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Abstract. In this paper, we investigate the conditions of being an harmonic curve and research differential equa-
tions characterizing any differentiable curve in Euclidean 3-space. By means of the Laplacian image of the mean
curvature vector field of a curve, it is stated which type of harmonic the curve is. Then we write the theorems related
to the characterization of the curves and proved these theorems. When the differentiable curve, used throughout
this paper, is specifically replaced to the unit speed curve then it is seen that the results coincide with the study [4].
In addition we elucidate the characterizations of helix as an example.
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1. Introduction and Preliminaries

To establish a relationship between the curvatures and characterization of a curve in Euclidean space and non-Euclidean
spaces and to expound it from the language of geometry has been the focus of interest for many researchers. Thanks
to meticulous studies, it has been revealed that curves can be classified, [2]. After this classification, a considerable
number of articles are written, [1, 4–6, 8]. In a three dimensional Euclidean space, characterizations of a unit speed
curve is stated clearly, [1, 4]. In this paper, we explore the necessary and sufficient conditions of being biharmonic
curve and 1-type harmonic curve. Also we research the differential equations characterizing the differentiable curve
in Euclidean 3-space, according to both connection and normal connection. For any differentiable curve α with the
Euclidean coordinate mappings (α1, α2, α3), the real valued function α′(t) that is, α′(t) = (α′1, α

′
2, α

′
3) |t=0 is called a

speed vector of the curve α, [3]. If any differentiable curve α, ‖ α′ ‖ = ϑ, is given in E3 then the relationship between
the Frenet vector fields and its curvatures is stated as [7]

T =
α′

‖ α′ ‖
, N = B × T , B =

α′ × α′′

‖ α′ × α′′ ‖
, κ =

‖ α′ × α′′ ‖

‖ α′ ‖3
, τ =

〈
α′ × α′′, α′′′

〉
‖ α′ × α′′ ‖2

.

Theorem 1.1. Frenet vector fields can be expressed by means of covariant derivative of these vectors and this relation
is known as Frenet formulas [7],

DT T = ϑκN , DT N = ϑ(−κT + τB) , DT B = −ϑτN . (1.1)
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Definition 1.2. Let any differentiable curve α and a continuous function f , f ∈ C(E3,R), are given then the operator
D defined as

D : TE3 (α(t)) ×C(E3,R)→ R , D(α′(t), f ) = Dα′(t) f = α′(t)( f )

and it is called a Levi-Civita connection. Here the value of α′(t)( f ) ∈ R is called as covariant derivative of the
function f along the curve α, [3].

Theorem 1.3. Let two vector fields X and W defined on E3 and another two vector fields Y , Z from C2-class defined
on E3 be given. Then the following propositions are true, [7]

DX(Y + Z) = DXY + DXZ,

DX+W (Y) = DXY + DWY, (1.2)
D f (P)X(Y) = f (P)DXY , f : E3 → R , P ∈ E3,

DX( f Y) = X( f )Y + f DXY , f ∈ C(E3,R).

Definition 1.4. Let α be the unit speed curve, then the mean curvature vector fieldH along the curve α is defined
as [4, 5]

H = Dα′α
′ = DT T = κN. (1.3)

Definition 1.5. Let α be the unit speed curve with the mean curvature vector field H, then the operator ∆ defined as

∆ : χ(α(I))⊥ → χ(α(I)) , ∆H = −D2
TH (1.4)

on α is called a Laplace operator [1, 4] .

Definition 1.6. Let us denote the normal bundle of the curve α by χ⊥(α(s)). Then the normal connection D⊥ is
defined as

D⊥T : χ⊥(α(I))→ χ⊥(α(I)) , D⊥T X = DT X −
〈
DT X,T

〉
T (1.5)

and the normal Laplace operator ∆⊥ is given by the following mapping [4, 6]

∆⊥T : χ⊥(α(I))→ χ⊥(α(I)) , ∆⊥X = −D⊥T D⊥T X , ∀X ∈ χ⊥(α(I)). (1.6)

Corollary 1.7. If α is a unit speed curve with the mean curvature vector field H , then we have the following
propositions
a) If ∆H = 0 then α is a biharmonic curve,
b) If ∆H = λH then α is a 1-type harmonic curve,
c) If ∆⊥H = 0 then α is a weak biharmonic curve,
d) If ∆⊥H = λH then α is a 1-type harmonic curve λ ∈ R, [4, 6].

2. Discussions and Result

Theorem 2.1. Let α be a differentiable curve in E3, then the following propositions are true

1) α is a biharmonic curve if and only if

3(ϑκ)′ϑκ = 0 , (ϑκ)3 + ϑκ(ϑτ)2 − (ϑκ)′′ = 0 , −2(ϑκ)′ϑτ − ϑκ(ϑτ)′ = 0.

