectors by basic operations on TM. Let T be a tensor field of type
(I,s)on M. If X3, X, , Xs_1 € T, M, then h{T (X1, ,u, -+, Xs_1)} (respec-
tively o{T(X1, - ,u,---,Xs_1)}) is a horizontal (respectively vertical) vector at
(z,w) which is defined by the formula

R{T (X1, - ,u,---, Xs 1)} :Zu/\ (T(le"' , (({;;)x Lo 7Xsl))h
(resp. o{T(Xy, -+ yuy Xo)h = Tt (T, (5) oo X))

In particular, if T" is the identity tensor of type (1,1), then we obtain the geodesic
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h
flow vector field at (z,u), {zu) = Doy u (%)( , and the canonical vertical

vector at (z,u), Ugu) = D\ ut (%)( ;

Moreover h{T (X1, -+ ,u,- - ,u,- - ,Xs_t)} and o{T (X1, - ,u, - ,u,- , Xst)}
are defined by similar way.

Also let us make the notations

(1.4) R{T(X1, -, X))} = T(X1, -, X,)"
and
(1.5) o{T(X1, -, X))} =T(X1, -, X,)".

Thus h{X} = X" and v{X} = X", for each vector X tangent to M.

From the preceding quantities, one can define vector fields on TU in the following

way: If u =3, u (a%i)z is a given point in TU and Xy, -+, X1 are vector fields

on U, then we denote by
T (X1, ,u, -, Xe1)} (respectively o{T(X1y, - ,u,---,Xs-1)})

the horizontal (respectively vertical) vector field on TU defined by

0
WMT(X,. - e X :E M(Xq, ey, X))
{ ( 1, , U, 3 1)} - u ( 1, 76I)\’ 3 1)
(resp. U{T(le"' y Uy oo 7Xsfl)} = E U/\T(Xl,"' 7i7'“ 7Xsfl)v)~
3 8.%)\
Moreover, for vector fields X1, -+, Xs;_; on U, where s, t € N* (s > t), the vector

fields h{T (X1, - ,u, - ,u,--+ , Xg_¢)} and 0o{T( X1, -+ ,u, - yu,--+ ,Xs—¢)}, o0
TU, are defined by similar way.
The Riemannian curvature of g is defined by

(1.6) R(X,Y) = [Vx, Vy] - Vixy].

Now, for (r,s) € N?, we denote by 7p; : TM — M the natural projection and F'
the natural bundle defined by

(1.7) FM = mT'® - T"'T®---T)M — M,
r times s times
Ff(X:,S:) = TfXe,(T"® - T*"T®---T)f.S)

for all manifolds M, local diffeomorphisms f of M, X, € T,M and S, € (T*®---®
T*@T®---®T), M. We call the sections of the canonical projection FM — M F-
tensor fields of type (1, s). So, if @ denotes the fibered product of fibered manifolds,
then the F-tensor fields are mappings
A: TMeTM&---®&TM — Ugepy ® T, M which are linear in the last

s times
s summands and such that m 0 A = 7y, where m; and 7y are respectively the
natural projections of the source and target fiber bundles of A. For r = 0 and
s = 2, we obtain the classical notion of F-metrics. So, F-metrics are mappings
TM & TM ®TM — R which are linear in the second and the third arguments.
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Proposition 1.1. [1] Let (M, g) be a Riemannian manifold and G a
g-natural metric on TM. Then if dim M > 2, there exists six functions
ai, Bi:RT =R, i =1,2,3, such that for any x € M and all vectors
u, X, Y eT, M, we have

Ga (X" Y") = (a1 + as)(t)g.(X, V)

+(Br + B3) (1) 92 (X, u) go (Y, ),
G (XM YY) = a2(t)ge(X,Y) + B2(t) g2 (X, u)gu (Y, w),
Glay (X, V") = aa(t)ge(X,Y) + B2(t) g2 (X, u)gu (Y w),
Gaw) (XU, Y?) = a1(t)ge(X,Y) + B1() g (X, u) gz (Y, 1),

where t = g, (u,u), X" and XV are respectively the horizontal lift and the vertical
lift of the vector X € T, M at the point (x,u) € TM.
For dim M =1, the same holds with 5; =0, i=1,2,3.

Notation 1.1.
o ¢i(t) = ay(t) +1B3i(t),
o a(t) = ai(t)(ar +az)(t) — a3(t),
o B(t) = ¢1(t)(P1 + d3)(t) — P3(1),
for allt € RT.

Proposition 1.2. [1] A g-natural metric G on the tangent bundle of a
Riemannian manifold (M, g) is :
(i) nondegenerate if and only if the functions o, Bi, i = 1,2,3, of Proposition
1.1 defining G, satisfy

(1.8) a(t)p(t) # 0
for allt € RT.
(ii) Riemannian if and only if the functions oy, B;, @ = 1,2,3, of Proposition
1.1 defining G, satisfy the inequalities

ai(t) >0, ¢1(t) >0,
(1.9) { a%t) > 0, qzﬁzt) >0,

for allt € RT.
For dim M =1, this system reduces to a1 (t) > 0 and «(t) > 0, for all
teRT.

The following lemmas will be useful in the sequel.

