On Biharmonic Lorentz Hypersurfaces with Non-Diagonal Shape Operator

Deepika and Ram Shankar Gupta*

(Communicated by Murat Tosun)

Abstract

We prove that there exist no proper biharmonic Lorentz hypersurface M_{1}^{n} in E_{1}^{n+1} with at most three distinct principal curvatures of non-diagonal shape operator having minimal polynomial $(y-\lambda)^{2}\left(y-\lambda_{1}\right)\left(y-\lambda_{n}\right)$.

Keywords: Pseudo-Euclidean space; Biharmonic submanifolds; Mean curvature vector.
AMS Subject Classification (2010): Primary: 53D12 ; Secondary: 53C40; 53C42.

1. Introduction

Let M_{r}^{n} be an n-dimensional, connected submanifold of the pseudo-Euclidean space E_{s}^{m}. Denote by \vec{x} and \triangle respectively the position vector field and the Laplace operator on M_{r}^{n} with respect to the induced metric g on M_{r}^{n}, from the indefinite metric on the ambient space E_{s}^{m}. It is well known that

$$
\triangle \vec{x}=-n \vec{H}
$$

where \vec{H} is the mean curvature vector of M. An immersion is minimal $(\vec{H}=0)$ if and only if $\triangle \vec{x}=0$ and is called biharmornic if $\triangle^{2} \vec{x}=0$ i.e. $\triangle \vec{H}=0$. Of course, for an immersion, minimality implies biharmonicity.

The study of submanifolds with harmonic mean curvature vector field was initiated by Chen in 1985 and arose in the context of his theory of submanifolds of finite type. A survey on submanifolds of finite type and various related topics was presented in [4, 5].

In 1991, Chen conjectured the following:
Conjecture: The only biharmonic submanifolds of Euclidean spaces are the minimal ones.
In Euclidean spaces, we have the following results, which indeed support the above mentioned conjecture. Chen proved in 1985 that every biharmonic surface in E^{3} is minimal. Thereafter, I. Dimitric generalized this result [9]. In [14], it was proved that every biharmonic hypersurface in E^{4} is minimal. In [16], it was obtained that every biharmonic hypersurface in E^{5} with three distinct principal curvatures must be minimal. Also, it was proved that every biharmonic hypersurfaces with three distinct principal curvatures in E^{n+1} with arbitrary dimension is minimal [12]. Recently, it was proved that there exist no proper biharmonic hypersurfaces in E^{5} with zero scalar curvature [10].

Chen et al. [7, 8] obtained some examples of proper biharmonic surfaces in 4-dimensional pseudo-Euclidean spaces E_{s}^{4} for $s=1,2,3$ (see also [6]). Also, it was proved in [7, 8] that biharmonic surfaces in pseudoEuclidean 3-spaces are minimal. A. Arvanitoyeorgos et al. [2] proved that biharmonic Lorentzian hypersurfaces in Minkowski 4-spaces are minimal. In [16], it was proved that every biharmonic non-degenerate hypersurface in E_{s}^{5} with three distinct principal curvatures of diagonal shape operator is minimal.

In this paper, we study biharmonic Lorentz hypersurfaces M_{1}^{n} in E_{1}^{n+1} with at most three distinct eigen values of non-diagonal shape operators satisfies the equation (2.11).

[^0]
2. Preliminaries

Let $\left(M_{1}^{n}, g\right)$ be a n-dimensional Lorentz hypersurface isometrically immersed in a $n+1$-dimensional pseudoEuclidean space $\left(E_{1}^{n+1}, \bar{g}\right)$ and $g=\bar{g}_{\mid M_{1}^{n}}$. We denote by ξ unit normal vector to M_{1}^{n} with $\bar{g}(\xi, \xi)=1$.

Let $\bar{\nabla}$ and ∇ denote linear connections on E_{1}^{n+1} and M_{1}^{n}, respectively. Then, the Gauss and Weingarten formulae are given by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \forall X, Y \in \Gamma\left(T M_{1}^{n}\right), \tag{2.1}\\
\bar{\nabla}_{X} \xi=-S_{\xi} X, \quad \forall \xi \in \Gamma\left(T M_{1}^{n}\right)^{\perp}, \tag{2.2}
\end{gather*}
$$

where h is the second fundamental form and S is the shape operator. It is well known that the second fundamental form h and shape operator S are related by

$$
\begin{equation*}
\bar{g}(h(X, Y), \xi)=g\left(S_{\xi} X, Y\right) . \tag{2.3}
\end{equation*}
$$

The mean curvature vector is given by

$$
\begin{equation*}
\vec{H}=\frac{1}{n} \text { trace } h . \tag{2.4}
\end{equation*}
$$

The Gauss and Codazzi equations are given by

$$
\begin{gather*}
R(X, Y) Z=g(S Y, Z) S X-g(S X, Z) S Y, \tag{2.5}\\
\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X \tag{2.6}
\end{gather*}
$$

respectively, where R is the curvature tensor, $S=S_{\xi}$ for some unit normal vector field ξ and

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=\nabla_{X}(S Y)-S\left(\nabla_{X} Y\right) \tag{2.7}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma\left(T M_{1}^{n}\right)$.
By comparing the tangential and normal components in biharmonic equation $\triangle \vec{H}=0$, the necessary and sufficient conditions for M_{1}^{n} to have proper mean curvature in E_{1}^{n+1} are

$$
\begin{equation*}
\triangle H+H \text { trace } S^{2}=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S(\operatorname{grad} H)+\frac{n}{2} H \operatorname{grad} H=0, \tag{2.9}
\end{equation*}
$$

where H denotes the mean curvature. Also, the Laplace operator \triangle of a scalar valued function f is given by [3]

$$
\begin{equation*}
\triangle f=-\sum_{i=1}^{n} \epsilon_{i}\left(e_{i} e_{i} f-\nabla_{e_{i}} e_{i} f\right) \tag{2.10}
\end{equation*}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthonormal local tangent frame on M_{1}^{n} with $\epsilon_{i}= \pm 1$.
A vector X in E_{s}^{n+1} is called spacelike, timelike or lightlike according as $\bar{g}(X, X)>0, \bar{g}(X, X)<0$ or $\bar{g}(X, X)=0$, respectively. A non-degenerate hypersurface M_{r}^{n} of E_{s}^{n+1} is called Riemannian or pseudoRiemannian according as the induced metric on M_{r}^{n} from the indefinite metric on E_{s}^{n+1} is definite or indefinite. A shape operator of pseudo-Riemannian hypersurfaces is not diagonalizable always unlike the Riemannian hypersurfaces.

It was proved in $[16,15]$ that the canonical form of the non-diagonal shape operator of M_{1}^{n} in E_{1}^{n+1} having minimal polynomial $(y-\lambda)^{2}\left(y-\lambda_{1}\right)\left(y-\lambda_{n}\right)$ with three distinct real eigen values takes the form

$$
S=\left(\begin{array}{ccccccccc}
\lambda & 0 & & & & & & & 0 \tag{2.11}\\
1 & \lambda & & & & & & & \\
& & \lambda & & & & & & \\
& & & \ldots & & & & & \\
& & & & \lambda_{1} & & & & \\
& & & & & \cdots & & & \\
& & & & & & \lambda_{n} & & \\
0 & & & & & & & \cdots & \\
&
\end{array}\right)
$$

with respect to some suitable pseudo-orthonormal frame of the tangent bundle.

3. Biharmonic Lorentz hypersurfaces in E_{1}^{n+1} with non-diagonal shape operator

Let M_{1}^{n} be a biharmonic Lorentz hypersurface in E_{1}^{n+1} with proper mean curvature vector field having non-diagonal shape operator given by (2.11). Also, we assume that mean curvature is not constant and $\operatorname{grad} H \neq 0$. Assuming non constant mean curvature implies the existence of an open connected subset U of M_{1}^{n}, with $\operatorname{grad}_{p} H \neq 0$, for all $p \in U$. The shape operator S of a biharmonic Lorentz hypersurface given by (2.11) having the three distinct eigen values λ, λ_{1} and λ_{n} with multiplicities r, s and t respectively, and with minimal polynomial $(y-\lambda)^{2}\left(y-\lambda_{1}\right)\left(y-\lambda_{n}\right)$ can be written as

$$
\begin{equation*}
S\left(e_{1}\right)=\lambda e_{1}+e_{2}, \quad S\left(e_{2}\right)=\lambda e_{2}, \quad S\left(e_{A}\right)=\lambda e_{A}, \quad S\left(e_{B}\right)=\lambda_{1} e_{B}, \quad S\left(e_{C}\right)=\lambda_{n} e_{C}, \tag{3.1}
\end{equation*}
$$

with respect to pseudo orthonormal basis of vector fields $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{p} M_{1}^{n}$, satisfying

$$
\begin{equation*}
g\left(e_{1}, e_{2}\right)=-1, \quad g\left(e_{i}, e_{i}\right)=1, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{1}, e_{i}\right)=g\left(e_{2}, e_{i}\right)=g\left(e_{i}, e_{j}\right)=0, \tag{3.3}
\end{equation*}
$$

for $i \neq j$ and $i, j=3,4, \ldots, n$, and $A=3,4, \ldots, r, \quad B=r+1, r+2, \ldots, r+s, C=r+s+1, r+s+2, \ldots, r+$ $s+t=n$.
We write

$$
\begin{equation*}
\nabla_{e_{\beta}} e_{\gamma}=\sum_{k=1}^{n} \omega_{\beta \gamma}^{k} e_{k}, \quad \beta, \gamma=1,2,3, \ldots, n . \tag{3.4}
\end{equation*}
$$

