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Abstract. Let A be a table algebra with standard basis B, multiplication

µ, unit map η, skew-linear involution ∗, and degree map δ. In this article we

study the possible coalgebra structures (A,∆, δ) on A for which (A,µ, η,∆, δ)

becomes a Hopf algebra with respect to some antipode. We show that such

Hopf algebra structures are not always available for noncommutative table

algebras. On the other hand, commutative table algebras will always have

a Hopf algebra structure induced from an algebra-isomorphic group algebra.

To illustrate our approach, we derive Hopf algebra comultiplications on table

algebras of dimension 2 and 3.
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1. Introduction

A bialgebra (A,µ, η,∆, δ) is both an associative algebra and a coassociative coal-

gebra A over a commutative ring K with multiplication µ : A ⊗ A → A, unit

map η : K → A, comultiplication ∆ : A → A ⊗ A, and counit δ : A → K, that

satisfies extra compatibility conditions that ∆ : A → A ⊗ A and δ are algebra ho-

momorphisms and δ ◦ η = idK . For non-experts, the algebra condition on (A,µ, η)

is

µ ◦ (id⊗ η) = µ ◦ (η ⊗ id) = id

as maps on A ⊗ K ' K ⊗ A ' A, and the coalgebra condition on (A,∆, δ) is

obtained by reversing arrows:

(id⊗ δ) ◦∆ = (δ ⊗ id) ◦∆ = id.

An algebra anti-automorphism S : A → A of a bialgebra (A,µ, η,∆, δ) is called

an antipode when

η ◦ δ = µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆.
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A Hopf algebra is a bialgebra with antipode. Hopf algebras are a class of bialgebras

that includes group algebras, since it is well-known that a group algebra KG of a

group G over K becomes a Hopf algebra over K when we define comultiplication

by ∆(g) = g ⊗ g and counit by δ(g) = 1, and the antipode by S(g) = g−1, for all

g ∈ G.

In the case where the base field is the field of complex numbers C (which we will

assume from now on), table algebras are associative algebras that also generalize

group algebras. (For an extensive history on the evolution and scope of this and

similar notions, we refer the reader to Blau’s survey article [1].) A table algebra of

finite rank r is an r-dimensional associative algebra A with skew-linear involution

∗ whose distinguished basis B = {1 = b0, b1, . . . , br−1} satisfies the following three

properties:

TA1: The structure constants relative to B are nonnegative real numbers. We

denote these by λijk for i, j, k ∈ {0, 1, . . . , r − 1}, where bibj =
∑
k λijkbk, for all

bi, bj ∈ B.

TA2: B∗ = B; in particular, b∗0 = b0 = 1 is the multiplicative identity of the algebra,

and for all bi ∈ B there is a unique i∗ ∈ {0, 1, . . . , r − 1} such that (bi)
∗ = bi∗ .

TA3: For all i ∈ {0, 1, . . . , r− 1}, bi∗ is the unique pseudo-inverse of bi; this means

for all i, j ∈ {0, 1, . . . , r− 1}, λij0 > 0 ⇐⇒ j = i∗, and for all i ∈ {0, 1, . . . , r− 1},
λii∗0 = λi∗i0.

The complex group algebra CG of a finite group G is a table algebra with distin-

guished basis G. Its skew-linear involution is given by (αg)∗ = ᾱg−1, for all g ∈ G,

α ∈ C, and the pseudo-inverse of g ∈ G is its group inverse g−1. The adjacency

algebras of association schemes are another important example of table algebras, in

which the roles of involution and pseudo-inverse are played by conjugate transpose

and transpose, respectively. Note that table algebras, being finite-dimensional alge-

bras with involution over C, are always semisimple algebras. For further overview

of the theory of table algebras, see Blau’s survey [1].

