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FUZZY MARKOV CHAINS MODELING OF AGGREGATION
PROCESSES

NURSIN BAS CATAK

Abstract. In this paper, the fuzzy Markov chain method is proposed as a new
discrete solution of a population balance equation for an aggregation process.
In order to validate the proposed method, analytical solution of an aggregation
equation is compared with the fuzzy Markov chain method for the constant
aggregation kernel. According to the results, if the size range of the system
is divided into a suffi cient number of states and an appropriate transition
time step is chosen, then the fuzzy Markov chain method displays a good
approximation for the particle size distribution(PSD) while the main equation
is driven by a constant aggregation kernel.

1. Introduction

Population balance modelling which is a well-known model to describe the size
distribution of particulate systems, is widely used in the food, pharmaceutical and
chemical industries. Population balance equations (PBEs) are underpinned by the
law of mass conservation. A continuous number density function in PBEs makes the
model quite powerful in analyzing the dynamics of a process. However, the structure
of these equations is complex due to the intrinsic partial integro-differential equa-
tions and hence analytical solutions may not be possible except for simple cases.
Nonetheless there are a number of numerical methods described in the literature
which allow for PBEs to be solved. [1] contributed numerical solutions of PBEs,[2]
developed a discrete method to predict a single property of the particle such as total
number or volume and [3] published a discrete solution of PBEs for a crystallization
process. Moreover, [4] presented a new discretization procedure for an agglomer-
ation equation where they mitigated the intrinsic problems encountered through
discretization by using proper probability density functions. On the other hand, [5]
discussed the characteristics of approximate methods for modelling aggregation by
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Figure 1. An illustration of the aggregation birth and death

considering their accuracy, ability to produce error estimates, ease of implementa-
tion and speed. A comprehensive discussion about various applications is available
in [6]. The term aggregation is used for size enlargement processes whereby small
particles are gathered into larger, relatively permanent masses in which the original
particles can still be distinguished [7]. It is encountered among many diverse sectors
of industry including pharmaceuticals, fertilizers and chemicals.

1.1. Continuous population balances. A general form of the continuous aggre-
gation equation for a batch system can be given as [6];

∂f(v, t)

∂t
=
1

2

∫ v

0

β(v − ε, ε, t)f(v − ε, t)f(ε, t)dε

−f(v, t)
∫ ∞
0

β(v, ε, t)f(ε, t)dε

(1)

where f(v, t) is the number distribution of particles as a function of particle volume
and time, β(v, ε) is the aggregation kernel of aggregating particles of volume v and
ε.
Equation 1 states that the change in the number of particles of volume v over an

incremental time step at time t depends on the number of new particles of volume
v produced by aggregation of particles smaller than v, and depends on the average
number of particles lost by aggregation of particles of volume v.
The first integral part of the right hand side of equation 1 represents aggregation

birth for particle of volume v. That is, particles of volume v− ε and ε aggregate to
form a new particle of volume v. The second integral part of the right hand side
of equation 1 represents aggregation death for particle of volume v. In other words,
particles of volume v and ε aggregate to produce a new particle of volume v+ ε. A
schematic representation of aggregation birth and death is given in Figure 1.

1.2. Discrete population balances. The underlying basis of discretization is to
turn the main population balance of integro-differential equations into ordinary
differential equations. To achieve this, the integral signs of the continuous equa-
tion 1 are turned to summation signs, and continuous functions are replaced by
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corresponding discrete functions;

dNi
dt

=
1

2

i−1∑
j=1

βj,i−jNjNi−j −Ni
∞∑
j=1

βi,jNj (2)

where Ni is the number of particles in the interval i and βi,j is the discrete aggre-
gation kernel of the particles in the intervals i and j.
There should be a finite state space to model the system, that is j cannot be

increased to infinity in the second part of right hand side of equation 2. On this
basis, two realistic approaches can be stated as follows;

i) A maximum volume size vmax that can appear in the process is assigned.
That is, any two particles cannot aggregate if their total volume is greater
then vmax. This kind of limitation is possible if aggregation occurs in a pipe
or similar geometrical places where physical parameters mostly determine
the maximum volume size. Let the maximum state be represented by nth

state, then equation 2 can be rewritten as;

dNi
dt

=
1

2

i−1∑
j=1

βj,i−jNjNi−j −Ni
n−i∑
j=1

βi,jNj (3)