Taking covariant derivatives of (3.2) and (3.3) with respect to e_{k} and using (3.4), we find

$$
\begin{equation*}
\omega_{k 1}^{1}=-\omega_{k 2}^{2}, \quad \omega_{k i}^{i}=\omega_{k 1}^{2}=\omega_{k 2}^{1}=0, \quad \omega_{k 1}^{i}=\omega_{k i}^{2}, \quad \omega_{k 2}^{i}=\omega_{k i}^{1}, \quad \omega_{k i}^{j}=-\omega_{k j}^{i}, \tag{3.5}
\end{equation*}
$$

for $i \neq j, \quad i, j=3,4, \ldots, n$, and $k=1,2, \ldots, n$.
Now onwards, we take

$$
\begin{array}{ll}
A \neq \widetilde{A}, & A, \widetilde{A}=3,4, \ldots, r, \\
B \neq \widetilde{B}, & B, \widetilde{B}=r+1, r+2, \ldots, r+s, \\
C \neq \widetilde{C}, & C, \widetilde{C}=r+s+1, r+s+2, \ldots, r+s+t=n
\end{array}
$$

Putting $X=e_{1}, Y=e_{2}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{1}(\lambda) e_{2}+\lambda \sum_{p \neq 1} \omega_{12}^{p} e_{p}-\omega_{12}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{12}^{A}\left(\lambda e_{A}\right)-\sum_{B=r+1}^{r+s} \omega_{12}^{B}\left(\lambda_{1} e_{B}\right) \\
& -\sum_{C=r+s+1}^{n} \omega_{12}^{t}\left(\lambda_{2} e_{C}\right)=e_{2}(\lambda) e_{1}+\lambda \sum_{p \neq 2} \omega_{21}^{p} e_{p}+\sum_{p \neq 1} \omega_{22}^{p} e_{p}-\omega_{21}^{1}\left(\lambda e_{1}+e_{2}\right) \\
& -\sum_{A=3}^{r} \omega_{21}^{A}\left(\lambda e_{A}\right)-\sum_{B=r+1}^{r+s} \omega_{21}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{C=r+s+1}^{n} \omega_{21}^{C}\left(\lambda_{n} e_{C}\right),
\end{aligned}
$$

whereby, taking inner product with e_{2}, e_{A}, we obtain

$$
\begin{equation*}
e_{2}(\lambda)=0, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{22}^{A}=0, \tag{3.7}
\end{equation*}
$$

respectively.
Putting $X=e_{1}, Y=e_{B}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{1}\left(\lambda_{1}\right) e_{B}+\lambda_{1} \sum_{p \neq B} \omega_{1 B}^{p} e_{p}-\omega_{1 B}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{1 B}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{1 B}^{A}\left(\lambda e_{A}\right)- \\
& \sum_{\tilde{S}=r+1}^{r+s} \omega_{1 B} \omega_{1 B}\left(\lambda_{1} e_{\widetilde{B}}\right)-\sum_{C=r+s+1}^{n} \omega_{1 B}^{C}\left(\lambda_{n} e_{C}\right)=e_{B}(\lambda) e_{1}+\lambda \sum_{p \neq 2} \omega_{B 1}^{p} e_{p}+\sum_{p \neq 1} \omega_{B 2}^{p} e_{p} \\
& -\omega_{B 1}^{1}\left(\lambda e_{1}+e_{2}\right)-\sum_{A=3}^{r} \omega_{B 1}^{A}\left(\lambda e_{A}\right)-\sum_{m=r+1}^{r+s} \omega_{B 1}^{m}\left(\lambda_{1} e_{m}\right)-\sum_{C=r+s+1}^{n} \omega_{B 1}^{C}\left(\lambda_{n} e_{C}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{2}, e_{A}, e_{\widetilde{B}}$ and e_{C}, we get

$$
\begin{equation*}
e_{B}(\lambda)=\left(\lambda_{1}-\lambda\right) \omega_{1 B}^{1}, \tag{3.8}
\end{equation*}
$$

$$
\begin{gather*}
\left(\lambda_{1}-\lambda\right) \omega_{1 B}^{A}=\omega_{B 2}^{A}, \tag{3.9}\\
\left(\lambda-\lambda_{1}\right) \omega_{B 1}^{\widetilde{B}}+\omega_{B 2}^{\widetilde{B}}=0, \tag{3.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{n}\right) \omega_{1 B}^{C}=\left(\lambda-\lambda_{n}\right) \omega_{B 1}^{C}+\omega_{B 2}^{C}, \tag{3.11}
\end{equation*}
$$

respectively.
Putting $X=e_{1}, Y=e_{C}$ in (2.6), and using (2.7) and (3.1), gives

$$
e_{1}\left(\lambda_{n}\right) e_{C}+\lambda_{1} \sum_{p \neq C} \omega_{1 C}^{p} e_{p}-\omega_{1 C}^{1}\left(\underset{\sim}{\lambda} e_{1}+e_{2}\right)-\omega_{1 C}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{1 C}^{A}\left(\lambda e_{A}\right)-
$$

$\sum_{B=r+1}^{r+s} \omega_{1 C}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{\widetilde{C}=r+s+1}^{n} \omega_{1 C}^{\widetilde{C}}\left(\lambda_{n} e_{\widetilde{C}}\right)=e_{C}(\lambda) e_{1}+\lambda \sum_{p \neq 2} \omega_{C 1}^{p} e_{p}+\sum_{p \neq 1} \omega_{C 2}^{p} e_{p} \quad$ whereby, taking in-
$-\omega_{C 1}^{1}\left(\lambda e_{1}+e_{2}\right)-\sum_{A=3}^{r} \omega_{C 1}^{A}\left(\lambda e_{A}\right)-\sum_{B=r+1}^{r+s} \omega_{C 1}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{m=r+s+1}^{n} \omega_{C 1}^{m}\left(\lambda_{n} e_{m}\right)$,
ner product with e_{2}, e_{A}, and e_{C}, we have

$$
\begin{gather*}
e_{C}(\lambda)=\left(\lambda_{n}-\lambda\right) \omega_{1 C}^{1} \tag{3.12}\\
\left(\lambda_{n}-\lambda\right) \omega_{1 C}^{A}=\omega_{C 2}^{A} \tag{3.13}
\end{gather*}
$$

and

$$
\begin{equation*}
e_{1}\left(\lambda_{n}\right)=\left(\lambda-\lambda_{n}\right) \omega_{C 1}^{C}+\omega_{C 2}^{C}, \tag{3.14}
\end{equation*}
$$

respectively.
Putting $X=e_{2}, Y=e_{B}$ in (2.6) and using (2.7) and (3.1), we get

$$
\begin{aligned}
& e_{2}\left(\lambda_{1}\right) e_{B}+\lambda_{1} \sum_{p \neq B} \omega_{2 B}^{p} e_{p}-\omega_{2 B}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{2 B}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{2 B}^{A}\left(\lambda e_{A}\right)- \\
& \sum_{\widetilde{B}=r+1}^{r+s} \omega_{2 B}^{\widetilde{B}}\left(\lambda_{1} e_{\widetilde{B}}\right)-\sum_{C=r+s+1}^{n} \omega_{2 B}^{C}\left(\lambda_{n} e_{C}\right)=e_{B}(\lambda) e_{2}+\lambda \sum_{p \neq 1} \omega_{B 2}^{p} e_{p}-\omega_{B 2}^{2}\left(\lambda e_{2}\right) \\
& -\sum_{A=3}^{r} \omega_{B 2}^{A}\left(\lambda e_{A}\right)-\sum_{m=r+1}^{r+s} \omega_{B 2}^{m}\left(\lambda_{1} e_{m}\right)-\sum_{C=r+s+1}^{n} \omega_{B 2}^{C}\left(\lambda_{n} e_{C}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{1}, e_{2}, e_{A}, e_{B}, e_{\widetilde{B}}$, and e_{C}, we find

$$
\begin{gather*}
e_{B}(\lambda)=\left(\lambda_{1}-\lambda\right) \omega_{2 B}^{2}-\omega_{2 B}^{1}, \tag{3.15}\\
\omega_{2 B}^{1}=0, \tag{3.16}\\
\omega_{2 B}^{A}=0, \tag{3.17}\\
\left(\lambda-\lambda_{1}\right) \omega_{B 2}^{B}=e_{2}\left(\lambda_{1}\right), \tag{3.18}\\
\omega_{B 2}^{\widetilde{B}}=0, \tag{3.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{n}\right) \omega_{2 B}^{C}=\left(\lambda-\lambda_{n}\right) \omega_{B 2}^{C}, \tag{3.20}
\end{equation*}
$$

respectively.
Putting $X=e_{2}, Y=e_{C}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{2}\left(\lambda_{n}\right) e_{C}+\lambda_{n} \sum_{p \neq C} \omega_{2 C}^{p} e_{p}-\omega_{2 C}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{2 C}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{2 C}^{A}\left(\lambda e_{A}\right)- \\
& \sum_{B=r+1}^{r+s} \omega_{2 C}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{\widetilde{C}=r+s+1}^{n} \omega_{2 C}^{\widetilde{C}}\left(\lambda_{n} e_{\widetilde{C}}\right)=e_{C}(\lambda) e_{2}+\lambda \sum_{p \neq 1} \omega_{C 2}^{p} e_{p}-\omega_{C 2}^{2}\left(\lambda e_{2}\right) \\
& -\sum_{A=3}^{r} \omega_{C 2}^{A}\left(\lambda e_{A}\right)-\sum_{B=r+1}^{r+s} \omega_{C 2}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{m=r+s+1}^{n} \omega_{C 2}^{m}\left(\lambda_{n} e_{m}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{1}, e_{2}, e_{A}, e_{C}$ and $e_{\widetilde{C}}$, we obtain

$$
\begin{gather*}
\left(\lambda_{n}-\lambda\right) \omega_{2 C}^{2}=e_{C}(\lambda)+\omega_{2 C}^{1}, \tag{3.21}\\
\omega_{2 C}^{1}=0, \tag{3.22}\\
\omega_{2 C}^{A}=0, \tag{3.23}\\
\left(\lambda-\lambda_{n}\right) \omega_{C 2}^{C}=e_{2}\left(\lambda_{n}\right), \tag{3.24}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{C 2}^{\widetilde{C}_{2}}=0, \tag{3.25}
\end{equation*}
$$