Lemma 1.1. [5] Let (M, g) be a Riemannian manifold, V be the Levi-Civita con-
nection and R be the Riemannian curvature of g. Then the Lie bracket on the
tangent bundle TM of M satisfies

1) [X" V"] =X, Y] — v {R(X,Y)u},
2) [X"YY] = (VxY)",
(3) [X", Y] =0,

forall XY, Z € X(M).

s
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Lemma 1.2. [2] Let (M, g) be a Riemannian manifold, (x,u) € TM and X,Y,Z €
X(M), [ a function defined from R to R, and denote by Fy the function on T M
defined by Fy (u) = g5 (Y, u), for all (x,u) € TM. Then we have:
(1) XP ) S(ul?) =0,
2) XU, - (u?) = 2f"(|ul*)g2(Xa, u),
) Xl By = 9o (VxY)a,u) = Foy (z,u),
4) X{, (9, Z) o) = X4 (9(Y. 2)),
)
)

w

(zvu).
5 X&Uz,u)'(g(}/? Z) ° 7T) = 0)
6 Py = ga(X,Y),

where |u|? = g, (u,u).

X’U

(x,u

A~ N N N/

From now on, whenever we consider an arbitrary Riemannian g-natural metric
G on T M, we implicitly assume that it is defined by the functions
ai, B Rt — R, i =1,2,3, given in Proposition 1.1 .

All real functions ay, 3;, ¢;, a, and ¢ and their derivatives are evaluated at
t:=g.(u,u), u € T, M, unless otherwise stated.

2. Inverse of nondegenerate g-natural metrics

Let (a,b) € R?2, m € N*, u = (u!, --- ,u™) € R™ and denote by u(a,b,u) the
following square matrix of order m € N* :
a+ b(ut)?
bulu?
(2.1) pla,b,u) = )
buu?
a+ b(u™)?

that is, [u(a,b,u)];; = ad;; + bu'u?.
We establish the following lemma which is easy to check by straightforward
computation:

Lemma 2.1. If a(a + blul|?) # 0, then u(a,b,u) is invertible and its inverse
w(a,b,u)=t is given by

0ij b ;o
2.2 bu)t = Ty
( ) ,LL(CL, 7u)zj a a(a+b|u\2)u u,
where p(a, b, u)jjl is the element of it" line and of j*" column of the matriz
b )~ and [uf? = S (w2,

Next, we are going to determine the inverse of a nondegenerate g-natural metric
G .

Let (U,z;,i = 1,--- ,m) be a normal coordinates system of (M, g) centred at
p € M, and (7= (U);z;,ut,i = 1,--- ,m) its induced coordinates system on T'M.
For [ = 1,2,3, let us consider the matrix-valued functions on 7=1(U) defined by

(2.3) My = (cugij + Bruiug)
where ¢;; and u; are the functions on 7~ (U) given by g;; = g o (O, Oz, ),

— k _ 0 . o5
u; = gigu” and Oy, = 53 4,5 =1,--- ,m.

T
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(My+ M) M

So M, M, is the matrix-valued functions of G|,\.—1(U)

with respect to the local frame (9,02 )i—1,... m on 7 !(U). We shall denote

( (My + Ms3) My )
(2.4) G= .
Ms M,

If G is nondegenerate, its inverse G~ has the form

A O
(2.5) G'= ( ) ;
e 0

where A = ()\ij)lgi7j§7,L s 0 = (eij)1§i7j§7n s and Q = (wij)lgidgm are square
matrix-valued functions of order m, defined on 7—1(U).
Therefore we have the following proposition:

Proposition 2.1. If

a(t)o(t) #0,
(2.6) al(t)(oq + Oég)(t) #0,
#1(t)(p1 + ¢3)(t) # O,

for any t € RT, then the blocks of the matriz-valued functions
in (2.5) satisfy :

(2.7) AMpw) = (W(pu),, ., with

(28) Vi) = S5 gy,
(2.9) o) = (B9(pu),., ., with
(2.10) i) =~ 5y,
(2.11) Qlp,u) = (wij(p,u))lgi’jgm with

(212) ) = L5y oy,

for allu= 377" u'dy, | € T,M, where

a1[(B1 + Bs)p1 — Baa] — aa(a1ffa — a2 f31)

(213) v = " ,
be = —as[(B1 + B3)d1 — Paga] + (o1 + a3) (o fr — aaf51)
ap ’

v, = (o1t 08)[0i(é1+65) — fad] + asfas(By + F5) — Falan +as)]

ag
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Proof. According to (2.4) and (2.5), the product of the matrix-valued functions
G and G~ block per block gives:

(Ml —|—M3)A+M2@ (Ml —|—M3)®+M2Q
(2.14)
MyA + M0 M>0© + M1 Q

and so we have the identities:

(2.15) (My + M3)A+ M® = Id,
(2.16) (My + M3)0 + M2 = 0,
(2.17) MoA + M1©® = 0,
(2.18) MO+ MQ = Id.
Furthermore, for any v € T, M, since (U; z;,4=1,--- ,m) is a normal coordinates
system centred at p, we have
(My+ Mz)(p,u) = p((ar +ag)(jul®) , (81 + Bs)(Jul*), w),
My(p,u) = pla(luf®), Ba(|ul?), w),
Mi(p,u) = plea(luf®), Bi(lul?),w),

where u = (u%);—1 ... ;n . Then according to the system (2.6) and Lemma 2.1, the
matrix-valued functions My and (M; + Ms3) at (p,u) are invertible. It follows that
at (p,u), the identities (2.17) and (2.16) give respectively

(2.19) 0 = —M;'MA
and
(2.20) 0 = —(M; + M)~ M.

