Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces

Bang-Yen Chen* and Yun Myung Oh

(Communicated by Kazım İlarslan)

Abstract

The notions of rectifying subspaces and of rectifying submanifolds were introduced in [B.-Y. Chen, Int. Electron. J. Geom 9 (2016), no. 2, 1-8]. More precisely, a submanifold in a Euclidean m-space \mathbb{E}^{m} is called a rectifying submanifold if its position vector field always lies in its rectifying subspace. Several fundamental properties and classification of rectifying submanifolds in Euclidean space were obtained in [B.-Y. Chen, op. cit.]. In this present article, we extend the results in [B.-Y. Chen, op. cit.] to rectifying spacelike submanifolds in a pseudo-Euclidean space with arbitrary codimension. In particular, we completely classify all rectifying space-like submanifolds in an arbitrary pseudo-Euclidean space with codimension greater than one.

Keywords: Rectifying submanifold; rectifying subspace; pseudo-Euclidean space; concurrent vector field; space-like submanifold; position vector field. AMS Subject Classification (2010): Primary: 53C40; Secondary: $53 C 42$.

1. Introduction

Let \mathbb{E}^{3} denote the Euclidean 3-space with its inner product \langle,$\rangle . Consider a unit-speed space curve x: I \rightarrow$ \mathbb{E}^{3}, where $I=(\alpha, \beta)$ is a real interval. Let \mathbf{x} denote the position vector field of x and \mathbf{x}^{\prime} be denoted by \mathbf{t}.

It is possible, in general, that $\mathbf{t}^{\prime}(s)=0$ for some s; however, we assume that this never happens. Then we can introduce a unique vector field \mathbf{n} and positive function κ so that $\mathbf{t}^{\prime}=\kappa \mathbf{n}$. We call \mathbf{t}^{\prime} the curvature vector field, \mathbf{n} the principal normal vector field, and κ the curvature of the curve. Since \mathbf{t} is of constant length, \mathbf{n} is orthogonal to \mathbf{t}. The binormal vector field is defined by $\mathbf{b}=\mathbf{t} \times \mathbf{n}$, which is a unit vector field orthogonal to both \mathbf{t} and \mathbf{n}. One defines the torsion τ by the equation $\mathbf{b}^{\prime}=-\tau \mathbf{n}$.

The famous Frenet-Serret equations are given by

$$
\left\{\begin{array}{l}
\mathbf{t}^{\prime}=\quad \kappa \mathbf{n} \tag{1.1}\\
\mathbf{n}^{\prime}=-\kappa \mathbf{t} \quad+\tau \mathbf{b} \\
\mathbf{b}^{\prime}=\quad-\tau \mathbf{n} .
\end{array}\right.
$$

At each point of the curve, the planes spanned by $\{\mathbf{t}, \mathbf{n}\},\{\mathbf{t}, \mathbf{b}\}$, and $\{\mathbf{n}, \mathbf{b}\}$ are known as the osculating plane, the rectifying plane, and the normal plane, respectively.

From elementary differential geometry it is well known that a curve in \mathbb{E}^{3} lies in a plane if its position vector lies in its osculating plane at each point, and it lies on a sphere if its position vector lies in its normal plane at each point. A curve in the Euclidean 3-space is called a rectifying curve if if its position vector field always lies in its rectifying plane (cf. [3]). Rectifying curves have many interesting properties. Such curves have been studied by many authors, see for instance, $[1,3,10,9,13,14,15]$ among many others.

In [6], the first author introduced the notion of rectifying subspaces for Euclidean submanifolds. As a natural extension of rectifying curves, the first author defined the notion of rectifying submanifolds as Euclidean submanifolds whose position vector field always lie in its rectifying subspace [6]. Many fundamental properties of rectifying submanifolds are obtained in [6, 7]. In particular, the first author proved that a Euclidean

[^0]submanifold is rectifying if and only if the tangential component of its position vector field is a concurrent vector field. Furthermore, he completely determined rectifying submanifolds in a Euclidean space with arbitrary codimension.

In this article we extend the results of [6] to rectifying space-like submanifolds in a pseudo-Euclidean space with arbitrary codimension as a supplement to [6]. In particular, we completely classify all rectifying space-like submanifolds in an arbitrary pseudo-Euclidean space.

2. Preliminaries

For general references on submanifolds in pseudo-Riemannian manifolds, we refer to $[5,8,16]$.
Let \mathbb{E}_{i}^{m} denote the pseudo-Euclidean m-space equipped with the canonical pseudo-Euclidean metric g_{0} of index i given by

$$
\begin{equation*}
g_{0}=-\sum_{r=1}^{i} d u_{r}^{2}+\sum_{t=i+1}^{m} d u_{t}^{2} \tag{2.1}
\end{equation*}
$$

where $\left(u_{1}, \ldots, u_{m}\right)$ is a rectangular coordinate system of \mathbb{E}_{i}^{m}.
Let $x: M \rightarrow \mathbb{E}_{i}^{m}$ be an isometric immersion of a pseudo-Riemannian n-manifold M into \mathbb{E}_{i}^{m}. For a point $p \in M$, we denote by $T_{p} M$ and $T_{p}^{\perp} M$ the tangent and the normal spaces at p. There is a natural orthogonal decomposition:

$$
\begin{equation*}
T_{p} \mathbb{E}_{i}^{m}=T_{p} M \oplus T_{p}^{\perp} M \tag{2.2}
\end{equation*}
$$

Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of M and \mathbb{E}_{i}^{m}, respectively. The formulas of Gauss and Weingarten are given respectively by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{2.3}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.4}
\end{align*}
$$

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form, D the normal connection, and A the shape operator of M.