As is customary we will write b0 for the multiplicative identity of a table alge-

bra, so the unit map of a table algebra is given by η(α) = αb0, for α ∈ C, and

multiplication µ is as defined by property TA1. Since table algebras are a class of

associative algebras that includes group algebras, and group algebras become Hopf

algebras in a natural way, it makes sense to ask:

Is there a way to define a counit δ, comultiplication ∆, and antipode S on a table

algebra (A,µ, η) so that (A,µ, η,∆, δ) becomes a Hopf algebra with antipode S?
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The main results of this article show that the answer to this question is NO for

some noncommutative table algebras, but YES for all commutative table algebras.

Since fusion rule algebras can be characterized as commutative table algebras after

a basis renormalization (see [1]), the answer is also YES for fusion rule algebras.

The negative answer is a consequence of the existence of noncommutative table

algebras of dimensions 5 and 7, combined with the fact that Hopf algebras of prime

dimension must be isomorphic to group algebras. Since commutative table algebras

of dimension r are algebra isomorphic to the group algebra of any abelian group of

order r, for each distinct isomorphism type of these groups there will be a distinct

Hopf algebra structure on the table algebra. To Hopf algebraists, the possible

comultiplications on commutative semisimple algebras are well-known to be the

coalgebra structures for duals of group algebras. We offer a self-contained proof

of this fact that also produces the values of the comultiplication on the basis of

primitive idempotents. By interpolating between the character tables of the table

algebra and the group we can produce formulas for the values of the Hopf algebra

comultiplication map on elements of B for the most natural choices of counits. We

will apply this approach to give explicit Hopf algebra comultiplications for table

algebras in dimensions 2 and 3.

2. Choosing the counit and antipode of a table algebra

Let A be a table algebra with distinguished basis B. Since each distinguished

basis element bi can be realized as a nonnegative matrix in its regular representation,

there is a unique algebra homomorphism δ : CB → C called the degree map for

which δ(bi) > 0 for all bi ∈ B [1]. Since δ is an algebra homomorphism, it is

compatible with µ, and δ(b0) = 1 implies δ(η(z)) = z, for all z ∈ C, so it is also

compatible with our unit map. In the case B is a finite group the degree map is

the augmentation map, which is the counit for the usual Hopf algebra structure on

the group algebra. So the degree map of the table algebra is a good candidate for

the counit.

In choosing the degree map for the counit, we can scale the distinguished ba-

sis elements by positive constants to arrange that our renormalized basis satisfies

δ(bi) = λii∗0, for all bi ∈ B (see [1]). We call such a table algebra basis standard,

and from now on assume our table algebra bases to be standard ones.

When A is a table algebra, it has a natural involution ∗ that is skew-linear

relative to its defining basis B. This means the conjugate involution ∗̄ given by

(αbi)
∗̄ = ¯̄αbi∗ = αbi∗ for all α ∈ C and bi ∈ B will be linear relative to the basis B



16 A. HERMAN and G. SINGH

of A. In the case of group algebras ∗̄ corresponds to the linear map that restricts

to inversion on the group basis, which gives the antipode for the Hopf algebra

structure on the group algebra. So ∗̄ is one candidate for our antipode. However,

the next example shows it will not always be the correct one.

Remark 2.1. For group algebras CG of finite groups G, it is in fact the case that

any representation of degree one can be the counit of a Hopf algebra structure

on CG. When χ ∈ Irr(G) is a nontrivial representation χ : G → C×, then it is

straightforward to show that the set Gχ = {gχ := χ(g)−1g : g ∈ G} is a group,

isomorphic to G, that will be another group basis of CG. As a representation

of the algebra CG, χ restricts to the trivial character of Gχ. For the antipode

of CGχ we need to consider a different involution ∗̄′ of CG, which is given by

(αgχ)∗̄
′

= (ᾱgχ)∗̄ = αg−1
χ , for all α ∈ C and gχ ∈ Gχ. So we can define a new Hopf

algebra comultiplication on CG by setting ∆χ(gχ) = gχ⊗gχ, and this Hopf algebra

structure on CG has counit χ and antipode ∗̄′.