Combining the identities (2.19) and (2.15), we obtain at (p, u)
(M + Mz — My M M)A = Id.

So A(p,u) is invertible with

(2.21) A(p,u) = (My + Mz — Mo M; M) ?

Iy

Next we compute the elements of the matrix-valued function (M;+Ms—MoM,| 1M2)
at (p,u), and we obtain

(2.22)  [(My + My — MoMy " Mo)(p,w)ly; = A(Juf®)di; + Ao (|uf*)u'e’,
where
(2.23) M= o% and
N, - d1lar(Br + Bs) — aafy — d2a2] + P13
2 = ’
a1ér
with

(2.24) A1 #£0 and A+t = d)ﬂ # 0, everywhere.
1
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So by Lemma 2.1, we obtain the inverse A = (A¥)1<; j<m of
[(My 4 Ms) — MyM;* Ms] at (p,u), with

i dij Aa(ful?) w
(2.25) A (p,u) = l__ — u'w?
Ar([uf?)  Ar(lul)Aa([ul?) + |ul?Az(Jul?)]
_ o ([ul?) o 2y, 4, ]
a0 e
Next, according to (2.19), we compute
(2.26) 0" (p,u) = *[MflMQA]ij‘(pﬁu)v

and we obtain (2.9).
Furthermore by combining (2.20) and (2.18) we obtain at (p, u)

(2.27) [~ Mo(M; + M3) ' My + My]Q = Id.

This shows that the matrix-valued function [—Mg (M + M3)~* M, + Ml]
is invertible at (p,u), and

(2.28) Q= [My — My(M; + Ms)™" M) ™" at (p,u).
Finally, as in the proof of (2.25), we obtain
(229) [M1 —MQ(Ml +M3)_1M2} :w1(|u|2)5ij +w2(|u|2)uiuj7

iJ|(pu)
.« _ (¢1+63)[B1 (01 +as)—asBa—Bada]+¢3(B1+83)
Where w1 = a1 tas # O and Wy = (u1+a3)(¢1+¢3) 2 5
. ¢
2.30 with w1 4 twy = 0, everywhere.
(2:30) ! T b+ 03 # Y

So by using again Lemma 2.1, we prove (2.11).
O
Besides we have the following lemmas:

Lemma 2.2. If a(t)$(t) # 0,Vt € R, then the functions vy, e, 1. defined
respectively in (2.7), (2.9) and (2.11) satisfy on RT the following identities:

(2.31) ot + drypy = APz 02b

a
ai(f + B3) — a2

(2.32) (1 + @3) s + P2t = -
(2.33) Potp + d1thy, = (a1 + QSfl — a2l 7
(2.34) (f1 + d3)bg + dothy, = (a1 +a3)f2 — az(Br + 53).

(07

The proof of the identities of Lemma 2.2 is not very difficult and can be obtained
by straightforward computations .

Proposition 2.2. If G is nondegenerate, the elements of the matriz-valued func-
tions in (2.5) are given on 7= 1(U) by

(2.35) P

gV — ',
67

(2.36) 0 = —%gij — Youtu?,
a
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OZ1+013 id
J
g

(%

(2.37) Wi = — Youind

where (gij)lgi,jgm denotes the inverse of g = (gij)1§i7j§m.

Proof. Let us set

(M + Ms) M (A)1<ij<m (0%9)1<i j<m
L= ,
M; My 0Ni<ijem  (Wi<ij<m
with L = (Lij)1<i,j<2m-
It suffices to show that L;; = d;;, for4,j = 1,---,2m. Actually, we have for
ij=1,-,m:
m o . .
Li; = Z[(oq + as)gir + (1 + ﬁs)uiuk](glgkj — hyuFu?)
k=1
m o . .
(2.38) + 3 (agin + Bousug) (— = g" — poubud)
k=1 @
B al(a1+a3)m ki jm ok
- @ Zgzkg (al + 043)1/»\“ Zglku
k=1 k=1
a1(B1 + B m ' -m
+¥Ui > urg™ = (B + Ba)brua’ Y upu®
k=1 k=1
o ig*kgkj — aztppu’ ig*kuk
a (3 K2
k=1 k=1
LR T NS,k
o wi Yy urg® — Batpgui’ Y ugu
k=1 k=1
aj(a; +« .
= %5@ — (a1 + ag)pruluy
o + . .
+Muiu3 — (B + B3)ruu? [uf?
2
_%51‘7 - O‘Zwﬂujui
—azﬂQ uiuj - 52¢0Uiuj|u‘2
a
o1 (B1 + B3) — a8 -
= i+ 1B Of) 22 (1 + d3)0n — doteluin?
Lij = & by (2.32),
i o . .
(2.39) Liiymy; = Z(a2gik + 52”;‘%)(;191” — hrutud)

