Affine Translation Surfaces in the Isotropic 3-Space

Muhittin Evren Aydin* and Mahmut Ergut

(Communicated by Ion Mihai)

ABSTRACT

In this paper, we describe (linear) Weingarten affine translation surfaces of first kind in the isotropic 3-space. In addition, we obtain such surfaces that satisfy certain equations in terms of the position vector and the Laplace operator.

Keywords: Isotropic space; affine translation surface; Weingarten surface. **AMS Subject Classification (2010):** Primary: 53B25; Secondary: 53A35; 53A40.

1. Introduction

It is well-known that a *translation surface* in a Euclidean 3-space \mathbb{R}^3 formed by translating two curves lying in orthogonal planes is the graph of a function z(x,y)=f(x)+g(y) for the standard coordinate system of \mathbb{R}^3 . One of the famous minimal surfaces of \mathbb{R}^3 is the *Scherk's translation surface* which is the graph of ([26])

$$z\left(x,y\right) = \frac{1}{c}\log\left|\frac{\cos\left(cx\right)}{\cos\left(cy\right)}\right|,\;c\in\mathbb{R}^{*} := \mathbb{R}-\left\{0\right\}.$$

The recent results relating to such surfaces in \mathbb{R}^3 and \mathbb{R}^3_1 (Minkowskian 3-space) of constant Gaussian and mean curvature were well-structured in [17]. In order for their generalizations in various ambient spaces, see [4, 5, 7, 12, 14, 20, 21, 25, 28, 29].

In 2013, Liu and Yu [15] defined the affine translation surfaces in \mathbb{R}^3 as the graph of the function

$$z(x,y) = f(x) + g(y + ax), a \in \mathbb{R}^*$$

and described the minimal affine translation surfaces (so-called affine Scherk surface) given in explicit form

$$z(x,y) = \frac{1}{c} \log \left| \frac{\cos \left(c\sqrt{1 + a^2}x \right)}{\cos \left(c\left[y + ax \right] \right)} \right|, \ a, c \in \mathbb{R}^*.$$

Those are indeed the translation surfaces whose the translating curves lie in non-orthogonal planes. Then, Liu and Jung [16] obtained the affine translation surfaces in \mathbb{R}^3 of arbitrary constant mean curvature. Further, Yang and Fu [30] classified these surfaces in an affine 3-space of constant mean and Gaussian curvature.

In the isotropic 3-space \mathbb{I}^3 that is one of real-Cayley-Klein spaces, up to the absolute figure, there exist three different types of translation surfaces formed by translating two curves lying in orthogonal planes (see [19, 27]):

Type 1 Two translating curves lie in the isotropic planes x = 0 and y = 0,

$$z\left(x,y\right) =f\left(x\right) +g\left(y\right) ;$$

Type 2 one translating curve lies in the non-isotropic plane z = 0 and another one in the isotropic plane x = 0,

$$y(x,z) = f(x) + g(z);$$

Type 3 two translating curves lie in the non-isotropic planes $y - z = \pi$ and $y + z = \pi$,

$$x\left(y,z\right) = \frac{1}{2}\left(f\left(\frac{y+z-\pi}{2}\right) + g\left(\frac{\pi-y+z}{2}\right)\right),\,$$

where x, y, z are the standart coordinates in \mathbb{I}^3 . A surface of one type cannot be carried into that of another type by the isometries of \mathbb{I}^3 . Such surfaces of constant isotropic Gaussian and mean curvature were obtained in [19] as well as Weingarten ones. In addition, the translation surfaces of Type 1 in \mathbb{I}^3 that satisfy the condition

$$\triangle^{I,II}r_i = \lambda_i r_i, \ \lambda_i \in \mathbb{R}, \ i = 1, 2, 3,$$

were presented in [13], where r_i is the coordinate function of the position vector and $\triangle^{I,II}$ the Laplace operator with respect to the first and second fundamental forms, respectively. This condition is natural, being related to the so-called *submanifolds of finite type*, introduced by B.-Y. Chen in the late 1970's (see [8, 9, 11]). More details for isotropic counterparts of translation surfaces can be found in [2, 3, 6].

In this paper, we investigate the translation surfaces in \mathbb{I}^3 formed by translating of two curves lying in the isotropic planes, not necessary orthogonal. We call such surfaces *affine translation surfaces of first kind* and classify ones of Weingarten type. Morever, we describe the affine translation surfaces of first kind that satisfy the condition $\triangle^{I,II}r_i = \lambda_i r_i$.