It remains to find good candidates for the comultiplication map ∆ that will

make (A,µ, η,∆, δ) into a Hopf algebra with respect to some suitable antipode.

There is, however, no obvious candidate for ∆. One table algebra comultiplication

given by ∆(bi) = 1
δ(bi)

(bi ⊗ bi), for all bi ∈ B was considered earlier by Hanaki

in [2] in the case where the table algebra arises from an association scheme. He

observed it does not produce a Hopf algebra. While this ∆ is coassociative, it is not

an algebra homomorphism, so it will not produce a bialgebra structure. Hanaki’s

motivation for considering bialgebra structures that extend the algebra structure

of a table algebra is that the tensor product of two representations of A becomes

a representation of A on pre-composing with algebra homomorphism ∆. So even if

we cannot find a Hopf algebra structure extending the table algebra structure, it

would still be useful to find a bialgebra structure.

3. Cases of non-existence

Let A be a table algebra with standard basis B and degree map δ. A simple

strategy to find a comultiplication ∆ that makes (A,µ, η,∆, δ) into a bialgebra is

to produce an algebra isomorphism of A with a known bialgebra H, and borrow

the necessary coalgebra structure from H. If, in addition, this H is a Hopf algebra,

then its antipode will also induce one on A. Since our table algebras are semisimple

algebras, we can focus on finite-dimensional Hopf algebras that are semisimple as

algebras. These are known to be isomorphic as Hopf algebras to group algebras or

their duals in the following cases:
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(i) H is commutative (as this implies it is cocommutative and cosemisimple) [6]

(see also the general prime and prime-square dimension cases treated in [7] and [4]);

(ii) H has dimension divisible by two distinct primes [5].

In the next section we will show that when table algebras are algebra isomorphic

to group algebras, our table algebra will have a Hopf algebra structure whose counit

is our degree map δ.

On the other hand, we know from results of Masuoka in [4] and [5] that the

smallest dimension for which there are noncommutative semisimple Hopf algebras

not isomorphic to group algebras is 8 (see [6, pg. 528-529]). Since noncommutative

table algebras of dimension 5 and 7 have been shown to exist in [3], we can conclude

these table algebras cannot possess a Hopf algebra structure at all.

Theorem 3.1. Noncommutative table algebras exist for which there is no possible

Hopf algebra comultiplication.

Remark 3.2. Noncommutative table algebras of dimension 5 are not realized as

the adjacency algebras of association schemes, but there are noncommutative ta-

ble algebras of dimension 7 that are realized as adjacency algebras of association

schemes, the smallest of which occurs for an association scheme of order 12.

Remark 3.3. The results of [3] are given in the slightly more general setting of

reality-based algebras with a positive degree map. These are semisimple algebras

with a distinguished basis satisfying most of the table algebra axioms (TA1)-(TA3)

except the real strucuture constants λijk are allowed to be negative when k 6= 0

or j 6= i∗, and the positive degree map is an extra assumption. All of the results

of this article apply immediately in this more general setting. In particular our

results below for commutative table algebras generalize immediately to commuta-

tive reality based algebras with positive degree map, which are commonly known

as C-algebras.

4. Hopf algebra structures induced by group algebra isomorphism

Theorem 4.1. Let A be an r-dimensional table algebra with degree map δ. If A

is algebra isomorphic to a group algebra CG for a finite group G of order r, then

the algebra structure of A can be extended to a Hopf algebra structure on A whose

counit is δ.

Proof. Let (A,µ, η) be the algebra structure on A. Suppose Θ : A → CG is an

algebra isomorphism. Then χ := δ ◦ Θ−1 is a degree one representation, so as

in Remark 2.1 we can adjust the group basis of CG if necessary to arrange that
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coalgebra structure on CG has comultiplication given by ∆G(g) = g ⊗ g, for all

g ∈ G, counit χ, and antipode S(g) = g−1, for all g ∈ G. We can then see that A

has the Hopf algebra structure whose bialgebra is (A,µ, η, (Θ−1 ⊗Θ−1) ◦∆ ◦Θ, δ)

and whose antipode is Θ−1 ◦ S ◦Θ. �

Remark 4.2. In the case of commutative table algebras of dimension r, the calcu-

lation of ∆ in Theorem 4.1 can done by interpolating between the character tables

of the table algebra and the group.