respectively.
Putting $X=e_{A}, Y=e_{B}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{A}\left(\lambda_{1}\right) e_{B}+\lambda_{1} \sum_{p \neq B} \omega_{A B}^{p} e_{p}-\omega_{A B}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{A B}^{2}\left(\lambda e_{2}\right)-\sum_{m=3}^{r} \omega_{A B}^{m}\left(\lambda e_{m}\right)- \\
& \sum_{\widetilde{B}=r+1}^{r+s} \omega_{A B}^{\widetilde{B}}\left(\lambda_{1} e_{\widetilde{B}}\right)-\sum_{C=r+s+1}^{n} \omega_{A B}^{C}\left(\lambda_{n} e_{C}\right)=e_{B}(\lambda) e_{A}+\lambda \sum_{p \neq A} \omega_{B A}^{p} e_{p}-\omega_{B A}^{1} \\
& \left(\lambda e_{1}+e_{2}\right)-\omega_{B A}^{2}\left(\lambda e_{2}\right)-\sum_{\widetilde{A}=3}^{r} \omega_{B A}\left(\lambda e_{\widetilde{A}}\right)-\sum_{m=r+1}^{r+s} \omega_{B A}^{m}\left(\lambda_{1} e_{m}\right) \\
& -\sum_{C=r+s+1}^{n} \omega_{B A}^{C}\left(\lambda_{n} e_{C}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{2}, e_{A}, e_{\widetilde{A}}, e_{B}, e_{\widetilde{B}}$, and e_{C}, we get

$$
\begin{gather*}
\omega_{A B}^{1}=0, \tag{3.26}\\
\left(\lambda_{1}-\lambda\right) \omega_{A B}^{A}=e_{B}(\lambda), \tag{3.27}\\
\omega_{A B}^{\widetilde{A}}=0, \tag{3.28}\\
\left(\lambda-\lambda_{1}\right) \omega_{B A}^{B}=e_{A}\left(\lambda_{1}\right), \tag{3.29}\\
\omega_{B A}^{\widetilde{B}}=0, \tag{3.30}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{n}\right) \omega_{A B}^{C}=\left(\lambda-\lambda_{n}\right) \omega_{B A}^{C}, \tag{3.31}
\end{equation*}
$$

respectively.
Putting $X=e_{A}, Y=e_{C}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{A}\left(\lambda_{n}\right) e_{C}+\lambda_{n} \sum_{p \neq C} \omega_{A C}^{p} e_{p}-\omega_{A C}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{A C}^{2}\left(\lambda e_{2}\right)-\sum_{m=3}^{r} \omega_{A C}^{m}\left(\lambda e_{m}\right)- \\
& \sum_{B=r+1}^{r+s} \omega_{A C}^{B}\left(\lambda_{1} e_{B}\right)-\sum_{\widetilde{C}=r+s+1}^{n} \omega_{A C}\left(\lambda_{n} e_{\widetilde{C}}\right)=e_{C}(\lambda) e_{A}+\lambda \sum_{p \neq A} \omega_{C A}^{p} e_{p}-\omega_{C A}^{1} \\
& \left(\lambda e_{1}+e_{2}\right)-\omega_{C A}^{2}\left(\lambda e_{2}\right)-\sum_{\widetilde{A}=3}^{r} \omega_{\widetilde{A}}\left(\lambda e_{\widetilde{A}}\right)-\sum_{B=r+1}^{r+s} \omega_{C A}^{B}\left(\lambda_{1} e_{B}\right) \\
& -\sum_{m=r+s+1}^{n} \omega_{C A}^{m}\left(\lambda_{n} e_{m}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{2}, e_{A}, e_{\widetilde{A}}, e_{B}$ and e_{C}, we find

$$
\begin{gather*}
\omega_{A C}^{1}=0, \tag{3.32}\\
\left(\lambda_{n}-\lambda\right) \omega_{A C}^{A}=e_{C}(\lambda), \tag{3.33}\\
\omega_{A C}^{\widetilde{A}}=0, \tag{3.34}\\
\left(\lambda_{n}-\lambda_{1}\right) \omega_{A C}^{B}=\left(\lambda-\lambda_{1}\right) \omega_{C A}^{B}, \tag{3.35}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\lambda-\lambda_{n}\right) \omega_{C A}^{C}=e_{A}\left(\lambda_{n}\right), \tag{3.36}
\end{equation*}
$$

respectively.
Putting $X=e_{B}, Y=e_{C}$ in (2.6), and using (2.7) and (3.1), gives

$$
\begin{aligned}
& e_{B}\left(\lambda_{n}\right) e_{C}+\lambda_{n} \sum_{p \neq C} \omega_{B C}^{p} e_{p}-\omega_{B C}^{1}\left(\lambda e_{1}+e_{2}\right)-\omega_{B C}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{B C}^{A}\left(\lambda e_{A}\right)- \\
& \sum_{m=r+1}^{r+s} \omega_{B C}^{m}\left(\lambda_{1} e_{m}\right)-\sum_{\widetilde{C}=r+s+1}^{n} \omega_{B C}\left(\lambda_{n} e_{\widetilde{C}}\right)=e_{C}\left(\lambda_{1}\right) e_{B}+\lambda_{1} \sum_{p \neq B} \omega_{C B}^{p} e_{p}-\omega_{C B}^{1} \\
& \left(\lambda e_{1}+e_{2}\right)-\omega_{C B}^{2}\left(\lambda e_{2}\right)-\sum_{A=3}^{r} \omega_{C B}^{A}\left(\lambda e_{A}\right)-\sum_{\widetilde{B}=r+1}^{r+s} \omega_{C B}^{\widetilde{B}}\left(\lambda_{1} e_{\widetilde{B}}\right) \\
& -\sum_{m=r+s+1}^{n} \omega_{C B}^{m}\left(\lambda_{n} e_{m}\right),
\end{aligned}
$$

whereby, taking inner product with $e_{1}, e_{2}, e_{B}, e_{\widetilde{B}}$ and e_{C}, we obtain

$$
\begin{gather*}
\left(\lambda_{n}-\lambda\right) \omega_{B C}^{2}-\omega_{B C}^{1}=\left(\lambda_{1}-\lambda\right) \omega_{C B}^{2}-\omega_{C B}^{1} \tag{3.37}\\
\left(\lambda_{n}-\lambda\right) \omega_{B C}^{1}=\left(\lambda_{1}-\lambda\right) \omega_{C B}^{1}, \tag{3.38}\\
\left(\lambda_{n}-\lambda_{1}\right) \omega_{B C}^{B}=e_{C}\left(\lambda_{1}\right), \tag{3.39}\\
\omega_{B C}^{\widetilde{B}}=0 \tag{3.40}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{n}\right) \omega_{C B}^{C}=e_{B}\left(\lambda_{n}\right), \tag{3.41}
\end{equation*}
$$

respectively.
Similarly, evaluating $g\left(\left(\nabla_{e_{1}} S\right) e_{A}, e_{2}\right)=g\left(\left(\nabla_{e_{A}} S\right) e_{1}, e_{2}\right), \quad g\left(\left(\nabla_{e_{B}} S\right) e_{\widetilde{B}}, e_{\widetilde{B}}\right)=g\left(\left(\nabla_{e_{\widetilde{B}}} S\right) e_{B}, e_{\widetilde{B}}\right), \quad$ and $g\left(\left(\nabla_{e_{C}} S\right) e_{\widetilde{C}}, e_{\widetilde{C}}\right)=g\left(\left(\nabla_{e_{\widetilde{C}}} S\right) e_{C}, e_{\widetilde{C}}\right)$, and using (2.7) and (3.1), we get

$$
\begin{gather*}
e_{A}(\lambda)=0 \tag{3.42}\\
e_{B}\left(\lambda_{1}\right)=0 \tag{3.43}
\end{gather*}
$$

and

$$
\begin{equation*}
e_{C}\left(\lambda_{n}\right)=0 \tag{3.44}
\end{equation*}
$$

respectively.
Now, we consider the following cases of grad H viz. space like and light like depending upon preferred direction to study biharmonic Lorentz hypersurfaces in E_{1}^{n+1} with non-diagonal shape operator given by (2.11). It is obvious from (2.9) that $\operatorname{grad} H$ is an eigenvector of the shape operator S with the corresponding eigenvalues $-\frac{n H}{2}$.

Let grad H be light like: Assuming grad H in the direction of e_{2}, we can write grad $H=-e_{1}(H) e_{2}$. From (2.9), (2.4) and (3.1), we get

$$
\begin{equation*}
\lambda=-\frac{n H}{2} \quad \text { and } \quad \lambda_{1}=\frac{n H(n-s-t+2)}{2 s}-\frac{t}{s} \lambda_{n} . \tag{3.45}
\end{equation*}
$$

Since $\operatorname{grad} H=-e_{1}(H) e_{2}$, therefore, using (3.45), we have

$$
\begin{equation*}
e_{1}(H) \neq 0, \quad e_{l}(H)=0, \quad e_{l}(\lambda)=0, \quad l=2,3, \ldots, n \tag{3.46}
\end{equation*}
$$

Using (3.4), (3.46) and the fact that $\left[e_{l} e_{q}\right](H)=0=\nabla_{e_{p}} e_{q}(H)-\nabla_{e_{q}} e_{l}(H)$, for $l \neq q$ and $l, q=2,3, \ldots, n$, we find

$$
\begin{equation*}
\omega_{l q}^{1}=\omega_{q l}^{1} . \tag{3.47}
\end{equation*}
$$

First, we consider the case of three distinct eigenvalues viz.
Case I: Let $\lambda-\lambda_{1} \neq 0, \lambda_{n}-\lambda_{1} \neq 0$ and $\lambda-\lambda_{n} \neq 0$.
Using (3.26), (3.32), (3.47) and (3.5), we have

$$
\begin{equation*}
\omega_{B A}^{1}=\omega_{B 2}^{A}=\omega_{C A}^{1}=\omega_{C 2}^{A}=0 \tag{3.48}
\end{equation*}
$$

From (3.7), (3.19), (3.25) and (3.5), we get

$$
\begin{equation*}
\omega_{2 A}^{1}=\omega_{B \widetilde{B}}^{1}=\omega_{C \widetilde{C}}^{1}=0 \tag{3.49}
\end{equation*}
$$