2. Preliminaries

The isotropic 3-space \mathbb{I}^3 is defined from the projective 3-space $P\left(\mathbb{R}^3\right)$ with an absolute figure consisting of a plane ω and two complex-conjugate straight lines f_1, f_2 in ω (see [1, 10, 18], [22]-[24]). Denote the projective coordinates by $(X_0: X_1: X_2: X_3)$ in $P\left(\mathbb{R}^3\right)$. Then the absolute plane ω is given by $X_0=0$ and the absolute lines f_1, f_2 by $X_0=X_1+iX_2=0$, $X_0=X_1-iX_2=0$. The intersection point F(0:0:0:0:1) of these two lines is called the absolute point. The group of motions of \mathbb{I}^3 is a six-parameter group given in the affine coordinates $x=\frac{X_1}{X_0}, y=\frac{X_2}{X_0}, z=\frac{X_3}{X_0}, X_0\neq 0$, by

$$(x, y, z) \longmapsto (x', y', z') : \begin{cases} x' = a_1 + x \cos \phi - y \sin \phi, \\ y' = a_2 + x \sin \phi + y \cos \phi, \\ z' = a_3 + a_4 x + a_5 y + z, \end{cases}$$

where $a_1, ..., a_5, \phi \in \mathbb{R}$. The metric of \mathbb{I}^3 is induced by the absolute figure, i.e. $ds^2 = dx^2 + dy^2$. In the affine model of \mathbb{I}^3 , the lines in z-direction correspond to *isotropic lines*. The plane containing an isotropic line is said to be *isotropic*. Other planes are *non-isotropic*.

Let M^2 be a surface immersed in \mathbb{I}^3 . We call the surface M^2 admissible if it has no isotropic tangent planes. Such a surface can get the form

$$r:D\subseteq\mathbb{R}^{2}\longrightarrow\mathbb{I}^{3},\ \left(x,y\right) \longmapsto\left(r_{1}\left(x,y\right) ,r_{2}\left(x,y\right) ,r_{3}\left(x,y\right) \right) .$$

The components E, F, G of the first fundamental form I of M^2 can be calculated via the metric induced from \mathbb{I}^3 . Denote the Laplace operator of M^2 with respect to I by \triangle^I . Then it is defined as

$$\triangle^{I} \phi = \frac{1}{\sqrt{W}} \left\{ \frac{\partial}{\partial x} \left(\frac{G\phi_{x} - F\phi_{y}}{\sqrt{W}} \right) - \frac{\partial}{\partial y} \left(\frac{F\phi_{x} - E\phi_{y}}{\sqrt{W}} \right) \right\}, \ \phi_{x} = \frac{\partial \phi}{\partial x}, \tag{2.1}$$

where ϕ is a smooth function on M^2 and $W = EG - F^2$. The unit normal vector field of M^2 is completely isotropic, i.e. (0,0,1). Morever, the components of the second fundamental form II are

$$L = \frac{\det(r_{xx}, r_x, r_y)}{\sqrt{W}}, \ M = \frac{\det(r_{xy}, r_x, r_y)}{\sqrt{W}}, \ N = \frac{\det(r_{yy}, r_x, r_y)}{\sqrt{W}},$$
(2.2)

where $r_{xy} = \frac{\partial^2 r}{\partial x \partial y}$, etc. The *relative curvature* (so-called the *isotropic curvature* or *isotropic Gaussian curvature*) and the *isotropic mean curvature* are respectively defined by

$$K = \frac{LN - M^2}{EG - F^2}, \ H = \frac{EN - 2FM + LG}{2(EG - F^2)}.$$
 (2.3)

Assume that nowhere M^2 has parabolic points, i.e. $K \neq 0$. Then the Laplace operator with respect to II is given by

$$\triangle^{II} \phi = -\frac{1}{\sqrt{|w|}} \left\{ \frac{\partial}{\partial x} \left(\frac{N\phi_x - M\phi_y}{\sqrt{|w|}} \right) - \frac{\partial}{\partial y} \left(\frac{M\phi_x - L\phi_y}{\sqrt{|w|}} \right) \right\}$$
(2.4)

for a smooth function ϕ on M^2 and $w = \det(II)$. In particular; if M^2 is a graph surface in \mathbb{I}^3 of a smooth function z = z(x, y), then the metric on M^2 induced from \mathbb{I}^3 is given by $dx^2 + dy^2$. Thus its Laplacian turns to

$$\triangle^{I} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}.$$
 (2.5)