Let N be the character table of the abelian group G and let E = {eχ : χ ∈
Irr(G)} be the basis of primitive idempotents for CG. Then the formula g =∑
χ χ(g)eχ for all g ∈ G tells us that N is the change of basis matrix from the basis

E to the basis G.

On the other hand, if P is the character table (first eigenmatrix) of the commu-

tative table algebra A with respect to the basis B, then the primitive idempotent

formula

eχ =
mχ

n

∑
i

χ(b∗i )

δ(bi)
bi

indicates that the change of basis matrix from E to the standard basis B is the

matrix M obtained by dividing each column of P by the degree of the corresponding

element bi and multiplying each row of P by the multiplicity of the corresponding

character χ ∈ Irr(A). The composition of these change of basis matrices realizes

a ∗-algebra isomorphism between A and CG because the elements of E are ∗-
invariant; i.e. e∗χ = eχ for all eχ ∈ E [1, Proposition 2.9]. Furthermore, the degree

map and augmentation map both correspond to the first rows of P and N , so they

are identified and so the counit is preserved. Using the change of basis matrix

MN−1 allows us to write elements of B in terms of the basis G, then calculate

the value of the comultiplication using ∆G, and the inverse change of basis NM−1

allows us to write the elements of G in terms of the basis B. So this gives an explicit

formula for a Hopf algebra comultiplication that comes directly from the entries of

MN−1 and NM−1. This technique will be used in the next section to generate

explicit Hopf algebra comultiplication formulas for table algebras of small rank.

5. Values of Hopf algebra comultiplications on primitive idempotents

Experts familiar with the theory of finite-dimensional Hopf algebras are aware

that finite-dimensional commutative semisimple Hopf algebras are cocommutative

and cosemisimple, and thus isomorphic to group algebras or their duals. These

results are normally established using properties of integrals and the convolution

algebra. In this section we give a self-contained proof of this that has the side-benefit
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of producing a useful formula for the values of the Hopf algebra comultiplication

on the basis of primitive idempotents. The proof given here is due to the referee of

an earlier version of this article, it has the benefit of showing S2 = 1.

Theorem 5.1. Let A be a commutative semisimple algebra over C, and let E be

its basis of primitive idempotents {eχ : χ ∈ Irr(A)}. Suppose the algebra structure

on A extends to a Hopf algebra structure (A,µ, η,∆, δ) with antipode S. Then there

is an abelian group structure on Irr(A) such that for all eχ in E,

∆(eχ) =
∑
ψ?θ=χ

eψ ⊗ eθ.

Proof. Since the antipode S is an anti-automorphism of A, S acts as a permutation

on the set E. Let S(eχ) = eS(χ) for all χ ∈ Irr(A). Also, ∆ : A → A ⊗ A

is an algebra homomorphism, so ∆(eχ) is an idempotent of A ⊗ A. Since A is

a finite-dimensional commutative semisimple algebra over an algebraically closed

field, there is a subset Cχ of Irr(A)× Irr(A) (possibly empty) such that

∆(eχ) =
∑

(θ,φ)∈Cχ

(eθ ⊗ eφ).

Now,

1⊗ 1 = ∆(1) =
∑

χ∈Irr(A)

∆(eχ) =
∑

χ∈Irr(A)

∑
(θ,φ)∈Cχ

(eθ ⊗ eφ)

so every (θ, φ) ∈ Irr(A)× Irr(A) is an element of Cχ for some χ ∈ Irr(A). Since

1⊗ 1 =
∑
θ∈Irr(A)

∑
φ∈Irr(A)(eθ⊗ eφ), it follows that for every θ, φ ∈ Irr(A), there

is a unique χ ∈ Irr(A) such that (θ, φ) ∈ Cχ. Therefore, setting θ ? φ = χ iff

(θ, φ) ∈ Cχ, for all θ, φ ∈ Irr(A) gives a well-defined binary operation on Irr(A).