Also, using (3.8), (3.12), (3.15), (3.16), (3.21), (3.22), (3.46) and (3.5), we find

$$
\begin{equation*}
\omega_{1 B}^{1}=\omega_{1 C}^{1}=\omega_{2 B}^{2}=\omega_{2 C}^{2}=0 \tag{3.50}
\end{equation*}
$$

Using (3.38), (3.47) and (3.5), we obtain

$$
\begin{equation*}
\omega_{C B}^{1}=\omega_{B C}^{1}=\omega_{C 2}^{B}=\omega_{B 2}^{C}=0 \tag{3.51}
\end{equation*}
$$

Now, from (3.9), (3.13), (3.48), (3.20), (3.51) and (3.5), we have

$$
\begin{equation*}
\omega_{1 B}^{A}=\omega_{1 C}^{A}=\omega_{2 B}^{C}=\omega_{2 C}^{B}=0 \tag{3.52}
\end{equation*}
$$

Now, we have the following:

Lemma 3.1. Let M_{1}^{n} be a biharmonic Lorentz hypersurface with non-constant mean curvature in the pseudo Euclidean space E_{1}^{n+1}, having the non-diagonal shape operator given by (2.11). If gradH is light like and in the direction of e_{2}, then

$$
\begin{gathered}
\nabla_{e_{1}} e_{B}=\sum_{p \neq 1, A, B} \omega_{1 B}^{p} e_{p}, \nabla_{e_{2}} e_{A}=\sum_{p \neq 1, A} \omega_{2 A}^{p} e_{p}, \quad \nabla_{e_{2}} e_{B}=\sum_{p=r+1}^{r+s} \omega_{2 B}^{p} e_{p}, \\
\nabla_{e_{2}} e_{C}=\sum_{p=r+s+1}^{n} \omega_{2 C}^{p} e_{p}, \quad \nabla_{e_{A}} e_{B}=\sum_{p \neq 1, B} \omega_{A B}^{p} e_{p}, \quad \nabla_{e_{A}} e_{C}=\sum_{p \neq 1, C} \omega_{A C}^{p} e_{p}, \nabla_{e_{B}} e_{1}=\sum_{p \neq 2} \omega_{B 1}^{p} e_{p}, \\
\nabla_{e_{B}} e_{2}=\sum_{p \neq 1, A, \widetilde{B}, C} \omega_{B 2}^{p} e_{p}, \quad \nabla_{e_{B}} e_{B}=\sum_{p \neq B} \omega_{B B}^{p} e_{p}, \quad \nabla_{e_{B}} e_{C}=\sum_{p \neq 1, C} \omega_{B C}^{p} e_{p}, \\
\nabla_{e_{C}} e_{1}=\sum_{p \neq 2} \omega_{C 1}^{p} e_{p}, \quad \nabla_{e_{C}} e_{2}=\sum_{p \neq 1, A, B, \widetilde{C}} \omega_{C 2}^{p} e_{p}, \quad \nabla_{e_{C}} e_{B}=\sum_{p \neq 1, B} \omega_{C B}^{p} e_{p}, \\
\nabla_{e_{C}} e_{C}=\sum_{p \neq C} \omega_{C C}^{p} e_{p}, \quad \nabla_{e_{B}} e_{\widetilde{B}}=\sum_{p \neq 1, \widetilde{B}} \omega_{B \widetilde{B}}^{p} e_{p}, \quad \nabla_{e_{C}} e_{\widetilde{C}}=\sum_{p \neq 1, \widetilde{C}} \omega_{C \widetilde{C}}^{p} e_{p} .
\end{gathered}
$$

Now, computing $g\left(R\left(e_{2}, e_{B}\right) e_{B}, e_{2}\right), g\left(R\left(e_{2}, e_{C}\right) e_{C}, e_{2}\right)$, using (2.5) and Lemma 3.1, we obtain

$$
\begin{equation*}
e_{2}\left(\omega_{B B}^{1}\right)+\omega_{B B}^{1}\left(\omega_{21}^{1}+\omega_{B B}^{1}\right)=0, \quad e_{2}\left(\omega_{C C}^{1}\right)+\omega_{C C}^{1}\left(\omega_{21}^{1}+\omega_{C C}^{1}\right)=0 \tag{3.53}
\end{equation*}
$$

Adding (3.18) and (3.24), and using (3.45), (3.46) and (3.5) therein, we get

$$
\begin{equation*}
\left\{\frac{n(n-t+2) H}{2}-t \lambda_{n}\right\} \omega_{B B}^{1}+t\left\{\frac{n H}{2}+\lambda_{n}\right\} \omega_{C C}^{1}=0 . \tag{3.54}
\end{equation*}
$$

Acting on (3.54) with e_{2} and using (3.53), we find

$$
2 t e_{2}\left(\lambda_{n}\right)\left[\omega_{C C}^{1}-\omega_{B B}^{1}\right]=0
$$

which implies either $e_{2}\left(\lambda_{n}\right)=0$ or $\omega_{C C}^{1}=\omega_{B B}^{1}$. In both cases, using (3.18), (3.24), (3.54) and (3.5), we have

$$
\begin{equation*}
\omega_{B B}^{1}=\omega_{C C}^{1}=\omega_{B 2}^{B}=\omega_{C 2}^{C}=0 . \tag{3.55}
\end{equation*}
$$

Now, computing $g\left(R\left(e_{B}, e_{1}\right) e_{B}, e_{2}\right), g\left(R\left(e_{C}, e_{1}\right) e_{C}, e_{2}\right)$ and using (2.5), Lemma 3.1 and (3.45), we obtain

$$
\begin{equation*}
\sum_{A=3}^{r} \omega_{B B}^{A} \omega_{1 A}^{1}=-\frac{n H}{2}\left\{\frac{n H(n-s-t+2)}{2 s}-\frac{t}{s} \lambda_{n}\right\} \tag{3.56}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{A=3}^{r} \omega_{C C}^{A} \omega_{1 A}^{1}=-\frac{n H}{2} \lambda_{n} . \tag{3.57}
\end{equation*}
$$

Now, adding (3.29) and (3.36), and using (3.45), (3.46) and (3.5) therein, we get

$$
\begin{equation*}
\left\{\frac{n(n-t+2) H}{2}-t \lambda_{n}\right\} \omega_{B B}^{A}+t\left\{\frac{n H}{2}+\lambda_{n}\right\} \omega_{C C}^{A}=0 . \tag{3.58}
\end{equation*}
$$

Since A varies from 3 to r, therefore (3.56), (3.57) and (3.58) is valid for $r>2$. Multiplying (3.58) by $\omega_{1 A}^{1}$ and taking summation over A and then using (3.56) and (3.57), we get

$$
\begin{equation*}
4(s+t) t \lambda_{n}^{2}-4 n(n-s-t+2) t H \lambda_{n}+n^{2}(n-t+2)(n-s-t+2) H^{2}=0 \tag{3.59}
\end{equation*}
$$

Now, from (3.59), we find λ_{n} imaginary as discriminant $D=-16 n^{2} H^{2}(n-s-t+2)\left(n s t+2 t s+2 t^{2}\right)<0$. Therefore, a contradiction, hence, $r>2$ is not possible.

Now, for $r=2$, (3.56) and (3.57) reduce to

$$
\begin{equation*}
-\frac{n H}{2}\left\{\frac{n H(n-s-t+2)}{2 s}-\frac{t}{s} \lambda_{n}\right\}=0, \tag{3.60}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{n H}{2} \lambda_{n}=0 . \tag{3.61}
\end{equation*}
$$

Hence, From (3.60) and (3.61), we obtain that $H=0$.

Case II: Let either $\lambda-\lambda_{1}=0$ or $\lambda_{n}-\lambda_{1}=0$ or $\lambda-\lambda_{n}=0$. Then, from (3.45), we find that each eigen value λ, λ_{1} and λ_{n} are proportional to H. So, from (3.46), we have

$$
\begin{equation*}
e_{l}(\lambda)=e_{l}\left(\lambda_{1}\right)=e_{l}\left(\lambda_{n}\right)=0, \quad \text { for } \quad l=2,3, \ldots, n \tag{3.62}
\end{equation*}
$$

If $\lambda=\lambda_{1}$, then using (3.36), (3.62) and (3.5), we get

$$
\begin{equation*}
\omega_{C A}^{C}=\omega_{C C}^{A}=0 . \tag{3.63}
\end{equation*}
$$

Using (3.63) and computing $g\left(R\left(e_{C}, e_{1}\right) e_{C}, e_{2}\right)$, we get that $H=0$.
Now, if $\lambda_{1}=\lambda_{n}$ or $\lambda=\lambda_{n}$, in both cases from (3.29), (3.62) and (3.5), we obtain $\omega_{B A}^{B}=\omega_{B B}^{A}=0$. Evaluating $g\left(R\left(e_{B}, e_{1}\right) e_{B}, e_{2}\right)$, we find that $H=0$.

Combining Case I and Case II, we have:

Proposition 3.1. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1} having the nondiagonal shape operator given by (2.11). If gradH is light like, then M_{1}^{n} is minimal.