For a given point $p \in M$, the first normal space, of M in \mathbb{E}_{i}^{m}, denoted by $\operatorname{Im} h_{p}$, is the subspace defined by

$$
\begin{equation*}
\operatorname{Im} h_{p}=\operatorname{Span}\left\{h(X, Y): X, Y \in T_{p} M\right\} \tag{2.5}
\end{equation*}
$$

For each normal vector ξ at p, the shape operator A_{ξ} is an endomorphism of $T_{p} M$. The second fundamental form h and the shape operator A are related by

$$
\begin{equation*}
\left\langle A_{\xi} X, Y\right\rangle=\langle h(X, Y), \xi\rangle \tag{2.6}
\end{equation*}
$$

where \langle,$\rangle denotes the scalar product on M$ as well as on the ambient space.
The equation of Gauss of M in \mathbb{E}_{i}^{m} is given by

$$
\begin{equation*}
R(X, Y ; Z, W)=\langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(Y, W)\rangle \tag{2.7}
\end{equation*}
$$

for X, Y, Z, W tangent to M, where R denotes the curvature tensors of M.
The covariant derivative $\bar{\nabla} h$ of h with respect to the connection on $T M \oplus T^{\perp} M$ is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.8}
\end{equation*}
$$

The equation of Codazzi is

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.9}
\end{equation*}
$$

It follows from the definition of a rectifying curve $x: I \rightarrow \mathbb{E}^{3}$ that the position vector field x of x satisfies

$$
\begin{equation*}
\mathbf{x}(s)=\lambda(s) \mathbf{t}(s)+\mu(s) \mathbf{b}(s) \tag{2.10}
\end{equation*}
$$

for some functions λ and μ.

For a curve $x: I \rightarrow \mathbb{E}^{3}$ with $\kappa\left(s_{0}\right) \neq 0$ at $s_{0} \in I$, the first normal space at s_{0} is the line spanned by the principal normal vector $\mathbf{n}\left(s_{0}\right)$. Hence, the rectifying plane at s_{0} is nothing but the plane orthogonal to the first normal space at s_{0}. Therefore, for a submanifold M of \mathbb{E}_{i}^{m} and a point $p \in M$, we call the subspace of $T_{p} \mathbb{E}_{i}^{m}$, orthogonal complement to the first normal space $\operatorname{Im} h_{p}$, the rectifying space of M at p (see [6]).

We make the following definition as in [6].
Definition 2.1. A pseudo-Riemannian submanifold M of a pseudo-Euclidean space \mathbb{E}_{i}^{m} is called a rectifying submanifold if the position vector field x of M always lies in its rectifying space. In other words, M is a rectifying submanifold if and only if

$$
\begin{equation*}
\left\langle\mathbf{x}(p), \operatorname{Im} h_{p}\right\rangle=0 \tag{2.11}
\end{equation*}
$$

holds at every $p \in M$.

3. Lemmas

A tangent vector v of a pseudo-Riemannian manifold \tilde{M}_{i}^{m} is called space-like (respectively, time-like) if $v=0$ or $\langle v, v\rangle>0$ (respectively, $\langle v, v\rangle<0$). A vector v is called light-like or null if $v \neq 0$ and $\langle v, v\rangle=0$.

The light cone $\mathcal{L} C$ of \mathbb{E}_{i}^{m} is defined by

$$
\begin{equation*}
\mathcal{L} C=\left\{v \in \mathbb{E}_{i}^{m}:\langle v, v\rangle=0\right\} \tag{3.1}
\end{equation*}
$$

Let r be a positive number. We put

$$
\begin{align*}
& S_{i}^{k}\left(r^{2}\right)=\left\{\mathbf{x} \in \mathbb{E}_{i}^{k+1}:\langle\mathbf{x}, \mathbf{x}\rangle=r^{2}\right\}, \quad i>0 \tag{3.2}\\
& H_{i}^{k}\left(-r^{2}\right)=\left\{\mathbf{x} \in \mathbb{E}_{i+1}^{k+1}:\langle\mathbf{x}, \mathbf{x}\rangle=-r^{2}\right\}, \quad i>0 \tag{3.3}\\
& H^{k}(c)=\left\{\mathbf{x} \in \mathbb{E}_{1}^{k+1}:\langle\mathbf{x}, \mathbf{x}\rangle=-r^{2} \text { and } x_{1}>0\right\} \tag{3.4}
\end{align*}
$$

$S_{i}^{k}\left(r^{2}\right)$ (respectively, $H_{i}^{k}\left(-r^{2}\right)$) is a pseudo-Riemannian manifolds of curvature $1 / r^{2}$ (respectively, $-1 / r^{2}$) with index i. The $S_{i}^{k}\left(r^{2}\right)$ (respectively, $H_{i}^{k}\left(-r^{2}\right)$) is known as a pseudo-sphere (respectively, pseudo-hyperbolic space).

The pseudo-Riemannian manifolds $\mathbb{E}_{i}^{k}, S_{i}^{k}\left(r^{2}\right), H_{i}^{k}\left(-r^{2}\right)$ are the standard models of the indefinite real space forms. In particular, $\mathbb{E}_{1}^{k}, S_{1}^{k}(c), H_{1}^{k}(c)$ are the standard models of Lorentzian space forms

A submanifold M of \mathbb{E}_{i}^{m} is called space-like if each tangent vector of M is space-like.
By a cone in \mathbb{E}_{i}^{m} with vertex at the origin $o \in \mathbb{E}_{i}^{m}$ we mean a ruled submanifold generated by a family of half lines initiated at o. A submanifold of \mathbb{E}_{i}^{m} is called a conic submanifold with vertex at o if it is an open portion of a cone with vertex at o.

