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1. Introduction

Classical Fibonacci numbers have been often use in different sciences such as biology, physics and economy. In
the literature, there have been many studies on Fibonacci numbers and generalizations, see [1–4, 6, 7, 9, 12]. In [8],
Horadam has defined complex Fibonacci numbers and the generalization of the classical Fibonacci numbers to complex
numbers, which has given rise to new problems. Also, very interesting relationships and similarities between Fibonacci
numbers and Gaussian Fibonacci numbers are given in [11].

For any integer n ≥ 2, the Gaussian Fibonacci numbers GFn are defined by

GF0 = i, GF1 = 1; GFn = GFn−1 + GFn−2 . (1.1)
The nth Gaussian Fibonacci number is given by the equality

GFn = Fn + iFn−1,
where i is the imaginary unit which satisfies i2 = −1.
There exist a Binet formula for the Gaussian Fibonacci numbers,

GFn = γαn + λβn (1.2)

where α = 1+
√

5
2 , β = 1−

√
5

2 , γ =
2
√

5+(5+
√

5)i
10 and λ =

−2
√

5+(5−
√

5)i
10 ·

Here, α and β satisfy the following equations

α + β = 1, α − β =
√

5, αβ = −1. (1.3)

Recent studies show that there has been an increasing interest on reciprocal sums of the Fibonacci numbers. In [5],
Elsner et al. investigated the algebraic relations for reciprocal sums of the Fibonacci numbers. Also, Ohtsuka and
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Nakamura obtained the partial infinite sums of the reciprocals of Fibonacci numbers [13]. Indeed, the floor function
has been used in all of the above studies. However, Horadam obtained infinite sums of the reciprocals of Fibonacci
numbers and some generalizations by the help of Lambert series in [10].

Now, we recall the definition of Lambert series

∞∑
n=1

an
xn

1 − xn ·

More particularly, we speak of the Lambert series and generalized Lambert series respectively,

L(x) =

∞∑
n=1

xn

1 − xn and |x| < 1,

L(a, x) =

∞∑
n=1

axn

1 − axn and |x| < 1, |ax| < 1.

The purpose of this paper is to express the infinite sums

∞∑
n=1

1
GFn

,

∞∑
n=1

1
GF2n

and
∞∑

n=1

1
GF2n−1

in terms of Lambert series.

2. Infinite Sums of the Reciprocals of Fibonacci Numbers

In this section, we first obtain the reciprocal of Gaussian Fibonacci numbers with the help of the Binet formula.
Then, we express the infinite sums of these reciprocals in terms of the Lambert series.

Theorem 2.1. i. If n is even, then

∞∑
n=1

1
GFn

=
i
√
γ

γ
√
λ

L
i √λ√

γ
, β

 − L
(
−
λ

γ
, β2

) ,
ii. If n is odd, then

∞∑
n=1

1
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=
−
√
γ

γ
√
λ

L
 √λ√

γ
, β

 − L
(
λ

γ
, β2

) .
Proof. Firstly, we let n be even. We consider

1
GFn

=
1

γ · αn + λ · βn

=
1

γ
(
αn + λ

γ
· βn

)
=

1
γ
·

βn

(αβ)n + λ
γ
· β2n
·

Since n is even, then (αβ)n = (−1)n = 1 and therefore,
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Thus, we have

∞∑
n=1

1
GFn

=
i
√
γ

γ
√
λ

 ∞∑
n=1

 i
√
λ
√
γ
· βn

1 − i
√
λ
√
γ
· βn

 − ∞∑
n=1

 −λ
γ
· β2n

1 + λ
γ
· β2n


 .

By the help of Lambert series, we get
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where

∣∣∣∣i √λ√γ · β∣∣∣∣ < 1, and
∣∣∣∣− λγ · β2

∣∣∣∣ < 1.
Secondly, we assume that n is odd. Then, (αβ)n = (−1)n = −1. Now, we get
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Therefore,
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and we have
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where

∣∣∣∣ √λ√γ · β∣∣∣∣ < 1, and
∣∣∣∣ λγ · β2

∣∣∣∣ < 1. �

Theorem 2.2. The following equality holds:
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Proof. In the Eqn. (1.2), we consider 2n instead of n, then
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Since (αβ)2n = 1, we have
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Therefore, we obtain
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which can be written in terms of Lambert series as:
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Lemma 2.3. We assume α, β, λ and γ are defined as in (1.2). Then,
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Theorem 2.4. The following equality holds:
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Proof. In (1.2), we consider 2n − 1 instead of n, then
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Since (αβ)2n−1 = −1, we have
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Therefore, we get
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By the help of Lambert series, we have
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3. Conclusion

In this work, we studied the reciprocal of Gaussian Fibonacci numbers with the help of the Binet formula. Then,
infinite sums of these reciprocals have been expressed in terms of the Lambert series. Our results can be applied to
Gaussian Lucas numbers and Gaussian Pell numbers by using a similar method.
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