Now, we discuss the space like case of grad H.
Let grad H be space like: In this case grad H can be in the direction of e_{A} or e_{B} or e_{C}. In view of (3.42), (3.43) and (3.44), one of the multiplicities of eigen values must be one, otherwise, we get contradiction. Since $r \geq 2$, therefore either s or t must be one. Without loss of generality, we assume that $r \geq 2, s \geq 1, t=1$ and grad H is in the direction of e_{n}. We can write grad $H=e_{n}(H) e_{n}$. Now, we have $A=3,4, \ldots, r, B=r+1, r+2, \ldots, r+s=$ $n-1$ and $C=n$. From (2.9) and (2.4), we get

$$
\begin{equation*}
\lambda_{n}=-\frac{n H}{2}, \quad \text { and } \quad \lambda_{1}=\frac{3 n H}{2(n-r-1)}-\frac{r \lambda}{n-r-1} . \tag{3.64}
\end{equation*}
$$

Since $\operatorname{grad} H=e_{n}(H) e_{n}$, therefore, from (3.64), we have

$$
\begin{equation*}
e_{n}(H) \neq 0, \quad e_{a}(H)=0 \quad e_{a}\left(\lambda_{n}\right)=0, \quad a=1,2, \ldots, n-1 . \tag{3.65}
\end{equation*}
$$

Using (3.4), (3.65) and the fact that $\left[e_{a} e_{b}\right](H)=0=\nabla_{e_{a}} e_{b}(H)-\nabla_{e_{b}} e_{a}(H)$, for $a \neq b$ and $a, b=1,2, \ldots, n-1$, we find

$$
\begin{equation*}
\omega_{a b}^{n}=\omega_{b a}^{n} . \tag{3.66}
\end{equation*}
$$

Now, we consider the case of three distinct eigenvalues viz.
Case III: Let $\lambda-\lambda_{1} \neq 0, \lambda_{n}-\lambda_{1} \neq 0$ and $\lambda-\lambda_{n} \neq 0$.
From (3.6), (3.42), (3.64) and (3.65), we have

$$
\begin{equation*}
e_{2}\left(\lambda_{1}\right)=0, \quad e_{A}\left(\lambda_{1}\right)=0 . \tag{3.67}
\end{equation*}
$$

From (3.18), (3.24), (3.29), (3.36), (3.65), (3.67) and (3.5), we get

$$
\begin{equation*}
\omega_{B 2}^{B}=\omega_{B B}^{1}=\omega_{n 2}^{n}=\omega_{n n}^{1}=\omega_{B A}^{B}=\omega_{B B}^{A}=\omega_{n A}^{n}=\omega_{n n}^{A}=0 . \tag{3.68}
\end{equation*}
$$

Using (3.7), (3.16), (3.17), (3.22), (3.26) and (3.5), we have

$$
\begin{equation*}
\omega_{2 A}^{1}=\omega_{22}^{B}=\omega_{2 A}^{B}=\omega_{22}^{n}=\omega_{A 2}^{B}=0 . \tag{3.69}
\end{equation*}
$$

Using (3.20), (3.32), (3.66) and (3.5), we have

$$
\begin{equation*}
\omega_{2 B}^{n}=\omega_{B 2}^{n}=\omega_{2 n}^{B}=\omega_{B n}^{1}=\omega_{A 2}^{n}=\omega_{2 A}^{n}=\omega_{2 n}^{A}=0 . \tag{3.70}
\end{equation*}
$$

Also, using (3.11), (3.31), (3.70), and (3.5), we obtain

$$
\begin{equation*}
\omega_{1 B}^{n}=\omega_{B 1}^{n}=\omega_{1 n}^{B}=\omega_{B n}^{2}=\omega_{A B}^{n}=\omega_{B A}^{n}=\omega_{A n}^{B}=\omega_{B n}^{A}=0 \tag{3.71}
\end{equation*}
$$

From (3.28), (3.30), (3.34), (3.40), and (3.5), we get

$$
\begin{equation*}
\omega_{A \widetilde{A}}^{B}=\omega_{B \widetilde{B}}^{A}=\omega_{A \widetilde{A}}^{n}=\omega_{B \widetilde{B}}^{n}=0 \tag{3.72}
\end{equation*}
$$

Using (3.14), (3.41), (3.65), (3.68) and (3.5), we have

$$
\begin{equation*}
\omega_{n 1}^{n}=\omega_{n n}^{2}=\omega_{n B}^{n}=\omega_{n n}^{B}=0 \tag{3.73}
\end{equation*}
$$

From (3.35), (3.38), (3.71), (3.70), and (3.5), we get

$$
\begin{equation*}
\omega_{n A}^{B}=\omega_{n B}^{1}=\omega_{n B}^{A}=\omega_{n 2}^{B}=0 \tag{3.74}
\end{equation*}
$$

From (3.10), (3.19), (3.37), (3.70), (3.71), (3.74), and (3.5), we get

$$
\begin{equation*}
\omega_{B 1}^{\widetilde{B}}=\omega_{B \widetilde{B}}^{1}=\omega_{n B}^{2}=\omega_{n 1}^{B}=0 \tag{3.75}
\end{equation*}
$$

Now, we have the following:

Lemma 3.2. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1}, having the non-diagonal shape operator given by (2.11). If gradH is space like and in the direction of e_{n}, then

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}= \sum_{p \neq 1} \omega_{12}^{p} e_{p}, \quad \nabla_{e_{1}} e_{B}=\sum_{p \neq B, n} \omega_{1 B}^{p} e_{p}, \quad \nabla_{e_{1}} e_{n}=\sum_{p \neq B, n} \omega_{1 n}^{p} e_{p}, \nabla_{e_{2}} e_{A}=\sum_{p \neq 1, A, B, n} \omega_{2 A}^{p} e_{p}, \\
& \nabla_{e_{2}} e_{B}= \sum_{p \neq 1, A, B, n} \omega_{2 B}^{p} e_{p}, \nabla_{e_{2}} e_{n}=\omega_{2 n}^{2} e_{2}, \quad \nabla_{e_{A}} e_{B}=\sum_{p \neq 1, \widetilde{A}, B, n} \omega_{A B}^{p} e_{p}, \nabla_{e_{A}} e_{\widetilde{A}}=\sum_{p \neq \widetilde{A}, B, n} \omega_{A \widetilde{A}}^{p} e_{p}, \\
& \nabla_{e_{A}} e_{n}=\sum_{p \neq 1, \widetilde{A}, B, n} \omega_{A n}^{p} e_{p}, \quad \nabla_{e_{B}} e_{1}=\sum_{p \neq 2, \widetilde{B}, n} \omega_{B 1}^{p} e_{p}, \nabla_{e_{B}} e_{2}=\sum_{p \neq 1, B, \widetilde{B}, n} \omega_{B 2}^{p} e_{p}, \\
& \nabla_{e_{B}} e_{A}=\sum_{p \neq A, B, \widetilde{B}, n} \omega_{B A}^{p} e_{p}, \quad \nabla_{e_{B}} e_{\widetilde{B}}=\sum_{p \neq 1, A, \widetilde{B}, n} \omega_{B \widetilde{B}}^{p} e_{p}, \nabla_{e_{B}} e_{B}=\sum_{p \neq 1, A, B} \omega_{B B}^{p} e_{p}, \nabla_{e_{B}} e_{n}=\omega_{B n}^{B} e_{B}, \\
& \nabla_{e_{n}} e_{1}= \sum_{p \neq 2, B, n} \omega_{n 1}^{p} e_{p}, \quad \nabla_{e_{n}} e_{2}=\sum_{p \neq 1, B, n} \omega_{n 2}^{p} e_{p}, \nabla_{e_{n}} e_{A}=\sum_{p \neq A, B, n} \omega_{n A}^{p} e_{p}, \nabla_{e_{n}} e_{B}=\sum_{p=r+1}^{n-1} \omega_{n B}^{p} e_{p}, \\
& \nabla_{e_{n}} e_{n}=0, \quad \nabla_{e_{1}} e_{A}=\sum_{p \neq A} \omega_{1 A}^{p} e_{p}, \quad \nabla_{e_{2}} e_{2}=\sum_{p \neq 1, B, n} \omega_{22}^{p} e_{p}, \nabla_{e_{A}} e_{1}=\sum_{p \neq 2} \omega_{A 1}^{p} e_{p}, \\
& \nabla_{e_{A}} e_{2}=\sum_{p \neq 1, B, n} \omega_{A 2}^{p} e_{p}, \quad \nabla_{e_{2}} e_{1}=\sum_{p \neq 2} \omega_{21}^{p} e_{p} .
\end{aligned}
$$

Now, to find the Laplace operator, we need to construct an orthonormal basis $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ from the pseudo-orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Therefore, we take

$$
\begin{equation*}
X_{1}=\frac{e_{1}+e_{2}}{\sqrt{2}}, \quad X_{2}=\frac{e_{1}-e_{2}}{\sqrt{2}}, \quad X_{i}=e_{i}, \quad i=3,4, \ldots, n \tag{3.76}
\end{equation*}
$$

Also, using (3.64), we obtain

$$
\begin{equation*}
\operatorname{trace} S^{2}=\frac{(n-1) r}{n-r-1} \lambda^{2}+\frac{n^{2}(n-r+8)}{4(n-r-1)} H^{2}-\frac{3 n r}{n-r-1} H \lambda . \tag{3.77}
\end{equation*}
$$

Using (2.10) and (3.76) the Laplace operator for the pseudo-orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, is given by

$$
\begin{equation*}
\triangle=e_{1} e_{2}+e_{2} e_{1}-\sum_{i=3}^{n} e_{i} e_{i}-\nabla_{e_{1}} e_{2}-\nabla_{e_{2}} e_{1}+\sum_{i=3}^{n} \nabla_{e_{i}} e_{i}(H) . \tag{3.78}
\end{equation*}
$$

Using (3.77), (3.78) and Lemma 3.3 in (2.8), we find

$$
\begin{align*}
& {\left[-2 \omega_{12}^{n}+\sum_{A=3}^{r} \omega_{A A}^{n}+\sum_{B=r+1}^{n-1} \omega_{B B}^{n}\right] e_{n}(H)-e_{n} e_{n}(H)+H\left[\frac{(n-1) r}{n-r-1} \lambda^{2}+\frac{n^{2}(n-r+8)}{4(n-r-1)} H^{2}\right.} \\
&\left.-\frac{3 n r}{n-r-1} H \lambda\right]=0 . \tag{3.79}
\end{align*}
$$

Now, from (3.12), (3.33), (3.39), (3.8), (3.27) and (3.5), we find

$$
\begin{equation*}
\omega_{A A}^{n}=-\omega_{12}^{n}, \quad \omega_{A A}^{B}=-\omega_{12}^{B}, \quad \omega_{A A}^{n}=\omega_{\widetilde{A} \widetilde{A}}^{n}, \quad \omega_{B B}^{n}=\omega_{\widetilde{B} \widetilde{B}}^{n} . \tag{3.80}
\end{equation*}
$$

Therefore, using (3.80) in (3.79), we obtain

$$
\begin{align*}
{\left[-r \omega_{12}^{n}+(n-r-1) \omega_{B B}^{n}\right] e_{n}(H)-e_{n} e_{n}(H)+H\left[\frac{(n-1) r}{n-r-1} \lambda^{2}+\frac{n^{2}(n-r+8)}{4(n-r-1)} H^{2}\right.} & \\
& \left.-\frac{3 n r}{n-r-1} H \lambda\right]=0 . \tag{3.81}
\end{align*}
$$

Now, we have:
Lemma 3.3. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1}, having the non-diagonal shape operator given by (2.11). If gradH is space like and in the direction of e_{n}. Then, $e_{B}(\lambda)=0$ for $s \geq 1$.