We have that the counit δ ∈ Irr(A) satisfies the condition that (1 ⊗ δ) ◦ ∆ is

equal to the natural isomorphism (1⊗ 1)−1 : A→ A⊗ C. So whenever χ ? δ = ψ,

we have

eψ ⊗ 1 = (1⊗ δ)∆(eψ) =
∑

(θ,φ)∈Cψ

(eθ ⊗ δ(eφ)) =
∑

θ:(θ,δ)∈Cψ

(eθ ⊗ 1).

This implies that (θ, δ) ∈ Cψ iff θ = ψ. Since (χ, δ) ∈ Cψ we also have χ = ψ.

Therefore, for each χ ∈ Irr(A) we have χ? δ = χ. Similarly we can show δ ?χ = χ,

and so δ is a ?-identity in Irr(A).

Finally,

δχδ1A = η(χ(eδ)) = µ(S ⊗ 1)∆(eδ) =
∑

(θ,φ)∈Cδ

eS(θ)eφ =
∑

(θ,S(θ))∈Cδ

eS(θ),
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so Cδ = {(θ, S(θ)) : θ ∈ Irr(A)}. Therefore, for all θ ∈ Irr(A), we have θ?S(θ) = δ.

So for all θ ∈ Irr(A), S(θ) is a right inverse for θ, and we can similarly show it will

be a left inverse. It follows then that S2 is the identity permutation on Irr(A), and

hence S2 acts as the identity operation on A.

Finally, from coassociativity we have (1⊗∆) ◦∆ = (∆⊗ 1)⊗∆, applied to eχ

for χ ∈ Irr(A) this gives∑
θ?φ=χ

∑
α?β=θ

(eα ⊗ eβ ⊗ eφ) =
∑

α?ψ=χ

∑
β?φ=ψ

(eα ⊗ eβ ⊗ eφ).

Now, eα ⊗ eβ ⊗ eφ appears on the left when (α ? β) ? φ = χ, and it appears on the

right when α? (β ?φ) = χ. Since this holds for every χ ∈ Irr(A), ? is an associative

operation on Irr(A). Therefore, ? is a group operation.

We now have that the coalgebra structure of (A,∆, δ) is the dual of the group

algebra C[Irr(A)] for the group (Irr(A), ?). Since this has the same dimension as

A, the group (Irr(A), ?) must be abelian. This proves the theorem. �

Remark 5.2. The coalgebra structure on A = CE is determined up to coalgebra

isomorphism by the isomorphism type of the group (Irr(A), ?). If two of these

comultiplications defined on the same basis set E produce isomorphic coalgebra

structures, then there would be a permutation P of E for which

∆(P(eχ)) = (P ⊗ P)
∑
ψφ=χ

(eψ ⊗ eφ)

for all χ ∈ Ĝ. But P induces a permutation σ on Ĝ satisfying

∆(eσ(χ)) =
∑
ψφ=χ

(eσ(ψ) ⊗ eσ(φ))

for all χ ∈ Ĝ, so the two corresponding group multiplication tables would have to

be permutation isomorphic. But this implies the two groups would be isomorphic.

So the group algebras of two nonisomorphic abelian groups of order r are never

isomorphic as Hopf algebras.

6. Table algebras of dimensions 2 and 3

In this section we apply the character table approach indicated in Remark 4.2

to produce explicit formulas for Hopf algebra comultiplications for table algebras

of ranks 2 and 3. Since these are prime dimension, these Hopf algebra structures

will be unique up to isomorphism.