For a space-like submanifold M of \mathbb{E}_{i}^{m}, there exists a natural orthogonal decomposition of the position vector field x at each point; namely,

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}^{T}+\mathbf{x}^{N} \tag{3.5}
\end{equation*}
$$

where \mathbf{x}^{T} and \mathbf{x}^{N} denote the tangential and normal components of x , respectively.
We put

$$
\left|\mathbf{x}^{T}\right|^{2}=\left\langle\mathbf{x}^{T}, \mathbf{x}^{T}\right\rangle, \quad\left|\mathbf{x}^{N}\right|^{2}=\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle .
$$

Lemma 3.1. Let M be a pseudo-Riemannian submanifold of the pseudo-Euclidean space \mathbb{E}_{i}^{m}. If the position vector field \mathbf{x} of M in \mathbb{E}_{i}^{m} is either space-like or time-like, then $\mathbf{x}=\mathbf{x}^{T}$ holds identically if and only if M is a conic submanifold with the vertex at the origin.

Proof. Let M be a pseudo-Riemannian submanifold of \mathbb{E}_{i}^{m}. Assume that the position vector field x of M in \mathbb{E}_{i}^{m} is either space-like or time-like. If $\mathbf{x}=\mathbf{x}^{T}$ holds identically, then $e_{1}=\mathbf{x} /|\mathbf{x}|$ is a unit vector field.

Put $\mathbf{x}=\rho e_{1}$. Then we get

$$
\begin{equation*}
\tilde{\nabla}_{e_{1}} \mathbf{x}=e_{1}, \quad \tilde{\nabla}_{e_{1}} \mathbf{x}=\left(e_{1} \rho\right) e_{1}+\rho \tilde{\nabla}_{e_{1}} e_{1} . \tag{3.6}
\end{equation*}
$$

Since $\tilde{\nabla}_{e_{1}} e_{1}$ is perpendicular to e_{1}, we find from (3.6) that $\tilde{\nabla}_{e_{1}} e_{1}=0$. Therefore the integral curves of e_{1} are some open portions of generating lines in \mathbb{E}^{m}. Moreover, because $\mathbf{x}=\mathbf{x}^{T}$, the generating lines given by the integral curves of e_{1} pass through the origin. Consequently, M is a conic submanifold with the vertex at the origin.

The converse is clear.

We recall the following definition of concurrent vector fields.
Definition 3.1. A non-trivial vector field C on a Riemannian (or more generally, on a pseudo-Riemannian) manifold M is called a concurrent vector field if it satisfies

$$
\begin{equation*}
\nabla_{X} C=X \tag{3.7}
\end{equation*}
$$

for any vector X tangent to M, where ∇ is the Levi-Civita connection of M.
Remark 3.1. Since the position vector field of the pseudo-Euclidean space \mathbb{E}_{i}^{m} is a concurrent vector field, it follows that the position vector field \mathbf{x} of any pseudo-Riemannian submanifold M in \mathbb{E}_{i}^{m} satisfies

$$
\begin{equation*}
\tilde{\nabla}_{Z} \mathbf{x}=Z \tag{3.8}
\end{equation*}
$$

for any $Z \in T M$, where $\tilde{\nabla}$ is the Levi-Civita connection of \mathbb{E}_{i}^{m}.
Lemma 3.2. Let M be a pseudo-Riemannian submanifold of \mathbb{E}_{i}^{m}. If the position vector field \mathbf{x} is either space-like or time-like, then the position vector field \mathbf{x} of M satisfies $\mathbf{x}=\mathbf{x}^{N}$ identically if and only if M lies in one of the following hypersurfaces of \mathbb{E}_{i}^{m} :
(1) a pseudo-sphere $S_{i}^{m-1}\left(c^{2}\right)$;or
(2) a pseudo-hyperbolic space $H_{i-1}^{m-1}\left(-c^{2}\right)$ whenever $i>1$; or
(3) a hyperbolic space $H^{m-1}\left(-c^{2}\right)$ whenever $i=1$,
where c is a positive number.
Proof. Let $x: M \rightarrow \mathbb{E}_{i}^{m}$ be an isometric immersion of a pseudo-Riemannian n-manifold into \mathbb{E}_{i}^{m} with space-like or time-like position vector field. If $x=x^{N}$ holds identically, then we get from (3.8) that

$$
Z\langle\mathbf{x}, \mathbf{x}\rangle=2\left\langle\tilde{\nabla}_{Z} \mathbf{x}, \mathbf{x}\right\rangle=2\left\langle Z, \mathbf{x}^{N}\right\rangle=0
$$

for any $Z \in T M$. Thus M lies in one of the three hypersurfaces of \mathbb{E}_{i}^{m}.
The converse is easy to verify.
In views of Lemma 3.1 and Lemma 3.2 we make the following.
Definition 3.2. A rectifying submanifold M of \mathbb{E}_{i}^{m} is called proper if its position vector field \mathbf{x} satisfies $\mathbf{x} \neq \mathbf{x}^{T}$ and $\mathrm{x} \neq \mathrm{x}^{N}$ at every point on M.

In this article, we are only interested on proper rectifying submanifolds of \mathbb{E}_{i}^{m} in views of Lemma 3.1 and Lemma 3.2.