2) α is a 1-type harmonic curve if and only if

3(ϑκ)′ϑκ = 0 , (ϑκ)3 + ϑκ(ϑτ)2 − (ϑκ)′′ = λϑκ , −2(ϑκ)′ϑτ − ϑκ(ϑτ)′ = 0 , ϑ =‖ α′(s) ‖ , λ ∈ R .
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Proof. From (1.3) we can write H = ϑκN and from (1.4) we have

∆H = −D2
T (ϑκN) = −DT (DT (ϑκN))

∆H = 3(ϑκ)′(ϑκ)T + ((ϑκ)3 + (ϑκ)(ϑτ)2 − (ϑκ)′′)N + (−2(ϑκ)′)ϑτ − ϑκ(ϑτ)′)B.

If we take the condition that ∆H = 0 into account, then 1. proposition holds and if we take the condition that ∆H = λH
into account, then 2. proposition holds. This completes the proof. �

Theorem 2.2. Let α be a differentiable curve in E3, then the following propositions are true according to normal
Levi- Civita connection D⊥.

1) α is a 1-type harmonic curve if and only if ϑ3τ2κ − (ϑκ)′′ = λκ , (ϑκ)′ϑτ + (ϑ2κτ)′ = 0.

2) α is a weak biharmonic curve if and only if ϑ3τ2κ − (ϑκ)′′ = 0 , (ϑκ)′ϑτ + (ϑ2κτ)′ = 0.

Proof. From (1.6) we have the image mapping of the mean curvature under normal Laplace operator as

DTH = (ϑκ)′N − (ϑκ)2T + ϑ2κτB.

Hence we get, D⊥TH = (ϑκ)′N + ϑ2κτB. By making use of (1.6),

DT (D⊥TH) = DT ((ϑκ)′N + ϑ2κτB) = (ϑκ)′′N + (ϑκ)′DT N + (ϑ2κτ)′B + ϑ2κτDT B

D⊥T D⊥TH = ((ϑκ)′′ − ϑ3(τ)2κ)N + ((ϑκ)′ϑτ + (ϑ2κτ)′)B

and it follows

∆⊥H = (ϑ3τ2κ − (ϑκ)′′)N − ((ϑκ)′ϑτ + (ϑ2κτ)′)B.

If we take the condition that ∆⊥H = λH into account, then 1. proposition holds and if we take the condition that
∆⊥H = 0 into account, then 2. proposition holds. This yields the required result and completes the proof. �

Theorem 2.3. Let a differentiable curve α be given. Then the differential equation characterizing the curve α according
to unit tangent vector T is given as

D3
T T + λ2D2

T T + λ1DT T + λ0T = 0

where

λ0 = ϑ2κτ(
κ

τ
)′ , λ1 = ϑ2(κ2 + τ2) −

ϑ′′

ϑ
−
κ′′

κ
+ (

ϑ′

ϑ
+
κ′

κ
)(3

ϑ′

ϑ
+
τ′

τ
) + 2(

κ′

κ
)2 and λ2 = −(3

ϑ′

ϑ
+ 2

κ′

κ
+
τ′

τ
) .

Proof. From (1.1) we can write

DT T = ϑκN =⇒ N =
1
ϑκ

DT T and DT N = ϑ(−κT + τB) =⇒ B =
1
ϑτ

DT N +
κ

τ
.

Now let us put (1/ϑκ)DT T instead of N, thence we get

B =
1
ϑτ

DT (
1
ϑκ

DT T ) +
κ

τ
T.

It follows that

B =
1
ϑτ

(
1
ϑκ

)′DT T +
1

ϑ2τκ
D2

T T +
κ

τ
T.
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Taking the tangential derivative of both sides of above equality gives us,

DT B = DT (
1
ϑτ

(
1
ϑκ

)′DT T ) + DT (
1

ϑ2κτ
D2

T T ) + DT (
κ

τ
T ). (2.1)

We may take into account of N = (1/ϑκ)DT T and find out DT B = (−τ/κ)DT T. If we put the equivalent of DT B
into (2.1) we work out,

−
τ

κ
DT T = DT (

1
ϑτ

(
1
ϑκ

)′DT T ) + DT (
1

ϑ2κτ
D2

T T ) + DT (
κ

τ
T ).