Example 6.1. Let B = {1 = b0, b1} be the standard basis for a table algebra A of

dimension 2. Since the involution must fix the multiplicative identity, it also sends
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b1 to b1. Let δ : A→ C be the degree map of our table algebra. If k is the positive

real number for which δ(b1) = k, then the assumption B is a standard basis implies

δ(b1) = λ110 = k. Since δ is a C-linear map for which δ(b21) = δ(b1)2, we must have

µ(b1 ⊗ b1) = b21 = kb0 + (k − 1)b1.

As b0 is the multiplicative identity, this completely determines the multiplication

map µ and the unit map η of A. Our antipode ∗̄ is the identity map on A in this

case, because ∗ fixes b0 and hence also b1.

To use our approach, we will generate ∗-algebra isomorphisms between A and

CC2 using their character tables. The character table of CC2 relative to the group

basis C2 is N =

[
1 1

1 −1

]
, and N is precisely the change of basis matrix from the

basis of primitive idempotents E to the group basis C2.

On the other hand, the character table of the 2-dimensional table algebra deter-

mined by the parameter k relative to its standard basis B is

b0 b1 mχ

δ 1 k 1

φ 1 −1 k

The last column gives the multiplicity of the irreducible character. To obtain the

change of basis matrix that converts from coefficients in the basis of primitive idem-

potents E of CB to the table algebra basis B, we divide the columns corresponding

to the elements bi ∈ B by the degree δ(bi), and the row corresponding to each

χ ∈ Irr(A) by the multiplicity mχ. So the change of basis matrix form E to B is

M =

[
1 1

k −1

]
, and its inverse is M−1 =

1

k + 1

[
1 1

k −1

]
.

The change of basis matrix from the basis C2 to B is thus MN−1, and from B to

C2 is NM−1.

Therefore, the element g = eδ − eχ = 1−k
k+1b0 + 2

k+1b1 is an element with g2 = b0

for which {b0, g} ' C2 is a group basis for A. Note that δ(g) = 1 and g∗ = g, so

the induced Hopf algebra structure on A has counit δ and antipode ∗̄.
Let ∆ be the Hopf algebra comultiplication on the group algebra C〈g〉 with

∆(b0) = b0 and ∆(g) = g ⊗ g. We wish to compute a formula for ∆(bi) in terms

of the basis of elementary tensors bij := bi ⊗ bj for bi, bj ∈ B. Since our change of
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basis matrices also tell us b1 = k−1
2 b0 + k+1

2 g, we can compute

∆(b1) = k−1
2 ∆(b0) + k+1

2 ∆(g)

= k−1
2 (b0 ⊗ b0) + k+1

2 (g ⊗ g)

= k−1
2 (b0 ⊗ b0) + k+1

2 [( 1−k
k+1b0 + 2

k+1b1)⊗ ( 1−k
k+1b0 + 2

k+1b1)]

= [k−1
2 + (1−k)2

2(k+1) ]b00 + (k+1)(2)(1−k)
2(k+1)2 [b01 + b10] + (2)(2)(k+1)

2(k+1)2 b11

=⇒ ∆(b1) =
k(k − 1)

k + 1
b00 +

1− k
k + 1

[b01 + b10] +
2

k + 1
b11.

Example 6.2. The Hopf algebra structure of a triangle. When k is a positive

integer larger than 1, the adjacency algebra of a complete graph on k+1 vertices is

the table algebra of dimension 2 in Example 6.1 determined by the parameter k. If

we let b0 be the (k+ 1)× (k+ 1) identity matrix and b1 be the adjacency matrix of

the complete graph on k + 1 vertices, then the formula in Example 6.1 defines the

Hopf algebra structure of a complete graph on k + 1 vertices. Its comultiplication

takes values in the space (k + 1)2 × (k + 1)2-matrices spanned by the bij ’s, where

bij = bi ⊗ bj . For example, when b1 is the adjacency matrix of a triangle (the case

k = 2), then the Hopf algebra structure is determined by the 9× 9 matrix

∆(b1) =
1

3
(2b00 − b01 − b10 + 2b11).