For the proof of our main theorem we also need the following lemma.
Lemma 3.3. Let M be a pseudo-Riemannian submanifold of \mathbb{E}_{i}^{m}. If M is proper rectifying, then $\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle$ is constant on M.
Proof. Let $x: M \rightarrow \mathbb{E}_{i}^{m}$ be an isometric immersion of a Riemannian n-manifold into \mathbb{E}_{i}^{m}. Consider the orthogonal decomposition

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}^{T}+\mathbf{x}^{N} \tag{3.9}
\end{equation*}
$$

of the position vector field \mathbf{x} of M in \mathbb{E}_{i}^{m}. It follows from (3.9) and the formula of Gauss and the formula of Weingarten that

$$
\begin{equation*}
Z=\tilde{\nabla}_{Z} \mathbf{x}=\nabla_{Z} \mathbf{x}^{T}+h\left(Z, \mathbf{x}^{T}\right)-A_{\mathbf{x}^{N}} Z+D_{Z} \mathbf{x}^{N} \tag{3.10}
\end{equation*}
$$

for any $Z \in T M$. By comparing the normal components in (3.10), we find

$$
\begin{equation*}
D_{Z} \mathbf{x}^{N}=-h\left(Z, \mathbf{x}^{T}\right) \tag{3.11}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
Z\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle=2\left\langle D_{Z} \mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle=-\left\langle h\left(Z, \mathbf{x}^{T}\right), \mathbf{x}\right\rangle=0 \tag{3.12}
\end{equation*}
$$

where we have used (2.11) in Definition 2.1. Since (3.12) holds identically for any $Z \in T M$, we conclude that $\left\langle\mathrm{x}^{N}, \mathrm{x}^{N}\right\rangle$ is constant on M.
Remark 3.2. A submanifold M of \mathbb{E}_{i}^{m} is called a T-submanifold (respectively, N-submanifold) if its position vector field \mathbf{x} satisfies $\left\langle\mathbf{x}^{T}, \mathbf{x}^{T}\right\rangle=$ constant (respectively, $\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle=$ constant) (cf. [2, 4]). Obviously, Lemma 3.3 implies that every proper rectifying pseudo-Riemannian submanifold of \mathbb{E}_{i}^{m} is an N-submanifold.

4. Characterization of rectifying submanifolds in \mathbb{E}_{i}^{m}

The following result provides a very simple characterization of rectifying submanifolds.
Theorem 4.1. If the position vector field \mathbf{x} of a pseudo-Riemannian submanifold M in \mathbb{E}_{i}^{m} satisfies $\mathbf{x}^{N} \neq 0$, then M is a proper rectifying submanifold if and only if \mathbf{x}^{T} is a concurrent vector field on M.
Proof. Let M be a space-like submanifold of \mathbb{E}_{i}^{m}. Then (3.10) holds. After comparing the tangential components in (3.10), we obtain

$$
\begin{equation*}
A_{\mathbf{x}^{N}} Z=\nabla_{Z} \mathbf{x}^{T}-Z . \tag{4.1}
\end{equation*}
$$

Assume that M is a proper rectifying submanifold of \mathbb{E}_{i}^{m}. Then we have $\mathbf{x}^{T} \neq 0$ and $\mathbf{x}^{N} \neq 0$. Moreover, it follows from the Definition 2.1 that

$$
\begin{equation*}
\left\langle A_{\mathbf{x}^{N}} X, Y\right\rangle=\langle\mathbf{x}, h(X, Y)\rangle=0 \tag{4.2}
\end{equation*}
$$

for $X, Y \in T M$. Since M is space-like, we find from (4.1) that $A_{\mathbf{x}^{N}}=0$. Therefore (3.8) yields

$$
\begin{equation*}
\nabla_{Z} \mathbf{x}^{T}=Z, \tag{4.3}
\end{equation*}
$$

for any $Z \in T M$. Consequently, \mathbf{x}^{T} is a concurrent vector field on M.
Conversely, if \mathbf{x}^{T} is a concurrent vector field on M, then (3.7) and (4.1) give $A_{\mathbf{x}^{N}}=0$. Therefore we obtain (4.3). Consequently, M is a proper rectifying submanifold due to $\mathrm{x}^{N} \neq 0$ by assumption.

The next result shows that every proper rectifying space-like submanifold is a warped product.
Theorem 4.2. Let M be a proper rectifying space-like submanifold M of \mathbb{E}_{i}^{m}. Then M is a warped product manifold $I \times_{s} F$ with warping metric

$$
\begin{equation*}
g=d s^{2}+s^{2} g_{F}, \tag{4.4}
\end{equation*}
$$

such that $\mathbf{x}^{T}=s \partial / \partial s$ and g_{F} is the metric tensor of a Riemannian manifold F.
Proof. Let M be a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m}. Then we have $\mathbf{x}^{T} \neq 0$ and $\mathbf{x}^{N} \neq 0$. Thus we may put

$$
\begin{equation*}
\mathbf{x}^{T}=\rho e_{1}, \quad \rho=\left|\mathbf{x}^{T}\right|>0, \tag{4.5}
\end{equation*}
$$

where e_{1} is a space-like unit vector field. We may extend e_{1} to a local orthonormal frame $e_{1}, e_{2}, \ldots, e_{n}$ on M.
Obviously, it follows from (4.5) that $\rho=\left\langle\mathbf{x}, e_{1}\right\rangle$. Thus, by taking the derivative of ρ with respect to e_{j} for $j=1, \ldots, n$ and using (2.3) and (3.8), we find

$$
\begin{equation*}
e_{j} \rho=\delta_{1 j}+\left\langle\mathbf{x}, h\left(e_{1}, e_{j}\right)\right\rangle, \tag{4.6}
\end{equation*}
$$

where $\delta_{i j}=1$ or 0 depending on $i=j$ or $i \neq j$. Combining (2.11) and (4.6) gives

$$
e_{1} \rho=1, \quad e_{2} \rho=\cdots=e_{n} \rho=0 .
$$

Therefore we get $\rho=\rho(s)$ and $\rho^{\prime}(s)=1$, which imply $\rho(s)=s+b$ for some real number b. Hence, after applying a suitable translation on s if necessary, we have $\rho=s$. Therefore, we obtain

$$
\begin{equation*}
\mathbf{x}^{T}=s e_{1}=s \frac{\partial}{\partial s} . \tag{4.7}
\end{equation*}
$$