Proof. From (3.43) and (3.64), we get $e_{B}(\lambda)=0$ for $s>1$. Now, for $s=1$, we have $B=n-1$ and $r=n-2$. Now, putting $r=n-2$ and $B=n-1$ in (3.81), we get

$$
\begin{equation*}
\left[(-n+2) \omega_{12}^{n}+\omega_{(n-1)(n-1)}^{n}\right] e_{n}(H)-e_{n} e_{n}(H)+H\left[(n-1)(n-2) \lambda^{2}+\frac{5 n^{2}}{2} H^{2}-3 n(n-2) H \lambda\right]=0 . \tag{3.82}
\end{equation*}
$$

Using (2.5), (3.5), (3.80) and Lemma 3.3, computing $g\left(R\left(e_{n-1}, e_{1}\right) e_{2}, e_{n}\right)$ and $g\left(R\left(e_{A}, e_{n-1}\right) e_{n}, e_{A}\right)$, we find

$$
\begin{equation*}
e_{n-1}\left(\omega_{12}^{n}\right)+\omega_{12}^{n-1}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)-\sum_{A=3}^{r} \omega_{(n-1) A}^{1} \omega_{1 A}^{n}=0, \tag{3.83}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n-1}\left(\omega_{12}^{n}\right)+\omega_{12}^{n-1}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)+2 \omega_{(n-1) A}^{1} \omega_{1 A}^{n}=0, \tag{3.84}
\end{equation*}
$$

respectively.
Taking summation over A from 3 to r in (3.84), we find

$$
\begin{equation*}
(r-2) e_{n-1}\left(\omega_{12}^{n}\right)+(r-2) \omega_{12}^{n-1}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)+2 \sum_{A=3}^{r} \omega_{(n-1) A}^{1} \omega_{1 A}^{n}=0 . \tag{3.85}
\end{equation*}
$$

Combining (3.83) and (3.85), we obtain

$$
\begin{equation*}
r e_{n-1}\left(\omega_{12}^{n}\right)+r \omega_{12}^{n-1}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)=0, \tag{3.86}
\end{equation*}
$$

or,

$$
\begin{equation*}
e_{n-1}\left(\omega_{12}^{n}\right)=-\omega_{12}^{n-1}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right), \tag{3.87}
\end{equation*}
$$

Using (3.8), (3.64), (3.87) and (3.5) for $r=n-2$, we find

$$
\begin{equation*}
e_{n-1}\left(\omega_{12}^{n}\right)=-\frac{e_{n-1}(\lambda)}{\frac{3 n H}{2}-(n-1) \lambda}\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right) . \tag{3.88}
\end{equation*}
$$

Using (3.64), (3.65), (3.66) and $r=n-2$ in (3.12) and (3.39), we have

$$
\begin{equation*}
e_{n}(\lambda)=-\left(\frac{n H}{2}+\lambda\right) \omega_{12}^{n} \tag{3.89}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n}\left(\frac{3 n H}{2}-(n-2) \lambda\right)=(2 n H-(n-2) \lambda) \omega_{(n-1)(n-1)}^{n}, \tag{3.90}
\end{equation*}
$$

respectively.
Adding (3.89) and (3.90), we get

$$
\begin{equation*}
\frac{3 n}{2} e_{n}(H)=-(n-2)\left(\frac{n H}{2}+\lambda\right) \omega_{12}^{n}+(2 n H-(n-2) \lambda) \omega_{(n-1)(n-1)}^{n} . \tag{3.91}
\end{equation*}
$$

Using (3.65) and Lemma 3.3, and the fact that $\left[e_{a} e_{n}\right](H)=0=\nabla_{e_{a}} e_{n}(H)-\nabla_{e_{n}} e_{a}(H)$, for $a=1,2, \ldots, n-1$, we obtain

$$
\begin{equation*}
e_{a} e_{n}(H)=0 \tag{3.92}
\end{equation*}
$$

Differentiating (3.91) with respect to e_{n-1} and using (3.88), (3.89) and (3.92), we find

$$
\begin{equation*}
e_{n-1}\left(\omega_{(n-1)(n-1)}^{n}\right)=\frac{2 n(n-2)(H-\lambda)\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right) e_{n-1}(\lambda)}{(2 n H-(n-2) \lambda)(3 n H-2(n-1) \lambda)} . \tag{3.93}
\end{equation*}
$$

Taking derivative of (3.82) along e_{n-1} and using (3.88), (3.92) and (3.93), we get

$$
(n-2) e_{n-1}(\lambda)\left[2 e_{n}(H)\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)+H(2(n-1) \lambda-3 n H)(2 n H-(n-2) \lambda)\right]=0
$$

If $e_{n-1}(\lambda) \neq 0$ in the above, then

$$
\begin{equation*}
2 e_{n}(H)\left(\omega_{(n-1)(n-1)}^{n}+\omega_{12}^{n}\right)+H(2(n-1) \lambda-3 n H)(2 n H-(n-2) \lambda)=0 . \tag{3.94}
\end{equation*}
$$

Differentiating (3.94) along e_{n-1} and using (3.88) and (3.93), we obtain

$$
\begin{align*}
4(n(n-4) H-(n-2)(n-1) \lambda)\left(\omega_{(n-1)(n-1)}^{n}\right. & \left.+\omega_{12}^{n}\right) e_{n}(H)+H[n(7 n-10) H \\
& -4(n-1)(n-2) \lambda)(2 n H-(n-2) \lambda)(3 n H-2(n-1) \lambda]=0 \tag{3.95}
\end{align*}
$$

Eliminating $e_{n}(H)$ from (3.94) and (3.95), we get

$$
\lambda=\frac{3 n H}{2(n-1)} \Rightarrow \lambda_{1}=\frac{3 n H}{2(n-1)}=\lambda,
$$

which is a contradiction of distinct principal curvatures, consequently $e_{n-1}(\lambda)=0$. Whereby proof of Lemma is complete.

Next, we have:
Lemma 3.4. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1}, having the non-diagonal shape operator given by (2.11). If gradH is space like and in the direction of e_{n}. Then, we find

$$
\begin{gather*}
e_{n}\left(\omega_{12}^{n}\right)+\left(\omega_{12}^{n}\right)^{2}=\frac{n H}{2} \lambda, \tag{3.96}\\
\omega_{B B}^{n} \omega_{12}^{n}=\lambda\left(\frac{3 n H}{2(n-r-1)}-\frac{r \lambda}{n-r-1}\right), \tag{3.97}
\end{gather*}
$$

and

$$
\begin{equation*}
e_{n}\left(\omega_{B B}^{n}\right)-\left(\omega_{B B}^{n}\right)^{2}=-\frac{n H}{2}\left(\frac{3 n H}{2(n-r-1)}-\frac{r \lambda}{n-r-1}\right) . \tag{3.98}
\end{equation*}
$$

Proof. Using (3.8), (3.15), (3.16), (3.27), (3.5) and Lemma 3.4, we obtain

$$
\begin{equation*}
\omega_{12}^{B}=\omega_{21}^{B}=\omega_{1 B}^{1}=\omega_{2 B}^{2}=\omega_{A B}^{A}=\omega_{A A}^{B}=0 . \tag{3.99}
\end{equation*}
$$

Also, evaluating $g\left(\left(\nabla_{e_{1}} S\right) e_{A}, e_{\tilde{A}}\right)=g\left(\left(\nabla_{e_{A}} S\right) e_{1}, e_{\tilde{A}}\right)$ and $g\left(\left(\nabla_{e_{1}} S\right) e_{A}, e_{B}\right)=g\left(\left(\nabla_{e_{A}} S\right) e_{1}, e_{B}\right)$, using (2.6), (3.1) and (3.69), we get

$$
\begin{equation*}
\omega_{A 2}^{\widetilde{A}}=\omega_{A \widetilde{A}}^{1}=0 \quad \text { and } \quad \omega_{1 A}^{B}=\omega_{A 1}^{B}, \tag{3.100}
\end{equation*}
$$

respectively.
Computing $g\left(R\left(e_{n}, e_{1}\right) e_{n}, e_{2}\right)$ and $g\left(R\left(e_{n}, e_{A}\right) e_{n}, e_{A}\right)$, using (2.5), (3.68), (3.99), (3.80), (3.5) and Lemma 3.3, we find

$$
\begin{equation*}
e_{n}\left(\omega_{12}^{n}\right)+\left(\omega_{12}^{n}\right)^{2}-\sum_{A=3}^{r} \omega_{n 2}^{A} \omega_{1 A}^{n}=\frac{n H}{2} \lambda, \tag{3.101}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n}\left(\omega_{12}^{n}\right)+\left(\omega_{12}^{n}\right)^{2}+2 \omega_{n 2}^{A} \omega_{1 A}^{n}=\frac{n H}{2} \lambda, \tag{3.102}
\end{equation*}
$$

respectively.
Now, taking summation over A from 3 to r in (3.102), we get

$$
\begin{equation*}
(r-2) e_{n}\left(\omega_{12}^{n}\right)+(r-2)\left(\omega_{12}^{n}\right)^{2}+2 \sum_{A=3}^{r} \omega_{n 2}^{A} \omega_{1 A}^{n}=(r-2) \frac{n H}{2} \lambda . \tag{3.103}
\end{equation*}
$$

Now, combining (3.101) and (3.103), we obtain (3.96).
Next, evaluating $g\left(R\left(e_{1}, e_{B}\right) e_{B}, e_{2}\right), g\left(R\left(e_{A}, e_{B}\right) e_{B}, e_{A}\right)$ and $g\left(R\left(e_{A}, e_{1}\right) e_{2}, e_{B}\right)$, using (2.5), (3.68), (3.99), (3.100), (3.80), (3.5) and Lemma 3.3, we find

$$
\begin{gather*}
\omega_{B B}^{n} \omega_{12}^{n}-\sum_{A=3}^{r} \omega_{1 B}^{A} \omega_{B A}^{1}=\lambda\left(\frac{3 n H}{2(n-r-1)}-\frac{r \lambda}{n-r-1}\right), \tag{3.104}\\
\omega_{B B}^{n} \omega_{12}^{n}+\omega_{B B}^{2} \omega_{A A}^{1}+2 \omega_{B A}^{1} \omega_{1 B}^{A}=\lambda\left(\frac{3 n H}{2(n-r-1)}-\frac{r \lambda}{n-r-1}\right), \tag{3.105}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{A A}^{1} \omega_{1 B}^{A}=0, \tag{3.106}
\end{equation*}
$$

respectively.
From (3.106), we have either $\omega_{A A}^{1}=0$ or $\omega_{1 B}^{A}=0$. In both the cases, from (3.104) and (3.105), we get (3.97).
Similarly, evaluating $g\left(R\left(e_{n}, e_{B}\right) e_{n}, e_{B}\right)$, we obtain (3.98).
Now, we have:
Proposition 3.2. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1} with three distinct eigen values and having the non-diagonal shape operator given by (2.11). If gradH is space like, then M_{1}^{n} is not proper biharmonic.