Further, the matrix of second fundamental form II of M^2 corresponds to the Hessian matrix $\mathcal{H}(z)$, i.e.,

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} z_{xx} & z_{xy} \\ z_{xy} & z_{yy} \end{pmatrix}.$$

Accordingly, the formulas in (2.3) reduce to

$$K = \det \left(\mathcal{H} \left(z \right) \right), \ H = \frac{\operatorname{trace} \left(\mathcal{H} \left(z \right) \right)}{2}. \tag{2.6}$$

3. Weingarten affine translation surfaces

Let M^2 be the graph surface in \mathbb{I}^3 of the function z(x,y) = f(u) + g(v), where

$$u = ax + by, \ v = cx + dy. \tag{3.1}$$

If $ad - bc \neq 0$, we call the surface M^2 an affine translation surface of first kind in \mathbb{I}^3 and the pair (u, v) affine parameter coordinates. Especially; if the matrix of coefficients in (3.1) is orthogonal, then such a surface reduces to the translation surface of Type 1 in \mathbb{I}^3 . Henceforth, let us fix some notations as below:

$$\frac{\partial f}{\partial x} = a \frac{df}{du} = af', \ \frac{\partial f}{\partial y} = bf', \ \frac{\partial g}{\partial x} = c \frac{dg}{dv} = cg', \ \frac{\partial g}{\partial y} = dg',$$

and so on. By (2.6), the relative curvature K and the isotropic mean curvature H of M^2 turn to

$$K = (ad - bc)^2 f'' g''$$
 and $2H = (a^2 + b^2) f'' + (c^2 + d^2) g''$. (3.2)

Now we can state the following result to describe the Weingarten affine translation surfaces of first kind in \mathbb{I}^3 that satisfy the condition

$$K_x H_y - K_y H_x = 0, (3.3)$$

where the subscript means the partial derivative.

Theorem 3.1. Let M^2 be a Weingarten affine translation surface of first kind in \mathbb{I}^3 . Then one of the following occurs:

(i) M^2 is the graph of

$$z(x,y) = c_1 u^2 + \frac{c_1(a^2 + b^2)}{(c^2 + d^2)} v^2 + c_2 u + c_3 v + c_4, c_1, ..., c_4 \in \mathbb{R};$$

(ii) M^2 is the graph of either

$$z(x,y) = f(u) + c_1 v^2 + c_2 v + c_3, f''' \neq 0, c_1, c_2, c_3 \in \mathbb{R}$$

or

$$z(x,y) = q(v) + c_1 u^2 + c_2 u + c_3, \ q''' \neq 0, \ c_1, c_2, c_3 \in \mathbb{R},$$

where (u, v) is the affine parameter coordinates given by (3.1).

Proof. It follows from (3.2) and (3.3) that

$$[(a^2 + b^2) f'' - (c^2 + d^2) g''] f''' g''' = 0.$$
(3.4)

To solve (3.4), we have several cases:

Case (a) $(a^2 + b^2) f'' = (c^2 + d^2) g''$. Then we derive

$$z(x,y) = c_1 u^2 + \frac{c_1 (a^2 + b^2)}{(c^2 + d^2)} v^2 + c_2 u + c_3 v + c_4, c_1, ..., c_4 \in \mathbb{R},$$

which gives the statement (i) of the theorem.

Case (b) $(a^2 + b^2) f'' \neq (c^2 + d^2) g''$. Then, by (3.4), the surface has the form either

$$z(x,y) = g(v) + c_1 u^2 + c_2 u + c_3, g''' \neq 0$$

or

$$z(x,y) = f(u) + c_4v^2 + c_5v + c_6, f''' \neq 0, c_1, ..., c_6 \in \mathbb{R}.$$

This implies the second statement of the theorem. Therefore the proof is completed.

Now we intend to find the linear Weingarten affine translation surfaces of first kind in \mathbb{I}^3 that satisfy

$$\alpha K + \beta H = \gamma, \ \alpha, \beta, \gamma \in \mathbb{R}, \ (\alpha, \beta, \gamma) \neq (0, 0, 0).$$
(3.5)

Without lose of generality, we may assume $\alpha \neq 0$ in (3.5) and thus it can be rewritten as

$$K + 2m_0 H = n_0, \ 2m_0 = \frac{\beta}{\alpha}, \ n_0 = \frac{\gamma}{\alpha}.$$
 (3.6)

Hence the following result can be given.