Since M is a proper rectifying space-like submanifold, Theorem 4.1 implies that $\mathbf{x}^{T}=s e_{1}$ is a concurrent vector field. Thus we find from (4.3) that

$$
\begin{equation*}
e_{1}=\nabla_{e_{1}} \mathbf{x}^{T}=\nabla_{e_{1}} s e_{1}=e_{1}+s \nabla_{e_{1}} e_{1}, \tag{4.8}
\end{equation*}
$$

which implies $\nabla_{e_{1}} e_{1}=0$. Therefore the integral curves of e_{1} are geodesics of M. Consequently, the distribution \mathcal{D}^{\perp} spanned by e_{1} is a totally geodesic foliation.

From (4.3) we also find

$$
\begin{equation*}
e_{i}=\nabla_{e_{i}} \mathbf{x}^{T}=s \nabla_{e_{i}} e_{1}, \quad i=2, \ldots, n \tag{4.9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\omega_{1}^{j}\left(e_{i}\right)=\frac{\delta_{i j}}{s}, \quad i, j=2, \ldots, n \tag{4.10}
\end{equation*}
$$

We conclude from (4.10) that the distribution \mathcal{D} is integrable whose leaves are totally umbilical hypersurfaces of M. Moreover, it follows from (4.10) that the mean curvature of leaves of \mathcal{D} are given by s^{-1}. Since the leaves of \mathcal{D} are hypersurfaces, it follows that the mean curvature vector field of the leaves of \mathcal{D}_{2} is parallel in the normal bundle in M. Therefore the distribution \mathcal{D} is a spherical foliation. Consequently, by applying a result of [12] (or Theorem 4.4 of [5, page 90]) we conclude that M is locally a warped product $I \times{ }_{s} F$, where F is a Riemannian $(n-1)$-manifold. Therefore the metric tensor g of M takes the form (4.4).

5. Main result

The main result of this article is the following classification theorem.
Theorem 5.1. Let M be a proper rectifying space-like submanifold of the pseudo-Euclidean m-space \mathbb{E}_{i}^{m} with index $i>0$. If codim $M \geq 2$, then one of the following four cases occurs:
(a) There exist a positive number c and local coordinate systems $\left\{s, u_{2}, \ldots, u_{n}\right\}$ on M such that the immersion of M in \mathbb{E}_{i}^{m} is given by

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=\sqrt{s^{2}+c^{2}} Y\left(s, u_{2}, \ldots, u_{n}\right) \tag{5.1}
\end{equation*}
$$

where $Y=Y\left(s, u_{2}, \ldots, u_{n}\right)$ defines a space-like submanifolds of the unit pseudo-sphere $S_{i}^{m-1}(1) \subset \mathbb{E}_{i}^{m}$ such that the induced metric g_{Y} of Y is given by

$$
\begin{equation*}
g_{Y}=\frac{c^{2}}{\left(s^{2}+c^{2}\right)^{2}} d s^{2}+\frac{s^{2}}{s^{2}+c^{2}} \sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.2}
\end{equation*}
$$

(b) There exist local coordinate systems $\left\{s, u_{2}, \ldots, u_{n}\right\}$ on M such that the immersion of M in \mathbb{E}_{i}^{m} is given by

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=s W\left(s, u_{2}, \ldots, u_{n}\right), \quad s \neq 0 \tag{5.3}
\end{equation*}
$$

where $W=W\left(s, u_{2}, \ldots, u_{n}\right)$ lies in the unit pseudo-sphere $S_{i}^{m-1}(1) \subset \mathbb{E}_{i}^{m}$ such that W_{s} is a light-like normal vector field of M and the induced metric tensor of W is of the following degenerate form:

$$
\begin{equation*}
g_{W}=\sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.4}
\end{equation*}
$$

with positive definite $\left(g_{j k}\right), j, k=2, \ldots, n$.
(c) There exist a positive number c and local coordinate systems $\left\{s, u_{2}, \ldots, u_{n}\right\}$ on M such that the immersion of M in \mathbb{E}_{i}^{m} is given by

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=\sqrt{s^{2}-c^{2}} U\left(s, u_{2}, \ldots, u_{n}\right), s^{2}>c^{2} \tag{5.5}
\end{equation*}
$$

where $U=U\left(s, u_{2}, \ldots, u_{n}\right)$ lies in the unit pseudo-sphere $S_{i}^{m-1}(1) \subset \mathbb{E}_{i}^{m}$ such that the induced metric g_{U} of U is given by

$$
\begin{equation*}
g_{U}=\frac{-c^{2}}{\left(s^{2}-c^{2}\right)^{2}} d s^{2}+\frac{s^{2}}{s^{2}-c^{2}} \sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.6}
\end{equation*}
$$

(d) There exist a positive number c and local coordinate systems $\left\{s, u_{2}, \ldots, u_{n}\right\}$ on M such that the immersion of M in \mathbb{E}_{i}^{m} is given by

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=\sqrt{c^{2}-s^{2}} V\left(s, u_{2}, \ldots, u_{n}\right), c^{2}>s^{2} \tag{5.7}
\end{equation*}
$$

where $V=V\left(s, u_{2}, \ldots, u_{n}\right)$ lies in the pseudo-hyperbolic space $H_{i-1}^{m-1}(-1) \subset \mathbb{E}_{i}^{m}$ for $i>1$ (respectively, hyperbolic space $H^{m-1}(-1) \subset \mathbb{E}_{1}^{m}$ for $i=1$) such that the induced metric g_{V} of V is given by

$$
\begin{equation*}
g_{V}=\frac{c^{2}}{\left(c^{2}-s^{2}\right)^{2}} d s^{2}+\frac{s^{2}}{c^{2}-s^{2}} \sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.8}
\end{equation*}
$$