Proof. Using (3.64) and (3.5) in (3.12), we get

$$
\begin{equation*}
e_{n}(\lambda)=-\left(\frac{n H}{2}+\lambda\right) \omega_{12}^{n} . \tag{3.107}
\end{equation*}
$$

Using (3.5), (3.64) and (3.107) in (3.39), we find

$$
\begin{equation*}
3 n e_{n}(H)=[n H(n-r+2)-2 r \lambda] \omega_{B B}^{n}-2 r\left(\frac{n H}{2}+\lambda\right) \omega_{12}^{n} . \tag{3.108}
\end{equation*}
$$

Now, multiplying (3.108) by ω_{12}^{n} and using (3.97), we have

$$
\begin{equation*}
\left(\omega_{12}^{n}\right)^{2}\left(\frac{n H}{2}+\lambda\right)=-3 n \omega_{12}^{n} e_{n}(H)+\frac{\lambda}{n-r-1}[n H(n-r+2)-2 r \lambda]\left(\frac{3 n H}{2}-r \lambda\right) . \tag{3.109}
\end{equation*}
$$

Similarly, multiplying (3.108) by $\omega_{B B}^{n}$ and using (3.97), we obtain

$$
\begin{equation*}
\left(\omega_{B B}^{n}\right)^{2}(n H(n-r+2)-2 r \lambda)=3 n \omega_{B B}^{n} e_{n}(H)+\frac{2 r \lambda}{n-r-1}\left(\frac{n H}{2}+\lambda\right)\left(\frac{3 n H}{2}-r \lambda\right) . \tag{3.110}
\end{equation*}
$$

Differentiating (3.108) along e_{n}, and using (3.96), (3.97), (3.98) and (3.107), we find

$$
\begin{align*}
3 n e_{n} e_{n}(H)=e_{n}(H)\left[n(n-r+5) \omega_{B B}^{n}-n(r+6)\right. & \left.\omega_{12}^{n}\right]-r n H \lambda\left(\frac{n H}{2}+\lambda\right) \\
& +\frac{3 n H-2 r \lambda}{4(n-r-1)}\left[-n^{2}(n-r+2) H^{2}+2 n(r+2 n+4) H \lambda\right] \tag{3.111}
\end{align*}
$$

Eliminating $e_{n} e_{n}(H)$ from (3.81) and (3.111), we get

$$
\begin{equation*}
e_{n}(H)\left[(n-r-4) \omega_{B B}^{n}+(3-r) \omega_{12}^{n}\right]+\frac{3 n H}{4(n-r-1)}\left[n(n-r+5) H^{2}-(2 n+8 r+4) H \lambda+4 r \lambda^{2}\right]=0 \tag{3.112}
\end{equation*}
$$

Acting with e_{n} on (3.112) and putting the value of $e_{n} e_{n}(H)$ from (3.81) and using (3.96), (3.97), (3.98) and (3.107), we find

$$
\begin{align*}
& {\left[(n-r-4) \omega_{B B}^{n}+(3-r) \omega_{12}^{n}\right]\left[H\left\{\frac{(n-1) r}{n-r-1} \lambda^{2}-\frac{3 n r}{n-r-1} H \lambda+\frac{n^{2}(n-r+8)}{4(n-r-1)}\right\}\right]} \\
& +\left[(n-r)(n-r-4)\left(\omega_{B B}^{n}\right)^{2}-(3-r)(r+1)\left(\omega_{12}^{n}\right)^{2}+\frac{[(n-r-1)(3-r)-r(n-r-4)]}{2(n-r-1)}\right. \\
& \left.\quad\left(3 n H \lambda-2 r \lambda^{2}\right)\right] e_{n}(H)+\frac{n e_{n}(H)}{4(n-r-1)}\left[3 n(2 n-2 r+19) H^{2}+(2 r(n-r-4)-\right. \\
& \left.\quad 2(6 n+25 r+9)) H \lambda+12 r \lambda^{2}\right]+\frac{3 n}{4(n-r-1)}\left[(n+4 r+2) H^{2}-4 r H \lambda\right](n H+2 \lambda) \omega_{12}^{n}=0 . \tag{3.113}
\end{align*}
$$

Now, multiplying (3.112) by ω_{12}^{n} and using (3.97), we have

$$
\begin{align*}
(3-r) e_{n}(H)\left(\omega_{12}^{n}\right)^{2}=-\frac{n-r-4}{2(n-r-1)}(& \left.3 n H \lambda-2 r \lambda^{2}\right) e_{n}(H) \\
& -\frac{3 n H}{4(n-r-1)}\left[n(n-r+5) H^{2}-(2 n+8 r+4) H \lambda+4 r \lambda^{2}\right] \omega_{12}^{n} . \tag{3.114}
\end{align*}
$$

Similarly, multiplying (3.112) by $\omega_{B B}^{n}$ and using (3.97), we obtain

$$
\begin{align*}
(n-r-4) e_{n}(H)\left(\omega_{B B}^{n}\right)^{2}=-\frac{3-r}{2(n-r-1)} & \left(3 n H \lambda-2 r \lambda^{2}\right) e_{n}(H) \\
& -\frac{3 n H}{4(n-r-1)}\left[n(n-r+5) H^{2}-(2 n+8 r+4) H \lambda+4 r \lambda^{2}\right] \omega_{B B}^{n} \tag{3.115}
\end{align*}
$$

Using (3.114) and (3.115) in (3.113), we get

$$
\begin{equation*}
\omega_{12}^{n} E+\omega_{B B}^{n} F+e_{n}(H) G=0 \tag{3.116}
\end{equation*}
$$

where

$$
\begin{aligned}
E & =H\left[\left(9 n+13 r+2 n r-2 r^{2}+45\right) n^{2} H^{2}+4 r(2 n r+r-3) \lambda^{2}-6 n r(3 n+2 r+8) H \lambda\right] \\
F & =H\left[-((n-r)(2 n-2 r+11)+32) n^{2} H^{2}-4 r((n-r)(2 n+1)-4(n-1)) \lambda^{2}\right. \\
& +6 n((n-r)(n+2 r+8)+8 r) H \lambda] \\
G & =4 r(2 n+7) \lambda^{2}+3 n^{2}(2 n-2 r+19) H^{2}+2 n((n-r)(r-6)+(3 n-35 r-30)) H \lambda
\end{aligned}
$$

Eliminating $e_{n}(H)$ from (3.116) and (3.108), we obtain

$$
\begin{equation*}
\omega_{12}^{n} f_{1}(H, \lambda)+\omega_{B B}^{n} f_{2}(H, \lambda)=0 \tag{3.117}
\end{equation*}
$$

where $f_{1}(H, \lambda)=E-\frac{r(n H+2 \lambda)}{3 n} G$ and $f_{2}(H, \lambda)=F+\frac{(n(n-r+2) H-2 r \lambda)}{3 n} G$ are the homogeneous functions of degree 3 in terms of H and λ.

Multiplying (3.117) by ω_{12}^{n} and $\omega_{B B}^{n}$ and using (3.97), we obtain

$$
\begin{equation*}
\left(\omega_{12}^{n}\right)^{2} f_{1}(H, \lambda)=-\frac{\lambda}{2(n-r-1)}(3 n H-2 r \lambda) f_{2}(H, \lambda) \tag{3.118}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\omega_{B B}^{n}\right)^{2} f_{2}(H, \lambda)=-\frac{\lambda}{2(n-r-1)}(3 n H-2 r \lambda) f_{1}(H, \lambda) \tag{3.119}
\end{equation*}
$$

respectively.
Again, eliminating $e_{n}(H)$ from (3.112) and (3.108), we get

$$
\begin{equation*}
P_{1}\left(\omega_{B B}^{n}\right)^{2}-P_{2}\left(\omega_{12}^{n}\right)^{2}+P_{3}=0, \tag{3.120}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{1} & =4(n-r-1)(n-r-4)(n(n-r+2) H-2 r \lambda), \\
P_{2} & =4 r(n-r-1)(3-r)(n H+2 \lambda), \\
P_{3} & =8 r^{2}(n-2 r-1) \lambda^{3}+9 n^{3}(n-r+5) H^{3}-6 n^{2} r(2 n-2 r+13) H^{2} \lambda \\
& +4 n r\{3(n+3 r-1)+2 r(n-r-1)\} H \lambda^{2} .
\end{aligned}
$$