=~
Il

1
" a
+y (g + Brugug)(——=g" — pguFul)
k=1 @

aifls —azf

= (" = ¢2thr — dr¢g)ui’

(6%
Lizemy; = 0 by (231),
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m

« . )
(240) Lyitmy{jamy = Z(QQQikJF/ébuiuk)(*fgkj — Ypulud)
k=1

m

a1 + Qa3
E oGk + ﬁluiuk)[i( )g
k=1

" — ]

(a1 +a3)B1 — a3

= i+ o — ($1%w + Patbp)|uin?
Liivmygi+my = 0i by (2.33),
m % . .
Ligj4my = Z[(al + as)gir + (B1 + 53)%‘“1@][—229]” — wgukuj]
. _ oyrlantas) g k, j
(2.41) ; Qagik + Pouiug)| P You ]
o]+« -« + ;
Hence L;j = d;; fori,j =1,---,2m; as stated. O

3. Levi-Civita connection of a nondegenerate g-natural metric

In [1], the authors have given explicitly (with some sign and parenthesis mis-
prints) the Levi-Civita connection in the case of Riemannian g-natural metrics. In
the following we determine the Levi-Civita connection for a nondegenerate
g-natural metric in general by using the inverse formula of nondegenerate g-natural
metrics.

Notation 3.1. For a Riemannian manifold (M, g), we set :
T u; Xp, Ya) = R( Xy, u)Ya, T%(u; Xz, Ye) = R(Ye, u) Xy,
(3 1)T3(U§X937Y) = (Xme) 4(U;XI,Y) :g( (Xmau)Ywau)
T (w3 Xy, Yy) = 9(Xp,w)Ye,  TO(ws Xy, Ya) = (Ve u) X,
T7(U;Xac7Y) = 9(Xs, Y2)u, TS(U;XmaY) g(XT u)g (YTau)

where (z,u) € TM , X,,Y, € T,M and R is the Riemannian curvature of g.

Let V be the Levi-Civita connection of g and V the Levi-Civita connection of
a nondegenerate g-natural metric G defined by the functions oy, B;, i =1,2,3, in
Proposition 1.1. We have:

Proposition 3.1. Let (z,u) € TM and X,Y € X(M), we have

(B2)(VarY™) o = (VaY){w +h{A®W X, Vo)) + o{ B X, )},
(B3)(VxnY?) oy = (VxY)( + O Xe, Ya)} + 0{D(u; Xa, Vo) },
BA) (Vi Y") 0 = MO Y, Xo)} +0f D(w: Yo, Xo )},
(B5)(VxeY") 0y = MEWYe, Xo)} + o{F(u; Ve, X2)},

83
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where P(u; Xy, Yy) = Z§=1 fz‘P(|u‘2)Ti(u§XzaYm); for
P=AB,C,D,E,F, with

= f=-32,  f§=0,

(3.6)  f{ = asy, fi = gt = ),

A=l +as) 2, &= (Bi+Bs) G+ (B1 + Bs)tbw;

[ I )
f3B = 7(11((121;&3) ; leB = 0121/%%
3.7 i
(3.7) [P = P = (k)G  gB (o) 4 ag) i)
fSB — _(61 +ﬁ3)/(¢1;¢3)
+(B1 + B3) Vs
flC = Oa fQC = _g;a
=0, =
C !
e} = + 043) =L
3.8 C_ 4 1(514—53)’ I (O‘olt P 7
(38) fr=te ~ 52205~ B2)
c _ (BB £ o= B+ 53)/%
T = 29 1 (B1tBs)
120 - po) “plen )+
2 ¢’ —3(2ah — B2)tp;
=0, f9 =42,
f3D = 07 f4D = %’(/J@a
= o, 10 = —(as + gy
(3.9) (205 =B5)(on +as)
2a ’
f7D _ _(ﬁ1+2§)¢2 N %(20/2 _ ﬁ2)(¢1;¢3)’ fSD _ _(61 +/63)/%
_[1<a1 +a3)l+ ﬁ1+53]w9
—5(20 — B2)Yu;
FE=fF=i=f=0 fF=f=(h+1i0)% -ai2,
(3.10)

FE=0% —(B—al)%,  fF=28% 3%
—(2ah + Ba2)1hx — 201 ¥p;
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f=r=H=f=0, =18 =—(ah+362)%2
+o (a1+as)

1 a )
(3.11)
E = (81— o) (¢1g¢3) _ 32(;252, fF=p (¢1g¢3) _ Qﬂé%

— (205 + B2)v0 — 2017,

Proof. We prove only (3.4), the proof of the other identities being the same. Let
us set

(3.12) X=> X0, Y=Y Y0, u=>)» ud,,
=1 =1 =1
(3.13) VY = N diol +Y il
=1 =1
(3.14) s; = G(vxth,agi) and
(3.15) smpi = G(VxoY"90).