Conversely, each of the four cases above gives rise to a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m}.
Proof. Assume that M is a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m} with $m \geq 2+\operatorname{dim} M$. Then we have $\mathbf{x}^{T} \neq 0$ and $\mathbf{x}^{N} \neq 0$. Thus we may put

$$
\begin{equation*}
\mathbf{x}^{T}=\rho e_{1}, \quad \rho=\left|\mathbf{x}^{T}\right|>0 \tag{5.9}
\end{equation*}
$$

where e_{1} is a space-like unit vector field. We may extend e_{1} to a local orthonormal frame $e_{1}, e_{2}, \ldots, e_{n}$ on M. Clearly, we have $\left\langle\mathbf{x}, e_{j}\right\rangle=0$ for $j=2, \ldots, n$.

Define the connection forms $\omega_{i}^{j}, i, j=1, \ldots, n$, by

$$
\begin{equation*}
\nabla_{X} e_{i}=\sum_{j=1}^{n} \omega_{i}^{j}(X) e_{j}, \quad i=1, \ldots, n \tag{5.10}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of M.
For $j, k=2, \ldots, n$, we find

$$
\begin{equation*}
0=e_{k}\left\langle\mathbf{x}, e_{j}\right\rangle=\delta_{j k}+\left\langle\mathbf{x}, \nabla_{e_{k}} e_{j}\right\rangle+\left\langle\mathbf{x}, h\left(e_{j}, e_{k}\right)\right\rangle=\delta_{j k}+\left\langle\mathbf{x}, \nabla_{e_{k}} e_{j}\right\rangle, \tag{5.11}
\end{equation*}
$$

where we have applied (2.11) from Definition 2.1, (2.3) and (3.8).
Since $h(X, Y)$ is symmetric in X and Y, we derive from (5.10) and (5.11) that

$$
\begin{equation*}
\omega_{j}^{1}\left(e_{k}\right)=\omega_{k}^{1}\left(e_{j}\right), \quad j, k=2, \ldots, n \tag{5.12}
\end{equation*}
$$

It follows from (5.10), (5.12) and the Frobenius theorem that the distribution \mathcal{D} spanned by e_{2}, \ldots, e_{n} is an integrable distribution.

On the other hand, the distribution $\mathcal{D}^{\perp}=\operatorname{Span}\left\{e_{1}\right\}$ is also integrable since it is of rank one. Therefore, there exists a local coordinate system $\left\{s, u_{2}, \ldots, u_{n}\right\}$ on M such that

$$
e_{1}=\frac{\partial}{\partial s} \text { and } \mathcal{D}=\operatorname{Span}\left\{\frac{\partial}{\partial u_{2}}, \ldots, \frac{\partial}{\partial u_{n}}\right\}
$$

Obviously, it follows from (5.9) that $\rho=\left\langle\mathbf{x}, e_{1}\right\rangle$. Now, by taking the derivative of ρ with respect to e_{j} for $j=1, \ldots, n$ and using (2.3) and (3.8), we find

$$
\begin{equation*}
e_{j} \rho=\delta_{1 j}+\left\langle\mathbf{x}, h\left(e_{1}, e_{j}\right)\right\rangle \tag{5.13}
\end{equation*}
$$

After combining (2.11) and (5.13) we find $e_{1} \rho=1$ and $e_{2} \rho=\cdots=e_{n} \rho=0$. Therefore we have

$$
\rho=\rho(s), \quad \rho^{\prime}(s)=1
$$

which imply

$$
\begin{equation*}
\rho(s)=s+b \tag{5.14}
\end{equation*}
$$

for some real number b. Consequently, after applying a suitable translation on s if necessary, we obtain $\rho=s$. Consequently, (5.9) implies that the position vector field satisfies

$$
\begin{equation*}
\mathbf{x}=s e_{1}+\mathbf{x}^{N} \tag{5.15}
\end{equation*}
$$

Moreover, since M is a proper rectifying submanifold, Lemma 3.3 implies that $\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle$ is constant on M. Therefore we find

$$
\langle\mathbf{x}, \mathbf{x}\rangle= \begin{cases}s^{2}+c^{2}, & \text { if }\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle>0 \tag{5.16}\\ s^{2}, & \text { if }\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle=0, \\ s^{2}-c^{2}, & \text { if }\left\langle\mathbf{x}^{N}, \mathbf{x}^{N}\right\rangle<0\end{cases}
$$

where c is a positive number.
Now, we divide the proof of the theorem into three cases.
Case (1): $\langle\mathbf{x}, \mathbf{x}\rangle=s^{2}+c^{2}$ with $c>0$. In this case, we may put

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=\sqrt{s^{2}+c^{2}} Y\left(s, u_{2}, \ldots, u_{n}\right) \tag{5.17}
\end{equation*}
$$

for some \mathbb{E}_{i}^{m}-valued function $Y=Y\left(s, u_{2}, \ldots, u_{n}\right)$ satisfying $\langle Y, Y\rangle=1$. Therefore the image of Y lies in the pseudo-sphere $S_{i}^{m-1}(1) \subset \mathbb{E}_{i}^{m-1}$. It follows from (5.17) that

$$
\begin{align*}
& \frac{\partial \mathbf{x}}{\partial s}=\frac{s}{\sqrt{s^{2}+c^{2}}} Y+\sqrt{s^{2}+c^{2}} Y_{s} \\
& \frac{\partial \mathbf{x}}{\partial u_{j}}=\sqrt{s^{2}+c^{2}} Y_{u_{j}}, \quad j=2, \ldots, n \tag{5.18}
\end{align*}
$$

