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ABSTRACT

In this paper, we describe (linear) Weingarten affine translation surfaces of first kind in the
isotropic 3-space. In addition, we obtain such surfaces that satisfy certain equations in terms of
the position vector and the Laplace operator.
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1. Introduction

It is well-known that a translation surface in a Euclidean 3-space R3 formed by translating two curves lying
in orthogonal planes is the graph of a function z (x, y) = f (x) + g (y) for the standard coordinate system of R3.
One of the famous minimal surfaces of R3 is the Scherk’s translation surface which is the graph of ([26])

z (x, y) =
1

c
log

∣∣∣∣cos (cx)cos (cy)

∣∣∣∣ , c ∈ R∗ := R−{0} .

The recent results relating to such surfaces in R3 and R3
1 (Minkowskian 3-space) of constant Gaussian and

mean curvature were well-structured in [17]. In order for their generalizations in various ambient spaces, see
[4, 5, 7, 12, 14, 20, 21, 25, 28, 29].

In 2013, Liu and Yu [15] defined the affine translation surfaces in R3 as the graph of the function

z (x, y) = f (x) + g (y + ax) , a ∈ R∗

and described the minimal affine translation surfaces (so-called affine Scherk surface) given in explicit form

z (x, y) =
1

c
log

∣∣∣∣∣cos
(
c
√
1 + a2x

)
cos (c [y + ax])

∣∣∣∣∣ , a, c ∈ R∗.

Those are indeed the translation surfaces whose the translating curves lie in non-orthogonal planes. Then, Liu
and Jung [16] obtained the affine translation surfaces in R3 of arbitrary constant mean curvature. Further, Yang
and Fu [30] classified these surfaces in an affine 3-space of constant mean and Gaussian curvature.

In the isotropic 3-space I3 that is one of real-Cayley-Klein spaces, up to the absolute figure, there exist three
different types of translation surfaces formed by translating two curves lying in orthogonal planes (see [19, 27]):

Type 1 Two translating curves lie in the isotropic planes x = 0 and y = 0,

z (x, y) = f (x) + g (y) ;

Type 2 one translating curve lies in the non-isotropic plane z = 0 and another one in the isotropic plane x = 0,

y (x, z) = f (x) + g (z) ;
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Type 3 two translating curves lie in the non-isotropic planes y − z = π and y + z = π,

x (y, z) =
1

2

(
f
(y + z − π

2

)
+ g

(π − y + z

2

))
,

where x, y, z are the standart coordinates in I3. A surface of one type cannot be carried into that of another type
by the isometries of I3. Such surfaces of constant isotropic Gaussian and mean curvature were obtained in [19]
as well as Weingarten ones. In addition, the translation surfaces of Type 1 in I3 that satisfy the condition

4I,IIri = λiri, λi ∈ R, i = 1, 2, 3,

were presented in [13], where ri is the coordinate function of the position vector and4I,II the Laplace operator
with respect to the first and second fundamental forms, respectively. This condition is natural, being related to
the so-called submanifolds of finite type, introduced by B.-Y. Chen in the late 1970’s (see [8, 9, 11]). More details
for isotropic counterparts of translation surfaces can be found in [2, 3, 6].

In this paper, we investigate the translation surfaces in I3 formed by translating of two curves lying in
the isotropic planes, not necessary orthogonal. We call such surfaces affine translation surfaces of first kind and
classify ones of Weingarten type. Morever, we describe the affine translation surfaces of first kind that satisfy
the condition4I,IIri = λiri.

2. Preliminaries

The isotropic 3-space I3 is defined from the projective 3-space P
(
R3
)

with an absolute figure consisting of
a plane ω and two complex-conjugate straight lines f1, f2 in ω (see [1, 10, 18], [22]-[24]). Denote the projective
coordinates by (X0 : X1 : X2 : X3) in P

(
R3
)
. Then the absolute plane ω is given by X0 = 0 and the absolute lines

f1, f2 byX0 = X1 + iX2 = 0, X0 = X1 − iX2 = 0. The intersection point F (0 : 0 : 0 : 1) of these two lines is called
the absolute point. The group of motions of I3 is a six-parameter group given in the affine coordinates x = X1

X0
,

y = X2

X0
, z = X3

X0
, X0 6= 0, by

(x, y, z) 7−→ (x′, y′, z′) :

 x′ = a1 + x cosφ− y sinφ,
y′ = a2 + x sinφ+ y cosφ,
z′ = a3 + a4x+ a5y + z,

where a1, ..., a5, φ ∈ R. The metric of I3 is induced by the absolute figure, i.e. ds2 = dx2 + dy2. In the affine model
of I3, the lines in z−direction correspond to isotropic lines. The plane containing an isotropic line is said to be
isotropic. Other planes are non-isotropic.