Koszul’s formula gives
(3.16) s; = % {X".G({Y" o) +Y"G (o, X") -0} .G (X", Y")

+G (oF, [X",YM]) =G (YY" [xv,0k]) — G (X, [Y",0h])},
then by using Proposition 1.1, Lemma 1.1 and Lemma 1.2, we obtain
(8317) s = (a1 +a3)'g(X,w)g(Y,8,) + (Br + B3) 9(X, u)g(Y, u)g(Ox,, u)

P V90w + P g7 ) (X 0,)

+ 5 9(R(Y,0,)u, X),

and similarly
1 1
(318) smti = 5(205 = F2)g(X, u)g(Y, 0,) = 5(205 = B2)9(X, Y)g(u, Ox,)-

By setting d = (d;)1<i<om and s = ($;)1<i<2m, we have d = G~1s (Matrix-valued
function of G=! with the column vector s as argument).
Then by using the expression of G~! in Proposition 2.2, we obtain

(3.19) i = %{R(u, XYY — 9O Ry, X
(o +aa)' T = T2 (205 — B)lg(X,w)Y"
+70‘1(ﬁ;; 55) g v, u)x
+y (81 + )%+ 5 (20 = 6) ZJg(X, V)
b1 B+ B3

[

+{(B1 +ﬁ3)/$ —[(a1 +a3) + 5

— So(20h — )} (X, g Y, ',
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and

(3.20)  dpyi = 0‘;32 {R(X, )Y} + 0‘177/’9 g(R(X, )Y, u)u’
(a1 + 043)'% + (205 — 522)056%1 ks a3)}9(X, u)Y’
B )
- (B 253)@ B %(20/2 _ ﬁ2)¢1 ;¢3]9(X7y)ui
(81 + 53)'% — (a1 +az)" + M]%
5205 = B2 }g (X, w) (¥, )

where, for all W € X(M) , {W}? are the components of W in the coordinates
system (U;z;, ¢ =1,--- ,m). So according to (3.13), the proof of (3.4) is completed.
O

4. g-Natural metrics with constant sectional curvature
4.1. Riemannian curvature of nondegenerate g-natural metrics.

Some notations and properties of F-tensor fields. Fix (x,u) € TM and a system of
normal coordinates S := (U; x;,i =1,--- ,m) of (M, g) centred at . Then we can
define on U the vector field U := )", ui%, where (ul,- -+, u™) are the coordinates

of u € T,, M with respect to its basis ((ai) si=1,---,m).
x

T4
Let P be an F-tensor field of type (r,s) on M. Then, on U, we can define an
(1, s)-tensor field PY (or P, if there is no risk of confusion), associated to u and S,
by

(4'1) Pu(Xla"' 7Xs) = P(Uz§Xla"' aXS)v
for all (Xy,---,Xs) € T.M,Vz€eU.
On the other hand, if we fix x € M and s vectors X1, -, Xsin T, M, then we can

define a C*°-mapping P(x, .. x.) : ToM — ®"T, M, associated to (Xi,---,X,),
by

(42) P(Xl)”')XS)(u) = P(U’v Xl)"' 7XS)7

for all w € T, M.

Let s > t be two non-negative integers, T be a (1, s)-tensor field on M and PT
be an F-tensor field, of type (1,t), of the form

(43) PT(U;XM'” 7Xt):T(X17"' s Uyt Uyt aXt)7

for all (u; X1, , X)) €eTM ®---®TM, ie., u appears s — ¢ times at positions
i1, ,is_¢ in the expression of T'. Then
- PTis a (1,t)-tensor field on a neighborhood U of z in M,
foralue T, M |,

- P(I;ﬁ X2 is a C*°-mapping T, M — T, M, for all Xy, -+, X; in T, M.

Furthermore, we have
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Lemma 4.1. [2]

1) The covariant derivative of P,
of (M,g), is given by :

T with respect to the Levi-Civita connection

(4.4) (VxPI) (X1, Xy) = (VxT) (X1, w0 u, Xy),

for all vectors X, Xq,--- , Xy in T, M, where u appears at positions
i1, ,is—¢ In the right-hand side of the preceding formula.
2) The differential of P&l Xy Gt U E T, M, is given by :

(4.5) d(P&lv"'aXt))u(X) = T(Xy,---, X, w0 X)) +
+T(X1, SUy e 7)(’... 7Xt);

forall X € T, M.

Furthermore, in [2] the authors gave the expressions determining the
Riemannian curvature R of any Riemannian g-natural metric G on TM (up to a
misprint in the vertical component of the expression of R (X h, Yh) Z", in which
(VyAy) (X, Z) should be written (Vy B,,) (X, Z)). Their formulas remain the same
if we replace a Riemannian g-natural metric by a nondegenerate g-natural metric
on TM. Indeed, a similar proof as that in [2] gives :

Proposition 4.1. The Riemannian curvature R of a nondegenerate g-natural
metric G is completely defined by

(46) R(X"YM)ZzZ" = [R(X,Y)Z]"
+h{(VxAu) (Y, Z2) — (Vy Au) (X, Z)
+A(w; X, A(w;Y, Z)) — A(w; Y, A(u; X, Z))
+C(w; X, B(w; Y, Z)) — C(w; Y, B(u; X, Z))
}

+C(w; Z, R(X,Y)u)
+U{(VXB )Y, Z) = (VyBu)(X, Z)
+B(u; X, A(w; Y, Z)) — B(w; Y, A(w; X, Z))
+D(u; X,B(w;Y,Z)) — D(uw; Y, B(uw; X, Z))
D(u; Z, R(X,Y)u)},
(4.7 R