Equation 3 produces some restrictions on particle aggregation. If the
maximum state number n=40 and i=5, a particle in the interval 5 cannot
aggregate with another particle in the interval j when i + j > 40, such as
36, 37, 38, 39, 40.

ii) A maximum volume size vmax which is represented by interval n that can
join to aggregation process is defined. Then, the maximum particle size can
be 2vmax and if the intervals created by using a uniform method, then the
total number of intervals will be 2n. Thus, equation 2 can be defined as;

dNi
dt

=
1

2

i−1∑
j=1

βj,i−jNjNi−j −Ni
n∑
j=1

βi,jNj (4)

2. Markov Processes

The basic property of a Markov process is that it has no memory. That is, the
past and the future of the process are mutually independent and only the present
can influence the future [8]. If the process has a finite or countably infinite set of
states, then it is referred as Markov chain. Classification of the Markov processes
referring to their time and property behaviour is given in Table 1.

2.1. Discrete time Markov chains. If the total processing time is divided into
the finite intervals of duration τ , then a representation of the process which is
discrete in time is obtained, which is called Discrete Time Markov Chains (DTMC)
[9]. In the rest of this study, the term Markov chains refers to DTMC.



FUZZY MARKOV CHAINS 2053

Table 1. Classification of Markov processes (adopted from [8])

Markov Processes
Time Property Governing Equation
Continuous Continuous Partial differential equations
Continuous Discrete Ordinary differential equations.
Discrete Discrete Matrix algebra

To constitute a Markov chain, three important notations are used such as a state
vector a(t), a transition time step τ and a transition matrix P. The vector a(t)
with components (a(1(t), a2(t), a3(t), ...) is called the state probability distribution
vector of the system at time t. If the probability for an entity currently in the state
j at time t is denoted by aj(t) then the state probability distribution of state i for
the next time step, ai(t+1) is given by the sum of product of all probabilities. This
is formulated as follows;

ai(t+ 1) =

n∑
j=1

pjiaj(t) (5)

If equation 5 is written down for all states, then it is possible to show transi-
tions between the states using a square matrix which is called Markov or transition
matrix. The transition matrix P has entries pij which represents transition proba-
bilities from state i to state j at each time step. On this basis, the transition matrix
is given by matrix as follows [10];

P =


p11 p12 ... p1n
p21 p22 ... p2n
... ... ... ...
pn1 pn2 ... pnn


n×n

Properties of the transition matrix are;

• The sum of all probabilities of state i equals 1,
i.e., pi1 + pi2 + ...+ pin = 1 ∀ i = 1, ..., n

• Each row of the transition matrix has at least one nonzero element.
• Entities of the transition matrix are nonnegative, since pij is a probabilistic
ratio, i.e. pij values lie between 0 and 1.

A Markov graph shown in Figure 2 frequently is used to figure the state space of
the process. Such a graph has n nodes and a number (between n and n2 ) of lines
directed from i to j if pij is not equal to zero. the changes that happen in direction
shown by the arrows are called transition. There would be n2 lines if any pij is not
zero.
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Figure 2. Transition probabilities’illustrations using a Markov graph

Both equation 3 and equation 4 are convenient for the fuzzy Markov chain
method in relation to operation parameters. In this paper equation 4 will be used
for the Markov chains method as an illustrative example. Note that in equation
4 βi,j is the discrete aggregation kernel and represents the case where a particle
in the interval i and another particle in the interval j aggregate, whereby a new
particle in the interval i+j appears. It is obvious that βi,j = 0 if i > n or j > n
since particles bigger than the size of the interval n cannot aggregate.

