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ABSTRACT

Chen and Fastenakels classified all flat Lagrangian Surfaces in Complex Lorentzian Plane C% in
[7]1 . In this article, we completely classify non-flat Lagrangian H-umbilical Surfaces of constant
curvature in Complex Lorentzian Plane C3.
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1. Introduction

Let L : M — C* be a Lagrangian isometric immersion. For n > 3, if L is a Lagrangian H-umbilical immersion
of constant sectional curvature, then L is flat or A = 2y # 0. Therefore L is flat or locally a Lagrangian pseudo-
sphere [Theorem 3.1 in [2]] .

The situation in n = 2 is much more complicated. Lagrangian H-umbilical Surfaces with A\ = 2y in complex
Euclidean plane consist of a much bigger famliy of surfaces including the Lagrangian pseudo-sphere.
Lagrangian H-umbilical Surfaces of constant curvature in complex Euclidean plane are completely classified
in [3].

In [4] B.-Y. Chen proved that for n > 3, if L is a Lagrangian H-umbilical submanifold of constant sectional
curvature in the indefinite complex Euclidean space Cg, then L is flat or A = 2 # 0. Hence L is flat, or locally
either a Lagrangian pseudo-Riemannian sphere or a Lagrangian pseudo-hyperbolic space [Theorem 4.1 in [4]].

For n = 2, Chen and Fastenakels classified all flat Lagrangian Surfaces in Complex Lorentzian Plane C% in
[7]. In this article, we completely classify non-flat Lagrangian H-umbilical surfaces of constant curvature in
complex Lorentzian plane C%. Similar to Riemanian case, Lagrangian H-umbilical surfaces with A\ = 2p # 0 in
complex Lorentzian plane come from two large families of surfaces containing Lagrangian pseudo-Riemannian
2 sphere and Lagrangian pseudo-hyperbolic 2 space. We also determine all the cases without the condition A =
241 # 0. Our results complete the classification of Lagrangian H-umbilical submanifolds of constant sectional
curvature in indefinite complex Euclidean spaces.

2. Preliminaries

Let L: M — C2 be an isometric immersion of a 2-dimensional pseudo-Riemannian manifold M into the
complex Lorentzian plane C%. Then M is called a Lagrangian (or totally real) submanifold if the almost complex
structure J of C? carries each tangent space of M into its corresponding normal space. The formulas of Gauss
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and Weingarten are given respectively by

VxY =VxY +h(X,Y),

(2.1) N
Vx€=—-A:X + Dx¢,

for tangent vector fields X and Y and normal vector fields £, where D is the normal connection. The second
fundamental form h is related to A¢ by
(h(X,Y),§) = (AeX,Y).

The mean curvature vector of M in C% is defined by
1
H= 5 trace h

The Gauss and Codazzi equations are given by

(R(X,Y)Z,W) = (WX, W),h(Y, Z)) — (h(X, Z), (Y, W)) ,
(VR)(X,Y,Z) = (Vh)(Y, X, Z),

where (Vh) is defined by
(Vh)(X,Y,Z) = Dxh(Y,Z) = h(VxY,Z) = h(Y,Vx Z).
When M is a Lagrangian surface in C%, we have

DxJY = JVyY,
(W(X.Y),JZ) = (WY, Z),TX) = (h(Z, X),JY).

It is well known that there exist no totally umbilical Lagrangian submanifolds in a complex or psuedo
complex space-form with n > 2 except the totally geodesic ones (see [8]). To investigate the “simplest”
Lagrangian submanifolds next to the totally geodesic ones in complex or psuedo complex space-forms, B.-Y.
Chen introduced the concept of Lagrangian H-umbilical submanifolds in [2, 4].

If L: M — C7% is a Lagrangian H-umbilical surface, the second fundamental form takes the following form:
(2.2) h(e1,e1) = AJer, hler,es) =pJes, h(ea,es) = —puJey
for some suitable functions A and p with respect to some suitable orthonormal local frame field.