(XM YN 20 = {(VxC) (Y, 2) — (VyCo) (X, 2)

+A(u; X,C (w;Y,2)) — A(w; Y, C (u; X, Z))

+C (u; X, D (w;Y, Z)) — C(w;Y, D (u; X, Z))

+E (w; R(X,Y)u,Z)}

Fo{R(X,Y)Z + (Vx D) (V. Z) — (Vy Dy) (X, Z)
+B(u; X,C (w;Y,Z)) — B(w;Y,C (w; X, Z))

+D (w; X, D (w;Y, Z)) = D (w; Y, D (u; X, Z))
+F(u; R(X,Y)u,2)},
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(48) R(X"MY")Z" = Rh{(VxC.)(Z,Y)+ A X,C (w; Z,Y))
+C(u; X, D (w; 2,Y)) — C(u; A(w; X, Z),Y)
_E(ua YaB (u7 Xv Z)) —d (A(X,Z))u (Y)}
+v{(VxD,)(Z,Y)+ B(u; X,C (u; Z,Y))
+D(u; X,D (u; Z,Y)) — D(u; A(w; X, Z),Y)
_F(UHKB (U,X, Z)) —d (B(X,Z)>u (Y)}7

(49) R(X"YY)Z" = h{(VxE,) (Y,Z)+ A X,E(wY,Z2))
+C(u; X, F (w;Y, Z2)) — C(u; C (w; X, Z),Y)
_E(’U’vaD(qua Z)) - d(C(X,Z)) (Y)}
+o{(VxF,) (Y, Z)+ B(w; X, E (v;Y, Z))
+D(uw; X, F (w;Y,Z)) — D(u; C (u; X, Z),Y)
_F(uax‘D (U;Xv Z)) —d (D(X,Z)>u (Y)}v

(410) R(X°,Y")zZ" = h{d(Cizy)),(X)—d(Cizx)), )
+C(u; C (w; 2,Y), X) — C(w; C (w; Z,X),Y)
+E(u; X, D (u; 2,Y)) — E(w;Y, D (u; Z, X))}
+o{d (D(zy)), (X) = d(D(z.x)),, (Y)
+D(u;C(u; Z2,Y), X) — D(uw;C (w; Z,X),Y)
+F(u; X, D (u; Z2,Y)) — F(w; Y, D (u; Z, X))},

(411) R(X",Y")Z" = h{d(Ey.z),(X)-d(Exz), )
+C(w; B (w;Y,2),X) - C(u; E(u; X, Z),Y)
+E(w; X, F (Y, Z)) — E(wY, F (v X, 2))}
+o{d (Fy,z)), (X) = d (Fix,2)), (Y)
+D(u; E(w;Y,Z), X)— D(w; E(w; X, 2),Y)
+F(u; X, F (wY, Z2)) — Fu Y, F (u; X, Z))},

forallz € M and X,Y,Z € T, M, where the lifts are taken at v € T, M and R is
the Riemannian curvature of g.

Remark 4.1. Let P = Z?:s fET and Q = 23;:5 fiQTi be F-tensors, such that
P f,Q are differentiable functions on RT and T* are defined in Notation 3.1 . For

7

(z,u) €eTM and X ,Y ,Z € T, M, we have

(4.12) Pu; X, Q(w; Y, Z)) — P(wY,Q(u; X, 2))
= {a(P,Q)(Jul? ) (¥, 2)
+az(P,Q)(luf*)g (Y, w)g(Z,u)} X
—{a1 (P, Q)(Jul*)g(X. 2)
+az(P, Q) (|ul*)g(X, u)g(Z,u)}Y
+as (P, Q)(Jul*){g(X, Z)g(Y, u)
—9(Y, Z)g(X, u)}u,
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where a;(P,Q), i = 1,2,3; are the functions on RT given by

(4.13) al(P,Q)(t) = tflf2,
(4.14) ax(P,Q)(t) = [fE(&+t1) — (L1 — 1),
(4.15) as(PQ)(t) = [FfE— (5 + F +tf0) 2,

for allt € RT .

In the sequel we shall consider only Riemannian g-natural metrics G on T M.

4.2. On the hereditary property of constant sectional curvature. We prove
the following result that improves [2, theorem 0.3].

Proposition 4.2. If (TM,G) has constant sectional curvature then (M,g) is a
flat Riemannian manifold.

Proof. If (T M, G) has constant sectional curvature K, then by [2, theorem 0.3]
(M, g) has constant sectional curvature k& € R. Furthermore, since (T'M,G) has
constant sectional curvature then its Riemannian curvature R satisfies

R(Xh,Yh)Zlv(m,u) € H(yyTM for any (z,u) € TM, and X,Y,Z € X(M). Then

by (4.7), we have

(4.16) R(X,Y)Z, = —[(VxDu.)(Y,Z)— (VyD.)(X,Z)
+B(w; X, C(w;Y, Z)) — B(w; Y, C(w; X, Z))
+D(u; X, D(w;Y, 2)) — D(w; Y, D(u; X, Z))
+F(u; R(X,Y)u, Z)],
V(z,u) € TM.

Thus R(X,Y)Z, =0, Vo € M (by taking (v,u) = (2,0) € TM).
This means that k = 0.

In the following proposition, we investigate the g-natural metrics of
constant sectional curvature.