2.2. Fuzzy Markov chains. Let S be a finite state space and take S = 1, 2, ..., n.
A finite fuzzy set on S is defined by a mapping z from S to [0, 1] denoted by a vector
z = [z1, z2, ..., zn]. A fuzzy relation P̃ is defined as a fuzzy set on the S × S. P̃ ,
namely the fuzzy transition matrix, consists of p̃i,j where 0 ≤ p̃i,j ≤ 1. The entities
of P̃ are assigned as possibility distributions instead of probability distributions
in classical Markov chains. In this paper, α − cut fuzzy numbers are employed to
define p̃i,j . Let M̃ [α] be an α − cut fuzzy set, then M̃ [α] = x|M̃ [α](x) ≥ α, where
0 < α ≤ 1. Triangular fuzzy numbers can be explained using three parameters
c1, c2, c3 such that the membership function, µ(z), has a triangular shape where
the vertex of the triangle are located at (c1, 0), (c2, 1), (c3, 0). Let define the lowest
end of the p̃i,j , p̃i,j,min, and the highest end of the p̃i,j , p̃i,j,max as;

p̃i,j,min = p̃i,j − ηα
p̃i,j,max = p̃i,j + ηα

(6)

Then;

p̃i,j[α] = [p̃i,j,min, p̃i,j,max] (7)

The transition possibility of a fuzzy Markov chain is defined by the fuzzy relation
P̃ as;
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zj(t+ 1) = max{zi(t) ∧ p̃i,j} (8)

z(0) is given as an initial fuzzy set representing the initial distribution. Equation
8 can be given in matrix notation as;

z(τ) = z(0) ◦ P̃ (τ) (9)

where ◦ denotes max-min composition.
The similarity between the classical Markov chains and the fuzzy Markov chains

is obvious referring to Equations 5 and 9. The algebraic summation and multiplica-
tion are used to define the classical Markov chains, whereas max-min composition
is used in the fuzzy Markov chains.

2.2.1. Defuzzification. There are several approaches to defuzzify the fuzzy numbers
in literature [11]. The centroid method, it is also known as center of gravity, was
employed in this study.

z∗ =

∫
µ
M̃
(z)zdz∫

µ
M̃
(z)dz

(10)

2.2.2. Simulation algorithm. The simulation algorithm which is used in this paper
can be summarized as follows;

(1) Insert the aggregation kernel, β(v, ε)
(2) Insert the transition time step, τ
(3) Insert the total simulation time t, t = kτ , where k is a positive integer
(4) Insert initial distribution of numbers in a row vector z(0)
(5) Calculate the transition probability matrix P using τ , β(v, ε) and N
(6) Calculate the transition possibility matrix P̃ using P, α and η
(7) Find the number possibility distribution z(t) after a transition step time τ ;
(8) Defuzzification, then go to step 7
(9) Continue the simulation until one finds the distribution of numbers for the

desired time, i.e. repeat to find Nnext up to k times

This algorithm was applied to simulate the fuzzy Markov chain method results
using Matlab.

3. Results and discussion

In this section, the simulation result of the fuzzy Markov chain method is com-
pared with the analytical solution of the continuous equation 1. A simple constant
aggregation kernel is used and the initial distribution functions are chosen in the
exponential form in order to find analytical solutions.
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Table 2. States vs. size ranges for 1000 state space

Size range Average size
state1 0.00 - 0.1 0.05
state2 0.1 - 0.2 0.15
state3 0.2 - 0.3 0.25
. . .
. . .

state998 199.7 - 199.8 199.75
state999 199.8 - 199.9 199.85
state1000 199.9 - 200.00 199.95

3.1. Case study. The continuous population balance equation, with a constant
aggregation kernel β(v, ε)=β, can be written as;

∂f(v, t)

∂t
=
1

2

∫ v

0

βf(v − ε, t)f(ε, t)dε

−f(v, t)
∫ ∞
0

βf(ε, t)dε

(11)

given an initial distribution of

f(v, 0) = e−v (12)

where v is the particle volume, the analytical solution of equation 11 is found using
Laplace transform 1 as;

f(v, t) =
4e

−2v
2+βt

(2 + βt)2
(13)

The solution of the aggregation process with the constant aggregation kernel,
which is β = 0.1 s−1 and the transition time step τ = 1 s will be carried out in
the next section by applying the fuzzy Markov chain method to the same initial
condition of equation 13.