For vectors in C%, we have the following lemma (Lemma 2.3 in [6])
Lemma 2.1. Let u, v be any two vectors in C% and let a, b be any two complex numbers. Then we have

(au, bv) = {(a, b) (u,v) + (ia,b) (u,iv),
{au,ibv) = (a,b) (u,iv) + (a,b) (u,v),

where (a, by and (u,v) are cononical product for complex numbers and cononical inner product for vectors in C3.

3. Lagrangian H-umbilical Surfaces of constant curvature in C?

Let L: M — C% be a Lagrangian H-umbilical surface of constant curvature whose second fundamental
form satisfies (2.2) with respect to some orthonormal local frame field {e;, ez} . Since the complex structure ]
interchanges the tangent and normal spaces of M in C%, M has real index 1 (i.e. M is Lorentzian [1] or [6] ).
We divide the classification into two cases: e, is time-like or e; is space-like.

Assuming e; is time-like, we have
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Theorem 3.1. Let L : M — C2 be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second

fundamental form satisfies (2.2) with respect to some orthonormal local frame field {ey, e2}. If 1 is time-like, then one of
the following four statements holds:

(1) K = —b? and L is congruent to the Lagrangian immersion

t
(3.1) L(s,t) = % 2(t) + / 2 (t)e 20 qt
0

where b is a positive number, 6(t

) a function on («, 3) containing 0, and z(t) a C2 valued solution to the ordinary
differential equation:

2(t) — i (1) (t) — b*2(t) = 0

(2) K = —b* < —land L is congruent to

_ cos(bs) .. _q [ bsin(bs) i, sin(bs)
L(s,t) = =1 &P (zsm (\/1727_1> - 5 tan ! ( oot o]~ 1))

(3.2) x (ficl + cosh(vV/B2 — 1t), —icy + sinh(v/5? — 1t)>

s - bsin(bs) i - sin(bs) s | (cr.c
+</0 exp (225 <m> bta ( b2c052(bs)—1>>d>(17 2)

for some constants cy, cs.

—_

(3) K = —b? and L is congruent to

cos(bs) = <b sin(bs) > i 1 sin(bs)
L(s,t exp | ¢sin + —tanh
(1) = 241 P ( Vb2 +1 b b2 cos?(bs) + 1

(3.3) X

—icy + cosh(y/b2 + 1t), —ico + sinh(v/b? + 1t))

bsin(bs) ) 1 sin(bs)
+ < exp (21 sin~ (m) + Btanh < oo (o) T 1>> d5> (c1,¢2)

for some constants ci, cs.

(4) K = b* and L is congruent to

cosh(bs .. _1 [ bsinh(bs i _ sinh(bs
L(s,t) = \/% exp | isin™! <\/1—7(b2)> + 7 tan ! (bs)

1 — b2 cosh?(bs)

(3.4) x (—icr + cosh(v/1 — b2¢), —ico + sinh(yv/1 — b2t)>

+ / exp | 2isin™! (bsmh(bz)) + %tarf1 sinh(bs) ds | (c1,c2)
0 V1—b 1 — b2 cosh?(bs)

for some constants cq, cs.

Proof. Let L : M — C% be a Lagrangian H-umbilical surface of non-zero constant curvature X whose second

fundamental form satisfies (2.2) with respect to some orthonormal local frame field {ei,es}. Since e; is time-
like, from (2,2), Gauss and Codazzi equations we find ( [9] and [4] ):

e = (X —2p)wi(ea),
s e = = e
expt = 3yt (e),
K = pu(p — N\) = constant.
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Differentiating with respect to e, the last equation of (3.5), we have
(3.6) 0=exK = (21 — \) eat — prea) = 4u(2p — Nws (e1)

If (A —2p) =0, then K =0 or A = 2. Since K # 0 ( flat Lagrangian surfaces in Complex Lorentzian Plane
C? are completely classified in [7] ), we have A = 2u. Thus, by Theorem 3.2 of [9], we have statement (1).
Lagrangian H-umbilical surfaces with A = 24 in Complex Lorentzian Plane C3 are completely classified in [9]
and statement (1) is one of the main results.

If (A — 2u) # 0, from (3.6) we get wi (e1) = 0. Hence from (3.5) we have ex A = eap = 0.