Example 6.3. Nonreal table algebras of dimension 3. Suppose A is a 3-dimensional

nonreal table algebra with standard basis B = {b0, b1, b2}, with b∗1 = b2. The

table algebra conditions imply that there is a unique u ≥ 0 such that b1b2 =

(2u+ 1)b0 + ub1 + ub2, and b21 = ub1 + (u+ 1)b2. So δ(b1) = δ(b2) = 2u+ 1.

For G = C3 the character table is

N =


1 1 1

1 ζ ζ2

1 ζ2 ζ

 ,
for a primitive cube root of unity ζ. We again view N as the change of basis matrix

from the basis of primitive idempotents E to the basis G. It is important for our

approach that the first row of N corresponds to the trivial character, the ordering

of the second and third columns is reversed it results in a permutation of some of

our structure constants for the Hopf algebra comultiplication.

The character table of the 3-dimensional nonreal table algebra determined by

the parameter u can be calculated from the eigenvalues of the regular matrices of
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{b0, b1, b2}:

b0 b1 b∗1 mχ

δ 1 2u+ 1 2u+ 1 1

φ 1 1
2 (−1 +

√
−3− 4u) 1

2 (−1−
√
−3− 4u) 2u+ 1

φ̄ 1 1
2 (−1−

√
−3− 4u) 1

2 (−1 +
√
−3− 4u) 2u+ 1

To obtain the change of basis matrix M that changes the basis from E to B, we

multiply each row by the multiplicity of the corresponding irreducible character

and divide each column by the degree of the corresponding element. So

M =


1 1 1

2u+ 1 1
2 (−1 +

√
−3− 4u) 1

2 (−1−
√
−3− 4u)

2u+ 1 1
2 (−1−

√
−3− 4u) 1

2 (−1 +
√
−3− 4u)

 .
Again it is important here that the first row of M corresponds to the degree map.

Now we use the change of basis matrices MN−1 and NM−1 to express b1 = αe+

βg+γg−1 and g = rb0 +sb1 + tb2, where α, β, γ are the entries in the second row of

MN−1 and r, s, t are the entries in the second row of NM−1. From these we can

obtain a formula for ∆(b1):

∆(b1) = α(e⊗ e) + β(g ⊗ g) + γ(g−1 ⊗ g−1)

= αb00 + β[(rb0 + sb1 + tb2)⊗ (rb0 + sb1 + tb2)]

+ γ[(r̄b0 + t̄b1 + s̄b2)⊗ (r̄b0 + t̄b1 + s̄b2)]

= (α+ βr2 + γr̄2)b00 + (βrs+ γr̄t̄)b01 + (βrt+ γr̄s̄)b02

+ (βsr + γt̄r̄)b10 + (βs2 + γt̄2)b11 + (βst+ γt̄s̄)b12

+ (βtr + γs̄r̄)b20 + (βts+ γs̄t̄)b21 + (βt2 + γs̄2)b22.

Our formula for ∆(b1) comes from the calculations of

MN−1 =


1 0 0
2u
3

(3+4u)−
√

9+12u
6

(3+4u)+
√

9+12u
6

2u
3

(3+4u)+
√

9+12u
6

(3+4u)−
√

9+12u
6


and

NM−1 =


1 0 0
−2u
3+4u

√
3(
√

9+12u−(3+4u))

2(3+4u)
√

3+4u

√
3(
√

9+12u+(3+4u))

2(3+4u)
√

3+4u

−2u
3+4u

√
3(
√

9+12u+(3+4u))

2(3+4u)
√

3+4u

√
3(
√

9+12u−(3+4u))

2(3+4u)
√

3+4u

 .
The second rows of these matrices determine α, β, γ and r, s, t. Now we leave it to

the reader to verify the formulas ∆(b0) = b00,

∆(b1) =
1

4u + 3
((4u2+2u)b00−2ub01+0b02−2ub10+(u+3)b11−ub12+0b20−ub21+ub22),
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and

∆(b2) =
1

4u + 3
((4u2+2u)b00+0b01−2ub02+0b10+ub11−ub12−2ub20−ub21+(u+3)b22).