Proposition 4.3. For dim M > 3, the flat Riemannian g-natural metrics are the
only g-natural metrics on T M that have constant sectional curvature.

Proof. If (T'M, Q) has constant sectional curvature K, then
(417) R(X"YM z" = K[G(Z"Y") X" -G (X", Z")Y"]

= Kl(loq+0a3)g(Z,Y) + (81 + B3)9(Z,u)g(Y,u)] X"
—K[(a1 + 03)g(X, Z) + (81 + B3)9(X,u)g(Z,u)]Y".
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So by Proposition 4.2, we have R = 0 and thus from the formulas (4.6) and (4.12),
we obtain

(4.18) R(x"yM)z"

MA(w; X, A(wY, Z)) — A(w; Y, A(u; X, Z))
+C(u; X, B(w;Y, Z)) = C(w; Y, B(u; X, Z)) }
= {la1(A, A) +a:(C, B)lg(Y, Z)
+aa(A, A) + a2 (C, B)|g(Y,u)g(Z,u)} X"
—{la1(4, 4) + a1 (C, B)lg(X, Z)
+az (A, A) + a2 (C, B)|g(X,u)g(Z,u)}Y"
+{las(A, A) + a3(C, B)l[g(X, Z)g(Y,u)
~9(Y, Z)g(X, u)]}u".
Then, let (x,u) € TM with u # 0 :

1) Since dim M > 3, there exists two non-vanishing vectors X, Y € T, M
such that the system (u, X,Y") is orthogonal. So by (4.17) and (4.18), for
Z =Y, we obtain respectively R (Xh, Yh) Y = K(ag+a3)g(Y,Y)X" and
R(X",Y")Y" = [a1(A, A) + a1 (C, B)]g(Y,Y)X". Since
g(Y,Y) # 0 and X # 0, we have

(4.19) K(ar + a3)(t) = [a1(A, A) + a1 (C, B)|(t), ¥t > 0.

2) Next, by choosing Y = Z = u such that u is orthogonal to a vector X # 0
in T, M, (4.17) gives

(4200 R(X"Y")Y" = Kg(u,u)[(a1 + a3) + g(u, u)(Br + B5)] X",
and (4.18) gives
(4.21) R(X"Y")Y" = g(u,u)la1(A, A) + a:1(C, B)
+g(u,u)(az(A, A) + ax(C, B)))| X".
Then, by (4.20) and (4.21), we have,

(4.22) K[(a1 4+ a3) +g(u,w)(B1+03)] = a1(A,A)+a:1(C,B)
+g(u,u)az(A, A) + az(C, B)).

Thus, by (4.19), we obtain
(4.23) [az(A, A) + ax(C, B)|(t) = K(B1 + B3)(t) ,¥Vt > 0.

3) Furthermore, by choosing ¥ = v and X = Z # 0 such that X and u are
orthogonal, (4.17) gives

R (Xh,uh) XM= —K(ay 4 a3)g(X, X)u",
and (4.18) gives
R(XMu") X" = g(X,X)[~(a1(4, A) + a1 (C, B))
+9(u, u)(az(A, A) + az(C, B)Ju".
Then by (4.19), we obtain
(4.24) [as(A, A) + as3(C, B)](t) = 0,¥t > 0.
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And we deduce that the identities (4.19), (4.23) and (4.24) are true for any
t > 0, since the functions oy, 8;,i = 1,2, 3; are smooth on RT.
Hence we have

al(A,A) +0,1(O,B) = K(a1 +013),
(425) G,Q(A, A) + QQ(C, B) = K(ﬂl + 53),

az(A, A) +a3(C,B) = 0.
But (T'M, G) is Riemannian, i.e.,

a; >0
(4.26) { a=a(a+az)—a2>0 "’
and then
o > 0

(4.27) { ai(a; +az) > a3

so (a1 + a3) > 0. Hence according to the first equation of (4.25) which means that

(4.28) L (07 (8) + 5 (0 f7 = K(aa + as)(2),
we obtain for t =0, 0= K(aq + a3)(0) ,s0 K =0.

If (M, g) is a flat Riemannian manifold and we choose

ar=az3=p=0=0F=0
we obtain that (TM, G) is a flat Riemannian manifold . But it is not the only way
to choose the functions «y, B;, @ =1,2,3, for getting (TM,G) as a flat
Riemannian manifold. Actually we estabish a characterization of flat Riemannian
g-natural metrics in what follows.

(4.29) { a =1, , (Sasaki’s metric)

4.3. Flat Riemannian g-natural metrics.
Lemma 4.2. If (TM,G) is a flat Riemannian manifold with dim M > 3, then
a) ﬁl + 53 = 07

) a1 + as = constant > 0,
C) 20[’2 = ﬂg,
) == gE =0,
where oy denotes the first derivative of as.

Proof. It (TM, Q) is flat Riemannian then, by [2, page 36], we have 1 + 5 =0
and a7 + az = constant. We have also o + a3 > 0 since a > 0. Therefore we have
the parts a) and b) of Lemma 4.2. Furthermore,
by [3, Lemma 4.1], we have 2a5 — 2 =0, and A=B=C =D =0.

It remains to prove d).