Since V., e1 = w?(e1)es = 0, the integral curves of e; are geodesic in M. Thus, there exists a local coordinate
system {s, u} on M such that the metric tensor is given by

(3.7) g = —ds* + G*(s,u)du®

for some function G with 9/9s = e1,9/0u = Ge,.
From (3.7) we have

o o, . G,
(3.8) Vojoug: = (InG)so -, wile2) = =

Since es A = eapn = 0, we get A = A(s) and p = p(s).

From the first and the last equations of (3.5), we have

W

— 42 —
(lnG)é _w1(62) - )\_2/'6 - K+M2

Solving this equation gives G = F(u)/+/|K + p?| for some function F.

Therefore, (3.7) becomes

F2(u)
3.9 g=—ds* + ———'—du?
39 K+ 2]
If t is an anti-derivative of F(u), we have from (3.9)
di? 1
3.10 =—ds?+ —— " G%(s)=
310 ’ Kol O TR )

Case (a): K = —b* <0
From (3.7), the Gauss curvature K of M is given by ( p.81 in [10] ):
K =Gy/G
Therefore we have G, + b*G = 0. Solving this equation yields
G = Acos(bs) + Bsin(bs)
for some constants A and B, not both zero. Thus, we have

(3.11) g = —ds® +1r? cos?(bs + c)du®
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fo some constants r # 0 and c. After a suitable translation in s and a suitable dilation in ¢, (3.11) becomes
(3.12) g = —ds® + cos?(bs)dt?

From (3.12) we have

0 0 0
Va/asfs =0, Va/asf =-b tan(bs)&,

(3.13) ?9 , aat
Va/at& = —5 Sln(2b8)%

Case (a-1): K = —b* < —p? and b > 0.
From (3.10) and (3.12), we have |K + p?(s)| = b — u? = sec?(bs) > 1.

Without loss of generality, we assume that

2 2
(3.14) j= I —sec(by), A= 2o Zsec(bs)

b2 — sec?(bs)

From (2.2), (3.12) — (3.14), and Gauss formula we see that the immersion satisfies the following system of
PDEs:

 2b% — sec?(bs)

Lss =1
b2 — sec?(bs)
(3.15) Ly = (z \/b? —sec?(bs) — b tan(bs)) Ly
Ly =— (z b2 cos?(bs) — 1 + bsin(bs)) cos(bs) L

S

After solving the second equation of (3.15), we have

o0 e e (s () o ()

for some C%-valued function F(t). Thus, we have

_ " bsin(bs) \ i an—1 sin(bs)
(3.17) L = A(s)+ B(t) cos(bs) exp (zs (\/ﬁ) 7, t ( oo ) 1))

where B(t) is an anti-derivative of F(t) and A(s) is a C3-valued function. From (3.17) we have

Ly = A'(s) — B(t) <bsin(bs) — i\/B% cos?(bs) — 1)
(3.18) .. _1 { bsin(bs) i sin(bs)
P (ZSID (vb2—1>_btan ( b2cos2(bs)—1>>’

Lo, = A"(s) —B(t>(m+b;izjf(§>>@lb2 cos? (bs) — 1)

.. _q { bsin(bs) i 4 sin(bs)
X exp (zsm <\/ﬁ> - Btan ( D o2 (bs) 1))
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Placing (3.18) and (3.19) into the first equation of (3.15), we get

20% — sec?(bs)

3.20 A'(s) =1 Al(s
(3.20) (s) B sec? () (s)

Solving this equation, we have
(3.21) A'(s) = Cexp | 2isin™! (bsm(bs)) — L tan™? sin(bs)

b2 —1 b b2 cos?(bs) — 1
for some vector C in C2. Hence, we have
s .. _1 (bsin(bs) i sin(bs)

3.22 A(s :C/ exp | 2isin 1< >tan ! ds+FE
(3.22) (s) . P ( 02 — 1 b b2 cos2(bs) — 1

for some vector E in C3.