3.1.1. Fuzzy Markov chain method. The maximum size vmax that can aggregate
is chosen as 50 mm3 which is an arbitrary size to simulate the model. Thus, the
maximum aggregate size is 100 mm3. The size range [0, 100] mm3 is divided into
1000 intervals using uniform method with r = 0.1 mm3 where the lowest size of
first interval v0 is 0mm3. A representative volume size of each interval is calculated
by using arithmetic mean, i.e. v̂i=

vi+vi−1
2 (see Table 2). Following the simulation

algorithm which is described in section 2.1.2, the aggregation process is simulated
applying the fuzzy Markov chain method based on the transition matrix P1000×1000
and initial probability distribution a(0)1×1000.

1Details are available in Appendix section
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3.1.2. Discussion. The analytical solution obtained in equation 13 for β = 0.1
s−1 is displayed in Figure 3. In this figure, the mean volume size of particles is
monotonically increasing with increasing time. The mean size is 1 mm3 at t = 0,
but it increases to 11 mm3 after 200 time steps as might be expected from an
aggregation process. In addition, the variance of the distribution of numbers is
increasing with time. Mathematical expressions of mean and variance functions
with respect to time can be formulated as

vmean(t) =

∫ ∞
0

vf(v, t)dv = 1 +
t

20
(14)

vvar(t) =

∫ ∞
0

(v − vmean)2f(v, t)dv = 1 +
t

10
+

t2

400
(15)

Figure 3. 3D visualization of analytical solution of equation 13

Since it is an aggregation process, the total number of particles in the system
is expected to decrease in time. Let N0 be the initial total number of particles at
t = 0, then total number function can be written as

N (t) = N0
∫ ∞
0

f(v, t)dv =
2N0
2 + βt

(16)

The mean sizes obtained from the fuzzy Markov chain method for various time
steps are calculated using following equation

µv(t) =

n∑
i=1

v̂iNi(t) (17)

Similarly, the variances over time in particle size are calculated as
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σ2v(t) =

n∑
i=1

Ni(t)(v̂i − µv(t))2 (18)

The standard deviation denoted by σ, is the square root of the variance.
The total number of the particles is found as

N (t) = N0
n∑
i=1

Ni (19)

The expected mean of the particle volume and the variance expectations are
shown in Figure 4. Also, mean size prediction of the fuzzy Markov chain method is
very close to the analytically expected mean size during 100 time steps. Both curves
of the variance expectations based on the analytical solution and the fuzzy Markov
chain method increase quadratically with time and are in agreement. In equation
16, it is shown that the total number of particles in the system is a function of time
for the constant kernel. As illustrated in Figure 5, the total number of particles
predicted by the fuzzy Markov chain method is almost identical to the analytical
solution. This signifies that the fuzzy Markov chain method is capable of adequately
predicting the analytical solution.

Figure 4. Changes in the mean size and in variances with respect
to time, case study 1
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Figure 5. Total number of particles in the system with respect
to time, case study 1

In Figure 6, simulation results of the fuzzy Markov chain method and the analyt-
ical solution are illustrated at different time steps. Figure 6 shows that the results
of the fuzzy Markov chain method exactly overlap the analytical solution for size
intervals which are bigger than 5 mm3. The reason for the slight mismatch of the
smaller size volumes is that the uniform discretization does not perfectly cover the
sensitivity of the exponential function where the particle volume is smaller than
5 mm3. Yet the agreement between the analytical solution and the fuzzy Markov
chain method is more than 95% according to Kolmogorov-Smirnov test at t = 200
seconds, i.e. 200 time steps after starting.