Using (5.18) together with the fact that $e_{1}=\partial \mathbf{x} / \partial s$ is a unit vector field orthogonal to the distribution \mathcal{D}, we derive that

$$
\begin{equation*}
\left\langle Y_{s}, Y_{s}\right\rangle=\frac{c^{2}}{\left(s^{2}+c^{2}\right)^{2}}, \quad\left\langle Y_{s}, Y_{u_{j}}\right\rangle=0, \quad j=2, \ldots, n \tag{5.19}
\end{equation*}
$$

Therefore the metric tensor g_{Y} of Y induced from $S_{i}^{m-1}(1)$ takes the following form:

$$
\begin{equation*}
g_{Y}=\frac{c^{2}}{\left(s^{2}+c^{2}\right)^{2}} d s^{2}+\frac{s^{2}}{s^{2}+c^{2}} \sum_{j, k=2}^{n} g_{j k}\left(s, u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.20}
\end{equation*}
$$

where $\left(g_{j k}\right)$ is positive definite. In particular, (5.17) and (5.20) show that the submanifold defined by Y is also space-like.

Now, by applying (5.18) and (5.20) we know that the metric tensor g of M is of the form:

$$
\begin{equation*}
g=d s^{2}+s^{2} \sum_{j, k=2}^{n} g_{j k}\left(s, u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.21}
\end{equation*}
$$

After a straight-forward long computation we find from (5.21) that the Levi-Civita connection of M satisfies

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=0 \\
& \nabla_{\frac{\partial}{\partial u_{j}}} \frac{\partial}{\partial s}=\frac{1}{s} \frac{\partial}{\partial u_{j}}+\frac{1}{2} \sum_{k=2}^{n}\left(\sum_{t=2}^{n} g^{k t} \frac{\partial g_{j t}}{\partial s}\right) \frac{\partial}{\partial u_{k}}, j=2, \ldots, n, \tag{5.22}
\end{align*}
$$

where $\left(g^{j k}\right)$ is the inverse matrix of $\left(g_{i j}\right)$. Because M is a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m}, it follows from Theorem 4.1 that

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial u_{j}}} \mathbf{x}^{T}=\frac{\partial}{\partial u_{j}}, \quad j=2, \ldots, n \tag{5.23}
\end{equation*}
$$

Therefore, after applying (4.7), (5.22) and (5.23) we obtain

$$
\begin{equation*}
\sum_{t=2}^{n} g^{k t} \frac{\partial g_{j t}}{\partial s}=0, \quad j, k=2, \ldots, n \tag{5.24}
\end{equation*}
$$

Because $\left(g^{j k}\right)$ is positive definite, system (5.24) implies

$$
\frac{\partial g_{j k}}{\partial s}=0, \quad j, t=2, \ldots, n
$$

Therefore (5.31) must take the form of (5.4). Consequently, (5.20) reduces to (5.2).
Conversely, let us consider a space-like submanifold M of \mathbb{E}_{i}^{m} defined by (5.1) satisfying $\langle Y, Y\rangle=1$ such that the metric tensor g_{Y} is given by (5.2). Then we obtain (5.18) and (5.19) from (5.1). It follows from (5.2), (5.18) and (5.19) that the metric tensor g of M is given by

$$
\begin{equation*}
g=d s^{2}+s^{2} \sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.25}
\end{equation*}
$$

Now, it is straight-forward to verify from (5.25) that the Levi-Civita connection of M satisfies

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=0, \quad \nabla_{\frac{\partial}{\partial u_{j}}} \frac{\partial}{\partial s}=\frac{1}{s} \frac{\partial}{\partial u_{j}}, \quad j=2, \ldots, n \tag{5.26}
\end{equation*}
$$

Since $\langle Y, Y\rangle=1$, (5.1) implies $\left\langle\mathbf{x}, Y_{u_{j}}\right\rangle=0$ for $j=2, \ldots, n$. Thus we find from (5.18) that

$$
\begin{equation*}
\left\langle\mathbf{x}, \mathbf{x}_{u_{j}}\right\rangle=0, \quad j=2, \ldots, n \tag{5.27}
\end{equation*}
$$

Therefore, we obtain $\mathbf{x}^{T}=s \frac{\partial}{\partial s}$. Now, by applying (5.26) it is easy to verify that \mathbf{x}^{T} is a concurrent vector field on M. Moreover, it is direct to show that the normal component of \mathbf{x} is given by

$$
\mathbf{x}^{N}=\frac{c^{2}}{\sqrt{s^{2}+c^{2}}} Y-s \sqrt{s^{2}+c^{2}} Y_{s}
$$

which is alway non-zero everywhere on M. Consequently, the immersion defined by case (a) gives rise to a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m}.
Case (2): $\langle\mathbf{x}, \mathbf{x}\rangle=s^{2}, s \neq 0$. In this case, \mathbf{x}^{N} is a light-like normal vector field of M.
We put

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=s W\left(s, u_{2}, \ldots, u_{n}\right), s \neq 0 \tag{5.28}
\end{equation*}
$$

for some \mathbb{E}_{i}^{m}-valued function $W=W\left(s, u_{2}, \ldots, u_{n}\right)$ satisfying $\langle W, W\rangle=1$. Therefore the image of W lies in the pseudo-sphere $S_{i}^{m-1}(1) \subset \mathbb{E}_{i}^{m-1}$.