By a suitable translation, we may assume E = 0. Hence, we have from (3.17)

s .. 1 {bsin(bs) i sin(bs)
L:C’/ ex 2281H1< >—tan1 ds
0 P ( Vb2 —1 b b2 cos?(bs) — 1

.. _1 { bsin(bs) i sin(bs)
+ B(t) cos(bs) exp (z sin ™ ( — 1> - Btan ( oot (0s) 1)) ,

(3.23)

Thus, we have

I R (O IR =)

/ .. _1 { bsin(bs) i 4 sin(bs)
(3.25) L = B'(t) cos(bs) exp <z sin < ) — Etan ( >>

b2 —1 b2 cos2(bs) — 1

Placing (3.24) and (3.25) into the last equation of (3.15), we get

(3.26) B"(t) — (V> = 1)B(t) = —i/b2 - 1C

From (3.26) we have

(3.27) B(t) = Cy cosh(v/B2 — 1 1) + Cosinh(v/5? — 1 1) \/b;ﬁ c
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Combining (3.23) and (3.27), we have

B L bsin(bs)> i sin(bs)
L=C 2 ! — —tan™! d
/0 P ( o <\/b27—1 p ( b2 cos?(bs) — 1 ’

(3.28) + <C’1 cosh(v/b? —1¢t) + Casinh(v/b%2 —11¢) — \/b;i_l C> cos(bs)

« oxp [ isin—! <bsin(bs)> B ztanfl sin(bs)
Vb2 —1 b v cos2(bs) —1) )’

Therefore, we obtain statement (2) by choosing suitable initial conditions, i.e. the immersion is congruent to
(3.2).

Case (a-2): K = —b> > —p? and b > 0.
From (3.10) and (3.12), we have |K + p?(s)| = p? — b% = sec?(bs).

Hence, without loss of generality, we assume that

2 2
(3.29) p= /b +sec?(bs), A= 2b+s—ec(b5)

b2 + sec?(bs)

From (2.2), (3.12), (3.14), (3.29), and Gauss formula we see that the immersion satisfies the following system
of PDEs:

2b2 2(b
L., = 2 sectlbs)
b2 + sec?(bs)

(3.30) Ly = (z \/b? +sec?(bs) — b tan(bs)) L,
Ly =— (z'\/b2 cos?(bs) + 1+ bsin(bs)) cos(bs) L

After solving the PDE system (3.30) in the same way as in Case (a-1) and after choosing suitable initial
conditions, we obtain statement (3), i.e. the immersion is congruent to (3.3).

Case (b): K =b% > 0and b > 0.

From the Gauss curvature K = G,,/G, we have G, — b*G = 0. Solving this equation yields
G = Acosh(bs) + Bsinh(bs)

for some constants A and B, not both zero.

After applying a suitable translation in s and a suitable dilation in t, we have

(3.31) g = —ds® + cosh?(bs)dt*

From which we have

0 0 0
Va/as% = 0, Va/asa =) tanh(bs)&,
(3.32) . ;
v(')/atg = 5 s1nh(2bs)%
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From (3.10) and (3.31), we have |K + u?(s)| = b + u? = sech?(bs)

Therefore, we have b? < sech?(bs) < 1. Without loss of generality, we assume that
(3.33)

2 _9p2
p = /sech?(bs) — b2, \= sech”(bs) — 2b
sech?(bs) — b2
From (2.2), (3.31)-(3.33), and Gauss formula we see that the immersion satisfies the following system of PDEs
2 _ 9p2
Lgs=1 sech®(bs) — 2b .
sech?(bs) — b?
(3.34)

st = (z sech?(bs) — b2 +b tanh(bs)) L

Ly =— (z 1 — b2 cosh?(bs) — bsinh(bs)> cosh(bs)L

After solving the PDE system (3.34) in the same way as in Case (a-1) and after choosing suitable initial
conditions, we obtain statement (4), i.e. the immersion is congruent to (3.4)

a
If e, is space-like, we have

Theorem 3.2. Let L : M — C3% be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second
fundamental form satisfies (2.2) with respect to some orthonormal local frame field {e1,es}. If ey is space-like, then one
of the following four statements holds:

(1) K = b* and L is congruent to the Lagrangian immersion
(3.35) Wi(s,t) = ¥ 2(t) + / 2 (t)e 20 qy
0

where b is a positive number, 0(t
differential equation:

) a function on («, 3) containing 0, and z(t) a C% valued solution to the ordinary

Z(t) — b (1) (t) — b*2(t) = 0

(2) K = b* > 1 and L is congruent to

_ cos(bs) S " bsin(bs) \ i an—1 sin(bs)
Wist) = b2—1ep< (vlﬂ—l) bt ( b2cos2(bs)—1>>
(3.36) x (—iq + cosh(v/02 — 1t), —ics + sinh(v/0? — 1t))

+ </OS exp <2z'sin_1 <Ii/sg(7fsl)> - %tan_1 < sin(bs)) 1)) d8> (c1,¢2)

b2 cos?(bs) —
for some constants cq, cs

(3) K = b* and L is congruent to

_ cos(bs) .y [ bsin(bs) éan _ sin(bs)
W(s,t) = b2+1exp<zsm 1<m>+bt h 1( 1))
(3.37)

b2 cos?(bs) +
x | —icy 4 cosh(v/ b2 + 1t), —icy + sinh(\/b? + 1t))

bsin(bs) i 1 sin(bs)
+ ( exp (225m (m) + gtcmh < ) 1)) ds) (c1,¢2)

b2 cos?(bs) +
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for some constants cq, cs.

(4) K = —b? and L is congruent to

h ik , b
W(s,t) = % exp [ isin™ (bblf\/ibz)) + %tan_l sinh(bs)

1 — b2 cosh?(bs)

(3.38) X (fz'cl + cosh(v/1 — b2t), —icy + sinh(v/1 — b2t))
s .. _q [ bsinh(bs) i sinh(bs)
+ exp | 2isin™! [ ——=2 ] + - tan"! ds | (c1,c
[ (%) 3 (&1, )

1 — b2 cosh?(bs)

for some constants cq, cs.

Proof. Let L : M — C% be a Lagrangian H-umbilical surface of non-zero constant curvature X whose second

fundamental form satisfies (2.2) with respect to some orthonormal local frame field {e;, e2}. Since e; is space-
like, from (2,2), Gauss and Codazzi equations we find ([9] and [4] ):

1 = —(\ — 2 (e2),
A= —(2u— Nwi(ey),
(3.39) €2 ( /; Jwi(er)
eapt = 3wy (e1),
K = p(A — p) = constant.

Differentiating with respect to e, the last equation of (3.39), we have 0 = u(2p — \)ws (e1).

If (A —2p) =0, then K =0 or A = 2u. Since K # 0, we have A = 2u. Thus, by Theorem 3.2 of [9], we have
statement (1).

If (A — 2u) # 0, we get wi(e) = 0. Hence from (3.39) we have es A = eapn = 0.

Since V., e; = —w?(e1)es = 0, the integral curves of e; are geodesic in M. Thus, there exists a local coordinate
system {s,u} on M such that the metric tensor is given by

(3.40) g = ds* — G*(s,u)du?

for some function G with 0/9s = e1,9/0u = Ges.

Since < eg, e9 >= —1, from (3.40) we have

0 0 9 G
(3.41) Va/au% = (lnG)S%, wi(e2) = — a
Since eg A = eap = 0, we get A = A(s) and p = p(s).
From the first and the last equations of (3.39), we have
5 ' p
(InG)s = —wi(e2) = N =% e

Solving this equation gives G = F(u)/+/|K — p?| for some function F.
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Therefore, (3.40) becomes

F2(u)
3.42 g=ds*— du®
(342) K = 2(5)
If t is an anti-derivative of F'(u), we have from (3.42)
(3.43) g—ds2—d7t2 G2s) = —
' K — 2 (s)] |K — p2(s)|

The rest of the proof is almost the same as in Case (a) and (b) in Theorem 3.1. Finally we obtain statement
(2), (3) and (4) if e; is space-like. O

Remark 3.1. Flat Lagrangian Surfaces in Complex Lorentzian Plane C3 are completely classified in [7].

Remark 3.2. Theorem 3.1 and Theorem 3.2 completely classify Lagrangian H-umbilical Surfaces of non-zero
constant curvature in Complex Lorentzian Plane C%
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