Theorem 3.2. Let M^2 be a linear Weingarten affine translation surface of first kind in \mathbb{I}^3 that satisfies (3.6). Then we have:

(i) M^2 is the graph of

$$z(x,y) = c_1 u^2 + c_2 v^2 + c_3 u + c_4 v + c_5, c_1, ..., c_5 \in \mathbb{R}.$$

(ii) M^2 is the graph of either

$$z(x,y) = f(u) - \frac{m_0(a^2 + b^2)}{2(ad - bc)^2}v^2 + c_1v + c_2, \ f''' \neq 0, \ c_1, c_2 \in \mathbb{R}$$

or

$$z(x,y) = g(v) - \frac{m_0(c^2 + d^2)}{2(ad - bc)^2}u^2 + c_1u + c_2, \ g''' \neq 0, \ c_1, c_2 \in \mathbb{R},$$

where (u, v) is the affine parameter coordinates given by (3.1).

Proof. Substituting (3.2) in (3.6) gives

$$(ad - bc)^{2} f''g'' + m_{0} (a^{2} + b^{2}) f'' + m_{0} (c^{2} + d^{2}) g'' = n_{0}.$$
(3.7)

After taking derivative of (3.7) with respect to u and v, we deduce f'''g'''=0. If both f''' and g''' are zero then we easily obtain the first statement of the theorem. Otherwise, we have the second statement of the theorem. \Box

Example 3.1. Consider the affine translation surface of first kind in \mathbb{I}^3 with

$$z(x,y) = \cos(x-y) + (x+y)^2, -\frac{\pi}{6} \le x, y \le \frac{\pi}{6}.$$

This surface plotted as in Fig. 1 satisfies the conditions to be Weingarten and linear Weingarten.

4. Affine translation surfaces satisfying $\triangle^{I,II}r_i = \lambda_i r_i$

This section is devoted to classify the affine translation surfaces of first kind in \mathbb{I}^3 that satisfy the conditions $\triangle^{I,II}r_i=\lambda_i r_i, \lambda_i\in\mathbb{R}$. For this, we get a local parameterization on such a surface as follows:

$$r(x,y) = (r_1(x,y), r_2(x,y), r_3(x,y)) = (x,y, f(ax+by) + g(cx+dy)).$$
(4.1)

Thus we first give the following result.

Theorem 4.1. Let M^2 be an affine translation surface of first kind in \mathbb{I}^3 that satisfies $\triangle^I r_i = \lambda_i r_i$. Then it is the graph of one of the following functions:

(i)
$$(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0),$$

$$z(x,y) = c_1 u^2 - \frac{c_1 (a^2 + b^2)}{(c^2 + d^2)} v^2 + c_3 u + c_4 v + c_5;$$

(ii) $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, \lambda > 0),$

$$z\left(x,y\right) = c_{1}e^{\sqrt{\frac{\lambda}{a^{2}+b^{2}}}u} + c_{2}e^{-\sqrt{\frac{\lambda}{a^{2}+b^{2}}}u} + c_{3}e^{\sqrt{\frac{\lambda}{c^{2}+d^{2}}}v} + c_{4}e^{-\sqrt{\frac{\lambda}{c^{2}+d^{2}}}v};$$

(iii) $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, \lambda < 0),$

$$z(x,y) = c_1 \cos\left(\sqrt{\frac{-\lambda}{a^2+b^2}}u\right) + c_2 \sin\left(\sqrt{\frac{-\lambda}{a^2+b^2}}u\right) + c_3 \cos\left(\sqrt{\frac{-\lambda}{c^2+d^2}}v\right) + c_4 \sin\left(\sqrt{\frac{-\lambda}{c^2+d^2}}v\right),$$

where (u, v) is the affine parameter coordinates given by (3.1) and $c_1, ..., c_5 \in \mathbb{R}$.