4. Conclusion

In this study, the fuzzy Markov chain method is used to solve the continuous
population balance equation for an aggregation process. The results show that if
the particle size range of the system has been divided into a suffi cient number of
states and an appropriate transition time step is chosen, then the fuzzy Markov
chain method exhibits very good agreement with the analytical solution.
Some process systems have a natural periodicity such as rotating mixers (period

of rotation), vibratory conveyors (period of excitation) for which the transition
time step can be chosen from basic physics. For systems which have no period,
the time step should be chosen taking into consideration process kinetics and total
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Figure 6. Comparison of Markov Chains simulation results and
analytical solution, case study 1

processing time. The suffi ciency of the number of states is dependent of the process
kinetics. The authors suggest to divide the state property under analysis into 30
intervals as an initial trial. Ultimately, a good pair of (τ , n) should be selected to
represent the time and particle property in discrete form effi ciently.
Provided that the aggregation kernel β(v, ε) is time independent, Markov chains

can be used as a new discrete method for the solution of the aggregation equation.
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Although, a large number of states makes the computation diffi cult, this can be
readily handled using modern computer software packages. Thereafter, for calcu-
lating transition matrix P̃, the particle size distribution of the system can be easily
evaluated using the fuzzy Markov chain method.

APPENDIX

The Laplace transform of a function f(v, t) which is defined ∀ v ∈ <+, is the
function f̂(s, t) defined by

f̂(s, t) = L{f(v, t)} =
∫ ∞
0

e−svf(v, t)dv (20)

Thus, the function f(v, t) is transformed from v domain to s domain.
The continuous population balance equation with a constant aggregation kernel

β(v, ε)=β can be written as

∂f(v, t)

∂t
=
1

2

∫ v

0

βf(v − ε, t)f(ε, t)dε

−f(v, t)
∫ ∞
0

βf(ε, t)dε

(21)

The solution procedure of the continuous population balance equation with the
Laplace transform method is summarized step by step as

i) Laplace transform
When the Laplace transform is applied aiming to transform the func-

tion f(v, t) from v domain to s domain, i.e. L{f(v, t)}= f̂(s, t), then the
continuous population balance equation 21 becomes

∂f̂(s, t)

∂t
=
1

2

∫ ∞
0

e−svdv

∫ v

0

βf(v − ε, t)f(ε, t)dε

−
∫ ∞
0

e−svf(v, t)dv

∫ ∞
0

βf(ε, t)dε

(22)

Note that, the first integral part of the right hand side of equation 22
is a convolution integral. Moreover,

∫∞
0
f(ε, t)dε gives the total number of

particles in the system which equals 2
2+βt in the second integral part of the

right hand side of equation 22. Then equation 22 can be simply written as

∂f̂(s, t)

∂t
=
β

2
f̂2(s, t)− 2β

2 + βt
f̂(s, t) (23)

ii) Solution of the partial differential equation
The solution of the partial differential equation 23 is

f̂(s, t) =
2

2 + βt+ 8G(s) + 8G(s)βt+ 2G(s)β2t2
(24)
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where G(s) is a function of s.
iii) Invoking the initial condition to find the G(s) function

The Laplace transform of the initial particle size distribution function
which is given in equation 15 is

f̂(s, 0) =
1

s+ 1
(25)

which should equal equation 24 at t = 0, then
1

s+ 1
=

2

2 + 8G(s)
(26)

which gives

G(s) =
s

4
(27)

iv) Invoking the G(s) function
If the G(s) function is inserted in equation 24, it becomes

f̂(s, t) =
2

2 + βt+ 2s+ 2sβt+ s
2β

2t2
(28)

v) Inverse Laplace transform
As a final step, if the inverse Laplace transform is applied to equation

28 to be transformed in v domain back, then the analytical solution of the
population balance equation is found as

f(v, t) =
4e

−2v
2+βt

(2 + βt)2
(29)

which is given in equation 16.
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