Since D = 0 then (4.11) gives,

4300  RAX.Y)Z = {la(FF)+ ff — fFlg(v, 2)
Haa(F, F) + f§ — 2f6F’1 (Y, u)g(Z,u)}X
~{[ar(F, F) + fF — fFlg(X, 2)
Haz(F, F) + 18 — 218 9(X, u)g(Z,u)}Y
Has(F, F) + 28" — fF1{g(X, Z)g(Y, u)
—9(Y, Z)g(X, w)}u,
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where RS(X,Y)Z is the vertical component of R (X"V,Y") Z?. Since
dim M > 3, then similar arguments as in the proof of Proposition 4.3 applied to
the identity RS(X,Y)Z =0 for all X,Y,Z € T, M, yield

tfsfr+fr—fc = 0,
(4.31) fE+tfefs+fs = 2f,
2+ tfsfr+ fs 2f7,

where f; = fF i =6,7,8, and f! denotes the first derivative of f;. Then the first

3

equation of the system (4.31) gives

(4.32) fr(L+tfs) = fe,

and so 1 +tfs # 0, Vt > 0, (otherwise 1 +tfs = 0 would imply fg = 0 and
tfe = —1, which is absurd). Hence (4.32) gives

Js
4.33 = .
(4.33) fr=1 e
Furthermore the second equation of (4.31) gives
2f6 — 18
4.34 = ———,
(4.34) fs=+ e
Next by using (4.33), we obtain
fo— 13
4.35 r— J8 " J6
439 A
and
1+ 2tfs
4.36 1+tfr = .
( ) I 1+tfs

By replacing (4.33), (4.34), (4.36) and (4.35) into the 3" equation of the sytem
(4.31), we obtain

(4.37) 4tfofs = =213 +2tf3,
which implies
(4.38) fet) = 0, or
/ _ fG (t) fg (t)
(439) sy = -LE LoD
for t > 0.

So fe is a solution on the open set I = {t €]0, +o00[ / fs(t) # 0} of the Bernouilli
equation

iyt yR)
(440) y(t) = —W‘i‘T

Besides, we have fg(0) = 0. Indeed, if 0 € Adh(I) the adherence of I in R, then
by equation (4.40), we have

f6(0)

lim fg(t)
ter

= T e[-2£5() + £2(0)] = 0.
ter
But if 0 ¢ Adh(I) then evidently, we have fg(0) = 0.
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Thus the frontier F'r(I) of I is necessarily non empty, since R* is connected and
f6 is smooth. In summary fg is a solution of the equation

(4.41) { y/(t)zf%?ijQ(t)a vtel,
y\p,,.(l) =0 3

that has the unique solution y = 0, so fg = 0.
Next by using (4.33) and (4.34), we obtain f7 = fg = 0, as stated.

Theorem 4.1. Let (M, g) be a Riemannian manifold and (TM,G) its
tangent bundle equipped with a g-natural metric G. Then (TM,G) is flat
Riemannian if and only if
i) (M,g) is flat,
i) aq(t) >0, ¢1(t) >0, «t) >0, o) >0, foralteRT,
iii) a1 + a3 = constant >0, f1+03=0, 2a,= [,
) sy and B = B2(2a2+1532)

altag

A
iv) of = Prpwoanl
where o) and ob are respectively the first derivatives of the functions

a1 and os.

Proof. Let us assume that (T'M, G) is flat Riemannian. By Proposition 1.2 and
Proposition 4.2, we obtain the parts ¢) and i) of Theorem 4.1.

Next we obtain i) from Lemma 4.2.

It remains to prove iv). But according to Lemma 4.2 we have

(4.42) 20, = [ and
1 +
(4.43) fe = —%( /2+§/32)+O/1M =0.
Then by combining these identities, we obtain
a3
4.44 ==
( ) oy a1 + as
Lemma 4.2 gives again
(4.45) fr = (Bi—a)) (o1 + ¢3) — Baga =0, and
pr+0s = 0,
then
P22
4.46 = !
(4.46) b1 ap + o1 + o
t
= b | Bt i) )
a1 + a3 a1 + ag
_ Bo2ap +tBs)
= ————.
o1+ as

So we prove iv).

Conversely:
The part i7) shows that G is Riemannian. Next by combining the parts i) and ii7)
we obtain

(4.47) A=B=C=D=0.
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Furthermore by combining the parts iii) and iv) we obtain

(4.48) & = F=f=o,

B2 B 204
4.49 po_ oyp_ P2 om0
(1.49) R vl e
So (4.48) implies that F' = 0, and by considering (4.47) we obtain: V (z,u) €
TM and V X,Y, Z € T, M,

(4.50) R(X"yMzh = R(X"Y") z"=0,

R(X"y")z" = R(X"Y")Z'=R(X",Y")Z"=0,
where the lifts are taken at (z,u). Next (4.49) implies
(4.51) R(X",Y") 2" = Wd(Ey,z),(X)—d(Exz), )

= {UF = 190 2) + (1 = 289V, w)g(Z,u)} X
~{(FF = 919X, 2) + (F€ = 248 )9(X, w)g(Z,u)} 2

+2fF" — O (Y, 2)9(X,u) — g(X, Z)g(Y,u)}u
= 0.
Finally R = 0.
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