Proof. It is easy to compute from (2.5) and (4.1) that

$$\triangle^I r_1 = \triangle^I r_2 = 0 \tag{4.2}$$

and

$$\triangle^{I} r_{3} = (a^{2} + b^{2}) f'' + (c^{2} + d^{2}) g''.$$
(4.3)

Assuming $\triangle^{I} r_{i} = \lambda_{i} r_{i}$, i = 1, 2, 3, in (4.2) and (4.3) yields $\lambda_{1} = \lambda_{2} = 0$ and

$$(a^{2} + b^{2}) f'' + (c^{2} + d^{2}) g'' = \lambda (f + g), \ \lambda_{3} = \lambda.$$

$$(4.4)$$

If $\lambda = 0$ in (4.4), then we derive

$$f(u) = c_1 u^2 + c_2 u + c_3$$

and

$$g(v) = -\frac{c_1(a^2 + b^2)}{(c^2 + d^2)}v^2 + c_4v + c_5, c_1, ..., c_5 \in \mathbb{R},$$

which proves the statement (i) of the theorem. If $\lambda \neq 0$ then (4.4) can be rewritten as

$$(a^{2} + b^{2}) f'' - \lambda f = \mu = -(c^{2} + d^{2}) g'' + \lambda g, \ \mu \in \mathbb{R}.$$
(4.5)

In the case $\lambda > 0$, by solving (4.5) we obtain

$$\begin{cases} f(u) = c_1 \exp\left(\sqrt{\frac{\lambda}{a^2 + b^2}}u\right) + c_2 \exp\left(-\sqrt{\frac{\lambda}{a^2 + b^2}}u\right) - \frac{\mu}{\lambda}, \\ g(v) = c_3 \exp\left(\sqrt{\frac{\lambda}{c^2 + d^2}}v\right) + c_4 \exp\left(-\sqrt{\frac{\lambda}{c^2 + d^2}}v\right) + \frac{\mu}{\lambda}, \end{cases}$$

where $c_1, ..., c_4 \in \mathbb{R}$. This gives the statement (ii) of the theorem. Otherwise, i.e. $\lambda < 0$, then we derive

$$\begin{cases} f(u) = c_1 \cos\left(\sqrt{\frac{-\lambda}{a^2 + b^2}}u\right) + c_2 \sin\left(\sqrt{\frac{-\lambda}{a^2 + b^2}}u\right) - \frac{\mu}{\lambda}, \\ g(v) = c_3 \cos\left(\sqrt{\frac{-\lambda}{c^2 + d^2}}v\right) + c_4 \sin\left(\sqrt{\frac{-\lambda}{c^2 + d^2}}v\right) + \frac{\mu}{\lambda} \end{cases}$$

for $c_1, ..., c_4 \in \mathbb{R}$. This completes the proof.

Example 4.1. Take the affine translation surface of first kind in \mathbb{I}^3 with

$$z(x,y) = \cos(x+y) + \sin(x-y), -\pi \le x, y \le \pi.$$

Then it holds $\triangle^I r_i = \lambda_i r_i$ for $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = -2$ and can be plotted as in Fig. 2.

Next, we consider the affine translation surface of first kind in \mathbb{I}^3 that satisfies $\triangle^{II}r_i = \lambda_i r_i$, $\lambda_i \in \mathbb{R}$. Then its Laplace operator with respect to the second fundamental form II has the form

$$\Delta^{II}\phi = \frac{(f''g'')^{-2}}{2(ad-bc)} \left[(-b\phi_x + a\phi_y) (f'')^2 g''' + (d\phi_x - c\phi_y) f''' (g'')^2 \right] + \frac{(f''g'')^{-1}}{(ad-bc)^2} \left[\left(2ab\phi_{xy} - b^2\phi_{xx} - a^2\phi_{yy} \right) f'' + \left(2cd\phi_{xy} - d^2\phi_{xx} - c^2\phi_{yy} \right) g'' \right]$$

$$(4.6)$$

for a smooth function ϕ and $f''g'' \neq 0$. Hence we have the following result.

Theorem 4.2. Let M^2 be an affine translation surface of first kind in \mathbb{I}^3 that satisfies $\triangle^{II}r_i = \lambda_i r_i$. Then it is the graph of one of the following functions:

(i) $(\lambda_1 \neq 0, \lambda_2 \neq 0, 0)$,

$$z(x,y) = \ln \left| x^{\frac{1}{\lambda_1}} y^{\frac{1}{\lambda_2}} \right| + c_1, \ c_1 \in \mathbb{R};$$

(ii) $(\lambda \neq 0, \lambda, 0)$,

$$z(x,y) = \ln\left|(uv)^{\frac{1}{\lambda}}\right| + c_1, c_1 \in \mathbb{R},$$

where (u, v) is the affine parameter coordinates given by (3.1).