Now, eliminating ω_{12}^{n} and $\omega_{B B}^{n}$ from (3.120) by using (3.118) and (3.119), we obtain

$$
\begin{equation*}
\lambda(3 n H-2 r \lambda)\left[\left(f_{2}(H, \lambda)\right)^{2} P_{2}-\left(f_{1}(H, \lambda)\right)^{2} P_{1}\right]+2(n-r-1) f_{1}(H, \lambda) f_{2}(H, \lambda) P_{3}=0 \tag{3.121}
\end{equation*}
$$

which is a homogeneous equation of degree 9 in terms of H and λ. Here, we point out that $\lambda \neq 0$. In fact, if $\lambda=0$ then (3.121) gives $H=0$, which is contradiction to our assumption. We put $Y=\frac{H}{\lambda}$, then (3.121) will reduce to an algebraic equation in Y

$$
\begin{equation*}
(3 n Y-2 r)\left[P_{4}-P_{5}\right]+2(n-r-1) P_{6}=0, \tag{3.122}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{4} & =4 r(n-r-1)(3-r)(n Y+2)\left(g_{2}(Y)\right)^{2}, \\
P_{5} & =4(n-r-1)(n-r-4)(n(n-r+2) Y-2 r)\left(g_{1}(Y)\right)^{2}, \\
P_{6} & =\left[8 r^{2}(n-2 r-1)+9 n^{3}(n-r+5) Y^{3}-6 n^{2} r(2 n-2 r+13) Y^{2}\right. \\
& +4 n r\{3(n+3 r-1)+2 r(n-r-1)\} Y] g_{1}(Y) g_{2}(Y), \\
g_{1}(Y) & =Y\left[\left(9 n+13 r+2 n r-2 r^{2}+45\right) n^{2} Y^{2}+4 r(2 n r+r-3)-6 n r(3 n+2 r+8) Y\right] \\
& -\frac{r(n Y+2)}{3 n}\left[4 r(2 n+7)+3 n^{2}(2 n-2 r+19) Y^{2}+2 n((n-r)(r-6)\right. \\
& +(3 n-35 r-30)) Y], \\
g_{2}(Y) & =Y\left[-((n-r)(2 n-2 r+11)+32) n^{2} Y^{2}-4 r((n-r)(2 n+1)-4(n-1))\right. \\
& +6 n((n-r)(n+2 r+8)+8 r) Y]+\frac{(n(n-r+2) Y-2 r)}{3 n}[4 r(2 n+7) \\
& \left.+3 n^{2}(2 n-2 r+19) Y^{2}+2 n((n-r)(r-6)+(3 n-35 r-30)) Y\right] .
\end{aligned}
$$

and without having solve to (3.122) explicitly, even in the case of the existence of a real solution, H will be proportional to λ with a numerical factor ν, where ν be the root of the equation (3.122). Hence, we can assume that $H=\nu \lambda$ and substituting it in (3.107) and (3.108), and using (3.96), (3.97) and (3.98), we obtain

$$
\begin{gather*}
-\lambda e_{n} e_{n}(\lambda)+\frac{e_{n}^{2}(\lambda)(n \nu+4)}{n \nu+2}=\frac{n \nu(n \nu+2) \lambda^{4}}{4}, \tag{3.123}\\
e_{n}^{2}(\lambda)=-\frac{(n \nu+2)(n(n-r+2) \nu-2 r) \lambda^{4}}{4(n-r-1)}, \tag{3.124}\\
\lambda e_{n} e_{n}(\lambda)-e_{n}^{2}(\lambda)\left(1+\frac{3 \nu n-2 r}{n(n-r+2) \nu-2 r}\right)=-\frac{n \nu(n(n-r+2) \nu-2 r) \lambda^{4}}{4(n-r-1)} . \tag{3.125}
\end{gather*}
$$

Adding (3.123) and (3.125), we find

$$
\begin{equation*}
e_{n}^{2}(\lambda)=\frac{(n \nu+2)(n(n-r+2) \nu-2 r) \lambda^{4}}{4(n-r-1)} \tag{3.126}
\end{equation*}
$$

Using (3.124) and (3.126), we get $e_{n}(\lambda)=0$. Since $H=\nu \lambda$, therefore we obtain $e_{n}(H)=0$, a contradiction to (3.65). Which completes the proof of Proposition 3.6.

Now, we consider the case of two distinct eigenvalues.
Case IV: Let either of $\lambda-\lambda_{1}=0$ or $\lambda_{n}-\lambda_{1}=0$ or $\lambda-\lambda_{n}=0$. Then, from (3.64), we can say that each eigen value λ, λ_{1} and λ_{n} is the multiple of H. From (3.65), we have

$$
\begin{equation*}
e_{a}(\lambda)=e_{a}\left(\lambda_{1}\right)=e_{a}\left(\lambda_{n}\right)=0, \quad \text { for } \quad a=1,2, \ldots, n-1 \tag{3.127}
\end{equation*}
$$

If $\lambda-\lambda_{n}=0$ or $\lambda_{n}-\lambda_{1}=0$, then from (3.33) or (3.39), we get $e_{n}(H)=0$ which is a contradiction to (3.65). Now, if $\lambda-\lambda_{1}=0$, then $r=n-1$. From (3.64), we have

$$
\begin{equation*}
\lambda=\lambda_{1}=\frac{3 n H}{2(n-1)} \tag{3.128}
\end{equation*}
$$

Putting $r=n-1$ in (3.81) and using (3.128), we get

$$
\begin{equation*}
-(n-1) \omega_{12}^{n} e_{n}(H)-e_{n} e_{n}(H)+\frac{n^{2}(n+8)}{4(n-1)} H^{3}=0 \tag{3.129}
\end{equation*}
$$

Using (3.128) in (3.96), we find

$$
\begin{equation*}
e_{n}\left(\omega_{12}^{n}\right)+\left(\omega_{12}^{n}\right)^{2}=\frac{3 n^{2} H^{2}}{4(n-1)} \tag{3.130}
\end{equation*}
$$

Using (3.5), (3.64) and (3.128) in (3.12), we have

$$
\begin{equation*}
e_{n}(H)=-\frac{n+2}{3} H \omega_{12}^{n} \tag{3.131}
\end{equation*}
$$

Differentiating (3.131) along e_{n} and using (3.125), we get

$$
\begin{equation*}
e_{n} e_{n}(H)=\frac{(n+2)(n+5)}{9} H\left(\omega_{12}^{n}\right)^{2}-\frac{n^{2}(n+2)}{4(n-1)} H^{3} \tag{3.132}
\end{equation*}
$$

Eliminating $e_{n} e_{n}(H)$ from (3.129) and (3.132), we obtain

$$
\begin{equation*}
\frac{2(n+2)(n-4)}{9}\left(\omega_{12}^{n}\right)^{2}+\frac{n^{2}(n+5)}{2(n-1)} H^{2}=0 \tag{3.133}
\end{equation*}
$$

Differentiating, again (3.133) along e_{n} and using (3.130) and (3.131), we get

$$
\begin{equation*}
\frac{4(n-4)}{9}\left(\omega_{12}^{n}\right)^{2}+\frac{3 n^{2}}{(n-1)} H^{2}=0 \tag{3.134}
\end{equation*}
$$

Therefore, from (3.133) and (3.134), we can conclude that H must be zero.
Combining Proposition 3.6 and Case IV, we have
Proposition 3.3. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1}, having the nondiagonal shape operator given by (2.11). If gradH is space like, then M_{1}^{n} is not proper biharmonic.

Now, using Propositions 3.2 and 3.7, we have following:
Theorem 3.1. Let M_{1}^{n} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E_{1}^{n+1}, having non-diagonal shape operator given by (2.11) with at most three distinct principal curvatures. Then M_{1}^{n} is not proper biharmonic.

Acknowledgments

The first author is grateful to Guru Gobind Singh Indraprastha University for providing IPRF fellowship to pursue research.

References

[1] Arvanitoyeorgos, A., Defever, F. and Kaimakamis, G., Hypersurfaces of E_{s}^{4} with proper mean curvature vector. J. Math. Soc. Japan, 59 (2007), 3, 797-809.
[2] Arvanitoyeorgos, A., Defever, F., Kaimakamis, G. and Papantoniou, V., Biharmonic Lorentzian hypersurfaces in E1. Pac. J. Math. 229 (2007), 2, 293-305.
[3] Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type. World Scientific, Singapore, 1984.
[4] Chen, B. Y., Submanifolds of finite type and applications. Proc. Geometry and Topology Research Center, Taegu, 3 (1993), 1-48.
[5] Chen, B. Y., A report on submanifolds of finite type. Soochow J. Math., 22 (1996); 22: 117-337.
[6] Chen, B. Y., Classification of marginally trapped Lorentzian flat surfaces in E_{1}^{4} and its application to biharmonic surfaces. J. Math. Anal. Appl., 340(2008), 861-875.
[7] Chen, B. Y. and Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. A., 45 (1991), 323-347.
[8] Chen, B. Y. and Ishikawa, S., Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu J. Math., 52 (1998), 1-18.
[9] Dimitric, I., Quadratic representation and submanifolds of finite type. Doctoral thesis, Michigan State University, 1989.
[10] Deepika and Gupta, R. S., Biharmonic hypersurfaces in E^{5} with zero scalar curvature. Afr. Diaspora J. Math., 18 (2015), 1, 12-26.
[11] Fu, Y., Biharmonic hypersurfaces with three distinct principal curvatures in the Euclidean 5-space, Journal of Geometry and Physics, 75 (2014), 113-119.
[12] Gupta, R. S., On biharmonic hypersurfaces in Euclidean space of arbitrary dimension. Glasgow Math. J., 57 (2015), 633-642.
[13] Gupta, R. S., Biharmonic hypersurfaces in E_{s}^{5}. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.),Tomul LXII (2016), f. 2, vol. 2, 585-593.
[14] Hasanis, Th. and Vlachos, Th., Hypersurfaces in E^{4} with harmonic mean curvature vector field. Math. Nachr., 172 (1995), 145-169.
[15] Magid, M. A., Lorentzian isoparametric hypersurfaces. Pacific J. Math., 118(1985), 165-197.
[16] Petrov, A. Z., Einstein spaces. Pergamon Press, Oxford, 1969.

Affiliations

DEEPIKA

Address: University School of Basic and Applied Sciences,
Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi-110078, India.
E-MAIL: sdeep2007@gmail.com

Ram Shankar Gupta
Address: Assistant Professor, University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi-110078, India. E-MAIL: ramshankar.gupta@gmail.com

[^0]: Received : 22-09-2015, Accepted : 13-02-2017

 * Corresponding author