It follows from (5.28) that

$$
\begin{equation*}
\frac{\partial \mathbf{x}}{\partial s}=W+s W_{s}, \quad \frac{\partial \mathbf{x}}{\partial u_{j}}=s W_{u_{j}}, \quad j=2, \ldots, n \tag{5.29}
\end{equation*}
$$

Using (5.29), $\langle W, W\rangle=1$ and the fact that $e_{1}=\partial \mathbf{x} / \partial s$ is a unit vector field orthogonal to the distribution \mathcal{D}, we derive that

$$
\begin{equation*}
\left\langle W_{s}, W_{s}\right\rangle=0,\left\langle W_{s}, W_{u_{j}}\right\rangle=0, \quad j=2, \ldots, n . \tag{5.30}
\end{equation*}
$$

If we put $g_{j k}=\left\langle W_{u_{j}}, W_{u_{k}}\right\rangle$, then it follows from (5.29) and (5.30) that the metric tensor g_{Y} of W is a generate one given by

$$
\begin{equation*}
g_{W}=\sum_{j, k=2}^{n} g_{i j}\left(s, u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.31}
\end{equation*}
$$

Then it follows from (5.28) and (5.31) that the induced metric g of M is given by

$$
\begin{equation*}
g=d s^{2}+s^{2} \sum_{j, k=2}^{n} g_{j k}\left(s, u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.32}
\end{equation*}
$$

Since M is a proper rectifying space-like submanifold of \mathbb{E}_{i}^{m}, it follows from Theorem 4.1 that \mathbf{x}^{T} is a concurrent vector field. Therefore, we may apply the same argument as in Case (1) to conclude that $\partial g_{j k} / \partial s=0$ for $j, t=2, \ldots, n$. Therefore (5.31) must take the form of (5.4).

Conversely, let us consider an immersion $x: M \rightarrow \mathbb{E}_{i}^{m}$ of a Riemannian n-manifold M into \mathbb{E}_{i}^{m} given by

$$
\begin{equation*}
\mathbf{x}\left(s, u_{2}, \ldots, u_{n}\right)=s W\left(s, u_{2}, \ldots, u_{n}\right),\langle W, W\rangle=1, \quad s \neq 0 \tag{5.33}
\end{equation*}
$$

such that W_{s} is a light-like normal vector field and the metric tensor of W is of the following degenerate form:

$$
\begin{equation*}
g_{W}=\sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.34}
\end{equation*}
$$

with positive definite matrix $\left(g_{j k}\right), j, k=2, \ldots, n$. Then it follows from (5.33) and (5.34) that the induced metric g of M is given by

$$
\begin{equation*}
g=d s^{2}+s^{2} \sum_{j, k=2}^{n} g_{j k}\left(u_{2}, \ldots, u_{n}\right) d u_{j} d u_{k} \tag{5.35}
\end{equation*}
$$

From (5.34) we get

$$
\begin{equation*}
\mathbf{x}_{s}=W+s W_{s}, \quad \mathbf{x}_{u_{j}}=s W_{u_{j}}, \quad j=2, \ldots, n \tag{5.36}
\end{equation*}
$$

Thus we find from (5.33) and (5.36) that

$$
\begin{equation*}
\mathbf{x}=s \mathbf{x}_{s}-s^{2} W_{s} \tag{5.37}
\end{equation*}
$$

Because W_{s} is a light-like normal vector field and \mathbf{x}_{s} is tangent to M, we obtain from (5.37) that

$$
\begin{equation*}
\mathbf{x}^{T}=s \mathbf{x}_{s} \quad \text { and } \quad \mathbf{x}^{N}=-s^{2} W_{s} \neq 0 \tag{5.38}
\end{equation*}
$$

Now, we may derive from (5.35) and (5.38) as before that x^{T} is a concurrent vector field on M. Consequently, M is a rectifying space-like submanifold of \mathbb{E}_{i}^{m} according to Theorem 4.1. This gives Case (b) of the theorem.

Case (3): $\langle\mathbf{x}, \mathbf{x}\rangle=s^{2}-c^{2} \neq 0$. By applying a method similar to Case (1), we will obtain either Case (c) or Case (d) according to $s^{2}>c^{2}$ or $s^{2}<c^{2}$, respectively.

References

[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space. Turkish J. Math., 40 (2016), no. 1,210-223.
[2] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space, J. Geom., 74 (2002), 61-77.
[3] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110 (2003), no. 2, 147-152.
[4] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J. Math., 29 (2003), no. 2, $281-294$.
[5] Chen, B.-Y., Riemannian geometry, δ-invariants and applications. World Scientific, Hackensack, NJ, 2011.
[6] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9 (2016), no. 2, 1-8.
[7] Chen, B.-Y., Addendum to : Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 10 (2017), no. 1, 81-82.
[8] Chen, B.-Y., Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ, 2017.
[9] Chen, B.-Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math., 48 (2017) (to appear).
[10] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77-90.
[11] Kim, D.-S., Chung, H.-S. and Cho, K.-H., Space curves satisfying $\tau / \kappa=a s+b$. Honam Math. J., 15 (1993), 1-9.
[12] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. , 241 (1979), no. 3, 209-215.
[13] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J. Math., 33 (2003), no. 2, 23-32.
[14] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53-64.
[15] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26-35.
[16] O'Neill, B., Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983.

Affiliations

BANG-YEN CHEN

Address: Michigan State University, Department of Mathematics, 619 Red Cedar Road, East Lansing, Michigan 48824, U.S.A.
E-MAIL: bychen@math.msu.edu
Yun Myung OH
AdDress: Andrews University, Department of Mathematics, Berrien Spring, Michigan 49104, U.S.A.
E-MAIL: ohy@andrews.edu

[^0]: Received :01-01-2017, Accepted : 21-03-2017

 * Corresponding author