Proof. Let us assume that $\triangle^{II}r_i = \lambda_i r_i$, $\lambda_i \in \mathbb{R}$. Then, from (4.1) and (4.6), we state the following system:

$$d\frac{f'''}{(f'')^2} - b\frac{g'''}{(g'')^2} = 2(ad - bc)\lambda_1 x,$$
(4.7)

$$-c\frac{f'''}{(f'')^{2}} + a\frac{g'''}{(g'')^{2}} = 2(ad - bc)\lambda_{2}y,$$
(4.8)

$$\frac{f'''f'}{(f'')^2} + \frac{g'''g'}{(g'')^2} - 4 = 2\lambda_3 (f+g). \tag{4.9}$$

To solve above system, by considering $ad - bc \neq 0$, we distinguish two cases based on the constants a, b, c, d:

Case (a) Two of a, b, c, d are zero. Without loss of generality we may assume that b = c = 0 and a = d = 1. Then the equations (4.7) and (4.8) reduce to

$$\frac{f'''}{\left(f''\right)^2} = 2\lambda_1 x \tag{4.10}$$

and

$$\frac{g'''}{(g'')^2} = 2\lambda_2 y. {(4.11)}$$

26

If $\lambda_1 = \lambda_2 = 0$, then we obtain a contradiction from (4.9) due to the fact that f, g are non-constant functions. Thereby we need to consider the remaining cases:

Case (a.1) $\lambda_1 = 0$, i.e. f''' = 0. Then substituting (4.10) and (4.11) into (4.9) implies $\lambda_3 = 0$ and

$$g(y) = \frac{2}{\lambda_2} \ln y + c_1, \ c_1 \in \mathbb{R}.$$

However, this is not a solution of (4.11) and gives a contradiction.

Case (a.2) $\lambda_2 = 0$, i.e. g''' = 0. Hence we can similarly obtain that $\lambda_3 = 0$ and

$$f(x) = \frac{2}{\lambda_1} \ln x + c_1, \ c_1 \in \mathbb{R},$$

which gives a contradiction by considering it into (4.10).

Case (a.3) $\lambda_1 \lambda_2 \neq 0$. By substituting (4.10) and (4.11) into (4.9) we deduce

$$\lambda_1 x f' + \lambda_2 y g' - 2 = \lambda_3 (f + g).$$
 (4.12)

Case (a.3.1) If $\lambda_3 = 0$, then (4.12) reduces to

$$\lambda_1 x f' + \lambda_2 y g' = 2. \tag{4.13}$$

By solving (4.13) we find

$$f(x) = \frac{\xi}{\lambda_1} \ln x + c_1 \text{ and } g(v) = \frac{2 - \xi}{\lambda_2} \ln y + c_2, \ c_1, c_2 \in \mathbb{R}, \ \xi \in \mathbb{R}^*.$$
 (4.14)

Substituting (4.14) into (4.10) and (4.11) yields $\xi = 1$. This proves the first statement of the theorem.

Case (a.3.2) If $\lambda_3 \neq 0$ in (4.12) then we can rewrite it as

$$\lambda_1 x f' - \lambda_3 f - 2 = \mu = -\lambda_2 y g' + \lambda_3 g, \ \mu \in \mathbb{R}. \tag{4.15}$$

After solving (4.15), we conclude

$$f(x) = -\frac{2+\mu}{\lambda_3} + c_1 x^{\frac{\lambda_3}{\lambda_1}}$$
 (4.16)

and

$$g(y) = \frac{\mu}{\lambda_3} + c_2 y^{\frac{\lambda_3}{\lambda_2}}, c_1, c_2 \in \mathbb{R}.$$
 (4.17)

However, these are not solutions of (4.10) and (4.11), respectively. Indeed, by considering (4.16) and (4.17) into (4.10) and (4.11), we conclude $\lambda_3 = 0$ which implies that this case is not possible.