After performing necessary operations we get,

1
ϑ2κτ

D3
T T +

( 1
ϑτ

(
1
ϑκ

)′ + (
1

ϑ2κτ
)′
)
D2

T T +
(κ2 + τ2

κτ
+ (

1
ϑτ

(
1
ϑκ

)′)′
)
DT T + (

κ

τ
)′T = 0. (2.2)

Now it remains only to compute the coefficients of the expressions D2
T T and DT T respectively , that is,

1
ϑτ

(
1
ϑκ

)′ + (
1

ϑ2κτ
)′ = −

ϑ′κ + ϑκ′

ϑ3τκ2 −
2ϑϑ′κτ + ϑ2κ′τ + ϑ2κτ′

ϑ4κ2τ2

and
κ

τ
+
τ

κ
+ (

1
ϑτ

(
1
ϑκ

)′)′ =
κ2 + τ2

κτ
−
ϑ′′κ + 2ϑ′κ′ + ϑκ′′

ϑ3τκ2 +

(3ϑ2ϑ′τκ2 + ϑ3τ′κ2 + 2ϑ3τκκ′)(ϑ′κ + ϑκ′)
ϑ6τ2κ4 .

Finally we can put these values into (2.2) and then multiplying both sides of (2.2) by ϑ2κτ we obtain,

D3
T T − (3

ϑ′

ϑ
+ 2

κ′

κ
+
τ′

τ
)D2

T T +
(
ϑ2(κ2 + τ2) −

ϑ′′

ϑ
−
κ′′

κ

+ (
ϑ′

ϑ
+
κ′

κ
)(3

ϑ′

ϑ
+
τ′

τ
) + 2(

κ′

κ
)2
)
DT T + ϑ2κτ(

κ

τ
)′T = 0

and this completes the proof. �

Theorem 2.4. Let a differentiable curve α be given. Then the differential equations characterizing the curve α accord-
ing to principal normal vector N and binormal vector B are given as

1) D⊥T D⊥T N −
(ϑτ)′

ϑτ
D⊥T N + (ϑτ)2N = 0,

2) D⊥T D⊥T B −
(ϑτ)′

ϑτ
D⊥T B + (ϑτ)2B = 0.

Proof. 1) From (1.6) we have D⊥T N = ϑτB and then B = 1
ϑτ

D⊥T N. By the similar way

we have D⊥T B = −ϑτN and then we can write N = −1
ϑτ

D⊥T B. It follows that

D⊥T N = ϑτB =⇒ D⊥T (D⊥T N) = D⊥T (ϑτB)
and this gives us

D⊥T D⊥T N −
(ϑτ)′

ϑτ
D⊥T N + (ϑτ)2N = 0.

2) By applying the (1.6) we claim that

D⊥T B = −ϑτN =⇒ D⊥T (D⊥T B) = D⊥T (−ϑτN)
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it follows
D⊥T D⊥T B −

(ϑτ)′

ϑτ
D⊥T B + (ϑτ)2B = 0.

Thus we obtain the desired results which complete the proof. �

Example 2.5. Let a differentiable curve α(s) = (acoss, asins, bs) be given, a, b ∈ R+. Then it is obvious that
ϑ = α′(s) =

√
a2 + b2. From (1.1) Frenet apparatus of α(s) can be evaluated as

T =
−asins, acoss, b
√

a2 + b2
, N = (−coss,−sins, 0) , B =

bsins,−bcoss, a
√

a2 + b2
, κ =

a
a2 + b2 , τ =

b
a2 + b2

According to these outcomes we can decide which kind of harmonic curve an helix is. From (1.1), we have

H = ϑκN = a/
√

a2 + b2(−coss,−sins, 0)

and by the (2.1) we get

∆H = 3(ϑκ)′(ϑκ)T + ((ϑκ)3 + (ϑκ)(ϑτ)2 − (ϑκ)′′)N + (−2(ϑκ)′)ϑτ − ϑκ(ϑτ)′)B

=
a

√
a2 + b2

(−coss,−sins, 0)

therefore we realize that helices are of 1-type harmonic curves according to connection. By referring (2.2), we obtain

∆⊥TH = (ϑ3τ2κ − (ϑκ)′′)N − ((ϑκ)′ϑτ + (ϑ2κτ)′)B

=
ab2

(a2 + b2)
3
2

N

and thus an helix is not a 1-type of harmonic curve according to normal connection. Let us look at the differential
equations characterizing the helices. From (2.3), it is straightforward computation that

D3
T T + DT T = 0.

Eventually from (2.4), we get the equations

1) D⊥T D⊥T N + (
b2

a2 + b2 )N = 0 , 2) D⊥T D⊥T B + (
b2

a2 + b2 )B = 0.
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[5] Kocayiǧit, H., Hacısalihoǧlu, Hilmi H., Biharmonic Curves in Contact Geometry, Commun. Fac. Sci. Univ. Ank. Series A1, 2061(2)(2012),

35-43. 1, 1.4
[6] Kocayigit, H., Onder, M., Hacisalihoglu H. H., Harmonic 1-type Curves and Weak Biharmonic Curves in Lorentzian 3-Space, Ana. Stiin. A.

Uni. Al. I. Cuza. D. I. (S.N.) Mat., f(1)(2014), 109–124. 1, 1.6, 1.7
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