Let M2 be a surface immersed in I3. We call the surface M2 admissible if it has no isotropic tangent planes.
Such a surface can get the form

r : D ⊆ R2 −→ I3, (x, y) 7−→ (r1 (x, y) , r2 (x, y) , r3 (x, y)) .

The components E,F,G of the first fundamental form I of M2 can be calculated via the metric induced from
I3. Denote the Laplace operator of M2 with respect to I by4I . Then it is defined as

4I φ =
1√
W

{
∂

∂x

(
Gφx − Fφy√

W

)
− ∂

∂y

(
Fφx − Eφy√

W

)}
, φx =

∂φ

∂x
, (2.1)

where φ is a smooth function on M2 and W = EG− F 2. The unit normal vector field of M2 is completely
isotropic, i.e. (0, 0, 1). Morever, the components of the second fundamental form II are

L =
det (rxx, rx, ry)√

W
, M =

det (rxy, rx, ry)√
W

, N =
det (ryy, rx, ry)√

W
, (2.2)

where rxy = ∂2r
∂x∂y , etc. The relative curvature (so-called the isotropic curvature or isotropic Gaussian curvature) and

the isotropic mean curvature are respectively defined by

K =
LN −M2

EG− F 2
, H =

EN − 2FM + LG

2(EG− F 2)
. (2.3)

www.iejgeo.com 22

http://www.iej.geo.com


M.E.Aydin & M. Ergut

Assume that nowhere M2 has parabolic points, i.e. K 6= 0. Then the Laplace operator with respect to II is
given by

4II φ = − 1√
|w|

{
∂

∂x

(
Nφx −Mφy√

|w|

)
− ∂

∂y

(
Mφx − Lφy√

|w|

)}
(2.4)

for a smooth function φ on M2 and w = det (II).
In particular; if M2 is a graph surface in I3 of a smooth function z = z(x, y), then the metric on M2 induced

from I3 is given by dx2 + dy2. Thus its Laplacian turns to

4I = ∂2

∂x2
+

∂2

∂y2
. (2.5)

Further, the matrix of second fundamental form II of M2 corresponds to the Hessian matrix H (z), i.e.,(
L M
M N

)
=

(
zxx zxy
zxy zyy

)
.

Accordingly, the formulas in (2.3) reduce to

K = det (H (z)) , H =
trace (H (z))

2
. (2.6)

3. Weingarten affine translation surfaces

Let M2 be the graph surface in I3 of the function z (x, y) = f (u) + g (v), where

u = ax+ by, v = cx+ dy. (3.1)

If ad− bc 6= 0, we call the surfaceM2 an affine translation surface of first kind in I3 and the pair (u, v) affine parameter
coordinates. Especially; if the matrix of coefficients in (3.1) is orthogonal, then such a surface reduces to the
translation surface of Type 1 in I3. Henceforth, let us fix some notations as below:

∂f

∂x
= a

df

du
= af ′,

∂f

∂y
= bf ′,

∂g

∂x
= c

dg

dv
= cg′,

∂g

∂y
= dg′,

and so on. By (2.6) , the relative curvature K and the isotropic mean curvature H of M2 turn to

K = (ad− bc)2 f ′′g′′ and 2H =
(
a2 + b2

)
f ′′ +

(
c2 + d2

)
g′′. (3.2)

Now we can state the following result to describe the Weingarten affine translation surfaces of first kind in
I3 that satisfy the condition

KxHy −KyHx = 0, (3.3)

where the subscript means the partial derivative.

Theorem 3.1. Let M2 be a Weingarten affine translation surface of first kind in I3. Then one of the following occurs:

(i) M2 is the graph of

z (x, y) = c1u
2 +

c1
(
a2 + b2

)
(c2 + d2)

v2 + c2u+ c3v + c4, c1, ..., c4 ∈ R;

(ii) M2 is the graph of either

z (x, y) = f (u) + c1v
2 + c2v + c3, f

′′′ 6= 0, c1, c2, c3 ∈ R

or
z (x, y) = g (v) + c1u

2 + c2u+ c3, g
′′′ 6= 0, c1, c2, c3 ∈ R,

where (u, v) is the affine parameter coordinates given by (3.1).
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Proof. It follows from (3.2) and (3.3) that[(
a2 + b2

)
f ′′ −

(
c2 + d2

)
g′′
]
f ′′′g′′′ = 0. (3.4)

To solve (3.4) , we have several cases:

Case (a)
(
a2 + b2

)
f ′′ =

(
c2 + d2

)
g′′. Then we derive

z (x, y) = c1u
2 +

c1
(
a2 + b2

)
(c2 + d2)

v2 + c2u+ c3v + c4, c1, ..., c4 ∈ R,

which gives the statement (i) of the theorem.
Case (b)

(
a2 + b2

)
f ′′ 6=

(
c2 + d2

)
g′′. Then, by (3.4), the surface has the form either

z (x, y) = g (v) + c1u
2 + c2u+ c3, g

′′′ 6= 0

or
z (x, y) = f (u) + c4v

2 + c5v + c6, f
′′′ 6= 0, c1, ..., c6 ∈ R.

This implies the second statement of the theorem. Therefore the proof is completed.

Now we intend to find the linear Weingarten affine translation surfaces of first kind in I3 that satisfy

αK + βH = γ, α, β, γ ∈ R, (α, β, γ) 6= (0, 0, 0) . (3.5)

Without lose of generality, we may assume α 6= 0 in (3.5) and thus it can be rewritten as

K + 2m0H = n0, 2m0 =
β

α
, n0 =

γ

α
. (3.6)

Hence the following result can be given.

Theorem 3.2. Let M2 be a linear Weingarten affine translation surface of first kind in I3 that satisfies (3.6). Then we
have:

(i) M2 is the graph of
z (x, y) = c1u

2 + c2v
2 + c3u+ c4v + c5, c1, ..., c5 ∈ R.

(ii) M2 is the graph of either

z (x, y) = f (u)−
m0

(
a2 + b2

)
2 (ad− bc)2

v2 + c1v + c2, f
′′′ 6= 0, c1, c2 ∈ R

or

z (x, y) = g (v)−
m0

(
c2 + d2

)
2 (ad− bc)2

u2 + c1u+ c2, g
′′′ 6= 0, c1, c2 ∈ R,

where (u, v) is the affine parameter coordinates given by (3.1).

Proof. Substituting (3.2) in (3.6) gives

(ad− bc)2 f ′′g′′ +m0

(
a2 + b2

)
f ′′ +m0

(
c2 + d2

)
g′′ = n0. (3.7)

After taking derivative of (3.7) with respect to u and v, we deduce f ′′′g′′′ = 0. If both f ′′′ and g′′′ are zero then
we easily obtain the first statement of the theorem. Otherwise, we have the second statement of the theorem.
This proves the theorem.

Example 3.1. Consider the affine translation surface of first kind in I3 with

z (x, y) = cos (x− y) + (x+ y)
2
, − π

6
≤ x, y ≤ π

6
.

This surface plotted as in Fig. 1 satisfies the conditions to be Weingarten and linear Weingarten.
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4. Affine translation surfaces satisfying4I,IIri = λiri

This section is devoted to classify the affine translation surfaces of first kind in I3 that satisfy the conditions
4I,IIri = λiri, λi ∈ R. For this, we get a local parameterization on such a surface as follows:

r (x, y) = (r1 (x, y) , r2 (x, y) , r3 (x, y))
= (x, y, f (ax+ by) + g (cx+ dy)) .

(4.1)

Thus we first give the following result.

Theorem 4.1. Let M2 be an affine translation surface of first kind in I3 that satisfies 4Iri = λiri. Then it is the graph
of one of the following functions:

(i) (λ1, λ2, λ3) = (0, 0, 0),

z (x, y) = c1u
2 −

c1
(
a2 + b2

)
(c2 + d2)

v2 + c3u+ c4v + c5;

(ii) (λ1, λ2, λ3) = (0, 0, λ > 0),

z (x, y) = c1e

√
λ

a2+b2
u
+ c2e

−
√

λ
a2+b2

u
+ c3e

√
λ

c2+d2
v
+ c4e

−
√

λ
c2+d2

v
;

(iii) (λ1, λ2, λ3) = (0, 0, λ < 0),

z (x, y) = c1 cos

(√
−λ

a2+b2u

)
+ c2 sin

(√
−λ

a2+b2u

)
+ c3 cos

(√
−λ

c2+d2 v

)
+c4 sin

(√
−λ

c2+d2 v

)
,

where (u, v) is the affine parameter coordinates given by (3.1) and c1, ..., c5 ∈ R.