Case (b) At most one of a, b, c, d is zero. Suppose that $\lambda_1 = 0$ in (4.7). It follows from (4.7) that

$$\frac{f'''}{(f'')^2} = \frac{c_1}{d} \text{ and } \frac{g'''}{(g'')^2} = \frac{c_1}{b}, \ c_1 \in \mathbb{R},$$
 (4.18)

where we may assume that $b \neq 0 \neq d$ since at most one of a,b,c,d can vanish. If $c_1 = 0$, then we derive a contradiction from (4.9) due to $f''g'' \neq 0$. Otherwise, considering (4.18) into (4.8) yields $\frac{c_1}{bd} = 2\lambda_2 y$, which is no possible since y is an independent variable. This implies that λ_1 must be non-zero and it can be similarly shown that λ_2 must be non-zero. Hence from (4.7) and (4.8) we can write

$$\frac{f'''}{\left(f''\right)^2} = 2\left(\lambda_1 ax + \lambda_2 by\right) \tag{4.19}$$

and

$$\frac{g'''}{(g'')^2} = 2(\lambda_1 cx + \lambda_2 dy). \tag{4.20}$$

Compatibility condition in (4.19) or (4.20) gives $\lambda_1 = \lambda_2$. Put $\lambda_1 = \lambda_2 = \lambda$. By substituting (4.19) and (4.20) into (4.9) we deduce

$$\lambda u f' + \lambda v g' - 2 = \lambda_3 (f + g), \qquad (4.21)$$

where (u, v) is the affine parameter coordinates given by (3.1).

Case (b.1) If $\lambda_3 = 0$, then (4.21) reduces to

$$\lambda u f' + \lambda v g' = 2. \tag{4.22}$$

By solving (4.22) we find

$$f(u) = \frac{\xi}{\lambda} \ln u + c_1 \text{ and } g(v) = \frac{2-\xi}{\lambda} \ln v + c_2, \ c_1, c_2 \in \mathbb{R}, \ \xi \in \mathbb{R}^*.$$
 (4.23)

Substituting (4.23) into (4.19) and (4.20) yields $\xi = 1$. This proves the second statement of the theorem.

Case (b.2) If $\lambda_3 \neq 0$ in (4.11), then we can rewrite it as

$$\lambda u f' - \lambda_3 f - 2 = \mu = -\lambda v g' + \lambda_3 g, \ \mu \in \mathbb{R}. \tag{4.24}$$

After solving (4.24), we deduce

$$f(u) = -\frac{2+\mu}{\lambda_3} + c_1 u^{\frac{\lambda_3}{\lambda}}$$
 (4.25)

and

$$g(v) = \frac{\mu}{\lambda_3} + c_2 v^{\frac{\lambda_3}{\lambda}}, c_1, c_2 \in \mathbb{R}.$$
 (4.26)

Considering (4.25) and (4.26) into (4.19) and (4.20), respectively, we find $\lambda_3 = 0$, however this is a contradiction.

Example 4.2. Given the affine translation surface of first kind in \mathbb{I}^3 as follows

$$z(x,y) = \ln(2x + y) + \ln(x - y), (x,y) \in [3,5] \times [1,2].$$

Then it holds $\triangle^{II}r_i = \lambda_i r_i$ for $(\lambda_1, \lambda_2, \lambda_3) = (1, 1, 0)$ and we plot it as in Fig. 3.

Figure 1. A (linear) Weingarten affine translation surface of first kind.

Figure 2. An affine translation surface of first kind with $\triangle^I r_i = \lambda_i r_i$, $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 2)$.

Figure 3. An affine translation surface of first kind with $\triangle^{II}r_i=\lambda_ir_i, (\lambda_1,\lambda_2,\lambda_3)=(1,1,0)$.