Proof. It is easy to compute from (2.5) and (4.1) that

4I r1 = 4Ir2 = 0 (4.2)

and
4I r3 =

(
a2 + b2

)
f ′′ +

(
c2 + d2

)
g′′. (4.3)

Assuming4Iri = λiri, i = 1, 2, 3, in (4.2) and (4.3) yields λ1 = λ2 = 0 and(
a2 + b2

)
f ′′ +

(
c2 + d2

)
g′′ = λ (f + g) , λ3 = λ. (4.4)

If λ = 0 in (4.4) , then we derive
f (u) = c1u

2 + c2u+ c3

and

g (v) = −
c1
(
a2 + b2

)
(c2 + d2)

v2 + c4v + c5, c1, ..., c5 ∈ R,

which proves the statement (i) of the theorem. If λ 6= 0 then (4.4) can be rewritten as(
a2 + b2

)
f ′′ − λf = µ = −

(
c2 + d2

)
g′′ + λg, µ ∈ R. (4.5)

In the case λ > 0, by solving (4.5) we obtain f (u) = c1 exp
(√

λ
a2+b2u

)
+ c2 exp

(
−
√

λ
a2+b2u

)
− µ

λ ,

g (v) = c3 exp
(√

λ
c2+d2 v

)
+ c4 exp

(
−
√

λ
c2+d2 v

)
+ µ

λ ,

where c1, ..., c4 ∈ R. This gives the statement (ii) of the theorem. Otherwise, i.e. λ < 0, then we derive f (u) = c1 cos
(√

−λ
a2+b2u

)
+ c2 sin

(√
−λ

a2+b2u
)
− µ

λ ,

g (v) = c3 cos
(√

−λ
c2+d2 v

)
+ c4 sin

(√
−λ

c2+d2 v
)
+ µ

λ

for c1, ..., c4 ∈ R. This completes the proof.
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Example 4.1. Take the affine translation surface of first kind in I3 with

z (x, y) = cos (x+ y) + sin (x− y) , − π ≤ x, y ≤ π.

Then it holds4Iri = λiri for λ1 = λ2 = 0, λ3 = −2 and can be plotted as in Fig. 2.

Next, we consider the affine translation surface of first kind in I3 that satisfies 4IIri = λiri, λi ∈ R. Then its
Laplace operator with respect to the second fundamental form II has the form

4IIφ =
(f ′′g′′)

−2

2(ad−bc)

[
(−bφx + aφy) (f

′′)
2
g′′′ + (dφx − cφy) f ′′′ (g′′)2

]
+
(f ′′g′′)

−1

(ad−bc)2
[(
2abφxy − b2φxx − a2φyy

)
f ′′ +

(
2cdφxy − d2φxx − c2φyy

)
g′′
] (4.6)

for a smooth function φ and f ′′g′′ 6= 0. Hence we have the following result.

Theorem 4.2. Let M2 be an affine translation surface of first kind in I3 that satisfies4IIri = λiri. Then it is the graph
of one of the following functions:

(i) (λ1 6= 0, λ2 6= 0, 0),
z (x, y) = ln

∣∣∣x 1
λ1 y

1
λ2

∣∣∣+ c1, c1 ∈ R;

(ii) (λ 6= 0, λ, 0),
z (x, y) = ln

∣∣∣(uv) 1
λ

∣∣∣+ c1, c1 ∈ R,

where (u, v) is the affine parameter coordinates given by (3.1).

Proof. Let us assume that4IIri = λiri, λi ∈ R. Then, from (4.1) and (4.6) , we state the following system:

d
f ′′′

(f ′′)
2 − b

g′′′

(g′′)
2 = 2 (ad− bc)λ1x, (4.7)

− c f ′′′

(f ′′)
2 + a

g′′′

(g′′)
2 = 2 (ad− bc)λ2y, (4.8)

f ′′′f ′

(f ′′)
2 +

g′′′g′

(g′′)
2 − 4 = 2λ3 (f + g) . (4.9)

To solve above system, by considering ad− bc 6= 0, we distinguish two cases based on the constants a, b, c, d:

Case (a) Two of a, b, c, d are zero. Without loss of generality we may assume that b = c = 0 and a = d = 1. Then the
equations (4.7) and (4.8) reduce to

f ′′′

(f ′′)
2 = 2λ1x (4.10)

and
g′′′

(g′′)
2 = 2λ2y. (4.11)

If λ1 = λ2 = 0, then we obtain a contradiction from (4.9) due to the fact that f, g are non-constant functions.
Thereby we need to consider the remaining cases:

Case (a.1) λ1 = 0, i.e. f ′′′ = 0. Then substituting (4.10) and (4.11) into (4.9) implies λ3 = 0 and

g (y) =
2

λ2
ln y + c1, c1 ∈ R.

However, this is not a solution of (4.11) and gives a contradiction.
Case (a.2) λ2 = 0, i.e. g′′′ = 0. Hence we can similarly obtain that λ3 = 0 and

f (x) =
2

λ1
lnx+ c1, c1 ∈ R,

which gives a contradiction by considering it into (4.10).
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Case (a.3) λ1λ2 6= 0. By substituting (4.10) and (4.11) into (4.9) we deduce

λ1xf
′ + λ2yg

′ − 2 = λ3 (f + g) . (4.12)

Case (a.3.1) If λ3 = 0, then (4.12) reduces to
λ1xf

′ + λ2yg
′ = 2. (4.13)

By solving (4.13) we find

f (x) =
ξ

λ1
lnx+ c1 and g (v) =

2− ξ
λ2

ln y + c2, c1, c2 ∈ R, ξ ∈ R∗. (4.14)

Substituting (4.14) into (4.10) and (4.11) yields ξ = 1. This proves the first statement of the
theorem.

Case (a.3.2) If λ3 6= 0 in (4.12) then we can rewrite it as

λ1xf
′ − λ3f − 2 = µ = −λ2yg′ + λ3g, µ ∈ R. (4.15)

After solving (4.15) , we conclude

f (x) = −2 + µ

λ3
+ c1x

λ3
λ1 (4.16)

and
g (y) =

µ

λ3
+ c2y

λ3
λ2 , c1, c2 ∈ R. (4.17)

However, these are not solutions of (4.10) and (4.11), respectively. Indeed, by considering (4.16)
and (4.17) into (4.10) and (4.11), we conclude λ3 = 0 which implies that this case is not possible.

Case (b) At most one of a, b, c, d is zero. Suppose that λ1 = 0 in (4.7). It follows from (4.7) that

f ′′′

(f ′′)
2 =

c1
d

and
g′′′

(g′′)
2 =

c1
b
, c1 ∈ R, (4.18)

where we may assume that b 6= 0 6= d since at most one of a, b, c, d can vanish. If c1 = 0, then we derive a
contradiction from (4.9) due to f ′′g′′ 6= 0. Otherwise, considering (4.18) into (4.8) yields c1

bd = 2λ2y, which
is no possible since y is an independent variable. This implies that λ1 must be non-zero and it can be
similarly shown that λ2 must be non-zero. Hence from (4.7) and (4.8) we can write

f ′′′

(f ′′)
2 = 2 (λ1ax+ λ2by) (4.19)

and
g′′′

(g′′)
2 = 2 (λ1cx+ λ2dy) . (4.20)

Compatibility condition in (4.19) or (4.20) gives λ1 = λ2. Put λ1 = λ2 = λ. By substituting (4.19) and (4.20)
into (4.9) we deduce

λuf ′ + λvg′ − 2 = λ3 (f + g) , (4.21)

where (u, v) is the affine parameter coordinates given by (3.1).

Case (b.1) If λ3 = 0, then (4.21) reduces to
λuf ′ + λvg′ = 2. (4.22)

By solving (4.22) we find

f (u) =
ξ

λ
lnu+ c1 and g (v) =

2− ξ
λ

ln v + c2, c1, c2 ∈ R, ξ ∈ R∗. (4.23)

Substituting (4.23) into (4.19) and (4.20) yields ξ = 1. This proves the second statement of the
theorem.
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Case (b.2) If λ3 6= 0 in (4.11), then we can rewrite it as

λuf ′ − λ3f − 2 = µ = −λvg′ + λ3g, µ ∈ R. (4.24)

After solving (4.24) , we deduce

f (u) = −2 + µ

λ3
+ c1u

λ3
λ (4.25)

and

g (v) =
µ

λ3
+ c2v

λ3
λ , c1, c2 ∈ R. (4.26)

Considering (4.25) and (4.26) into (4.19) and (4.20), respectively, we find λ3 = 0, however this is a
contradiction.

Example 4.2. Given the affine translation surface of first kind in I3 as follows

z (x, y) = ln (2x+ y) + ln (x− y) , (x, y) ∈ [3, 5]× [1, 2].

Then it holds4IIri = λiri for (λ1, λ2, λ3) = (1, 1, 0) and we plot it as in Fig. 3.

-0.5

0.0

0.5

x

-0.5

0.0

0.5

y

0.5

1.0

1.5

2.0

z

Figure 1. A (linear) Weingarten affine translation surface of first kind.
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Figure 2. An affine translation surface of first kind with4Iri = λiri, (λ1, λ2, λ3) = (0, 0, 2).
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Figure 3. An affine translation surface of first kind with4IIri = λiri, (λ1, λ2, λ3) = (1, 1, 0) .
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