References

- [1] Aydin, M. and Mihai, I., On certain surfaces in the isotropic 4-space. Math. Commun. 22 (2017), no.1, 41-51.
- [2] Aydin, M. and Ogrenmis, O., Homothetical and translation hypersurfaces with constant curvature in the isotropic space. *BSG Proceedings* 23 (2016), 1-10.
- [3] Aydin, M., A generalization of translation surfaces with constant curvature in the isotropic space. J. Geom. 107 (2016), no.3, 603-615.
- [4] Baba-Hamed, Ch., Bekkar, M. and Zoubir, H., Translation surfaces in the three-dimensional Lorentz-Minkowski space satisfying $\triangle r_i = \lambda_i r_i$. Int. J. Math. Anal. 4 (2010), no. 17, 797 808.
- [5] Bekkar, M. and Senoussi, B., Translation surfaces in the 3-dimensional space satisfying $\triangle^{II}r_i = \mu_i r_i$. J. Geom. 103 (2012), no.3, 367-374.
- [6] Bukcu, B., Yoon, D.W. and Karacan, M.K., Translation surfaces in the 3-dimensional simply isotropic space \mathbb{I}_3^1 satisfying $\triangle^{III}x_i = \lambda_i x_i$. *Konuralp J. Math.* 4 (2016), no. 1, 275-281.
- [7] Cetin, M., Tuncer, Y. and Ekmekci, N., Translation surfaces in Euclidean 3-space. Int. J. Phys. Math. Sci. 2 (2011), 49-56.
- [8] Chen, B.-Y., On submanifolds of finite type. Soochow J. Math. 9 (1983), 65-81.
- [9] Chen, B.-Y., Total mean curvature and submanifolds of finite type. World Scientific. Singapor-New Jersey-London, 1984.
- [10] Chen, B.-Y., Decu S. and Verstraelen, L., Notes on isotropic geometry of production models. Kragujevac J. Math. 38 (2014), no. 1, 23-33.
- [11] Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type: recent development. *Tamkang. J. Math.* 45 (2014), no.1, 87-108.
- [12] Dillen, F., Verstraelen, L. and Zafindratafa, G., A generalization of the translation surfaces of Scherk. Differential Geometry in Honor of Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991), pp. 107–109.
- [13] Karacan, M.K., Yoon, D.W. and Bukcu, B., Translation surfaces in the three dimensional simply isotropic space \mathbb{I}_3^1 . Int. J. Geom. Methods Mod. Phys. 13, 1650088 (2016) (9 pages) DOI: http://dx.doi.org/10.1142/S0219887816500882.
- [14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1999), no. 1-2, 141-149.
- [15] Liu, H. and Yu, Y., Affine translation surfaces in Euclidean 3-space. In: Proceedings of the Japan Academy, Ser. A, Mathematical Sciences 89 Ser. A (2013), 111–113.
- [16] Liu, H., Jung, S.D., Affine translation surfaces with constant mean curvature in Euclidean 3-space. J. Geom. DOI 10.1007/s00022-016-0348-9, in press.
- [17] Lopez, R. and Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 52 (2015), no. 3, 523-535.
- [18] Milin-Sipus, Z. and Divjak, B., Mappings of ruled surfaces in simply isotropic space I_3^1 that preserve the generators. *Monatsh. Math.* 139 (2003), 235–245.
- [19] Milin-Sipus, Z., Translation surfaces of constant curvatures in a simply isotropic space. *Period. Math. Hung.* 68 (2014), 160–175.
- $[20] \ \ Moruz, M. \ and \ Munteanu, M.I., Minimal \ translation \ hypersurfaces \ in \ E^4. \ \emph{J. Math. Anal. Appl.} \ 439 \ (2016), \ no. \ 2, \ 798-812.$
- [21] Munteanu, M.I., Palmas, O. and Ruiz-Hernandez, G., Minimal translation hypersurfaces in Euclidean spaces. *Mediterranean. J. Math.* 13 (2016), 2659-2676.
- [22] Ogrenmis, A.O., Rotational surfaces in isotropic spaces satisfying Weingarten conditions. Open Physics 14 (2016), no. 9, 221–225.
- [23] Pottmann, H., Grohs, P. and Mitra, N.J., Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31 (2009), 391-419.
- [24] Sachs, H., Isotrope geometrie des raumes. Vieweg Verlag, Braunschweig, 1990.
- [25] Seo, K., Translation hypersurfaces with constant curvature in space forms. Osaka J. Math. 50 (2013), 631-641.
- [26] Scherk, H.F., Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. J. Reine Angew. Math. 13 (1835), 185-208.
- [27] Strubecker, K., Über die isotropoen Gegenstücke der Minimalfläche von Scherk. J. Reine Angew. Math. 293 (1977), 22–51.
- [28] Sun, H., On affine translation surfaces of constant mean curvature. Kumamoto J. Math. 13 (2000), 49-57.
- [29] Verstraelen, L., Walrave, J. and Yaprak, S., The minimal translation surfaces in Euclidean space. Soochow J. Math. 20 (1994), 77-82.
- [30] Yang, D. and Fu, Y., On affine translation surfaces in affine space. J. Math. Anal. Appl. 440 (2016), no. 2, 437-450.

Affiliations

MUHITTIN EVREN AYDIN

Address: Firat University, Dept. of Mathematics, 23200, Elazig-Turkey.

E-MAIL: meaydin@firat.edu.tr

MAHMUT ERGUT

Address: Namik Kemal University, Dept. of Mathematics, 59000, Tekirdag-Turkey.

E-MAIL: mergut@nku.edu.tr