Example 6.4. Real Table Algebras of Dimension 3. Let A be a real table algebra

whose standard basis B = {b0, b1, b2} satisfies b∗i = bi for i = 0, 1, 2. Let δ(b1) = k

and δ(b2) = ` be the degrees of the nonidentity basis elements, and let u, v be

the structure constants determined by b1b2 = ub1 + vb2. Since the degree map is

an algebra homomorphism these parameters satisfy the necessary condition k` =

ku+ `v. The remaining structure constants are determined by the identities

b21 = kb0 + (k − u− 1)b1 + (k − v)b2, and b22 = `b0 + (`− u)b1 + (`− v − 1)b2.

From the regular matrices of b1 and b2 we can determine the character table of A

relative to B in terms of the parameters k, `, u, and v.

1 b1 b2 mχ

δ 1 k ` 1

φ 1 1
2 ((v − u− 1) +

√
α) 1

2 ((u− v − 1)−
√
α) mφ

ψ 1 1
2 ((v − u− 1)−

√
α) 1

2 ((u− v − 1) +
√
α) mψ

where α = (v − u − 1)2 + 4v. The multiplicities can be calculated from the or-

thogonality relations, which lead to the equation 1+k+`
mφ

= 1 + φ(b1)2

k + φ(b2)2

` and a

similar one for mψ. These reduce to

mφ =
k`+ k2`+ k`2

k`+ `φ2
1 + kφ2

2

and mψ =
k`+ k2`+ k`2

k`+ `ψ2
1 + kψ2

2

,

where φ1 = φ(b1), φ2 = φ(b2), ψ1 = ψ(b1), and ψ2 = ψ(b2) are the corresponding

character table entries.

Therefore, the change of basis matrix from the basis of primitive idempotents E

to B is

M :=


1 1 1

mφ
mφ
k φ1

mφ
` φ2

mψ
mψ
k ψ1

mψ
` ψ2

 .
We know A ' CC3 as ∗-algebras. Let N be the character table of C3 given in

the previous example. The change of basis matrix from the basis C3 to our table
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algebra basis B will be

MN−1 =


1 0 0

mφ
3 (1 + φ1

k + φ2

` )
mφ
3 (1 + φ1

k ζ
2 + φ2

` ζ)
mφ
3 (1 + φ1

k ζ + φ2

` ζ
2)

mψ
3 (1 + ψ1

k + ψ2

` )
mψ
3 (1 + ψ1

k ζ
2 + ψ2

` ζ)
mψ
3 (1 + ψ1

k ζ + ψ2

` ζ
2)



:=


1 0 0

α1 β1 β̄1

α2 β2 β̄2

 ,
and its inverse (obtained using Wolfram Math Alpha c©) is the change of basis matrix

from B to C3:

NM−1 =


1 0 0

r s t

r̄ s̄ t̄

 ,
where

r =
φ1ψ2 − φ2ψ1 + k(φ2 − ψ2)ζ + `(ψ1 − φ1)ζ2

φ1(ψ2 − `) + φ2(k − ψ1) + ψ1`− ψ2k

s =
ψ1`− ψ2k + k(ψ2 − `)ζ + `(k − ψ1)ζ2

mφ(φ1(ψ2 − `) + φ2(k − ψ1) + ψ1`− ψ2k)
, and

t =
φ1k − φ2`+ k(`− φ2)ζ + `(φ1 − k)ζ2

mψ(φ1(ψ2 − `) + φ2(k − ψ1) + ψ1`− ψ2k)
.

As before we can use MN−1 and its inverse to derive a formula for the Hopf

algebra comultiplication that is induced by the Hopf algebra comultiplication on

the group algebra. We have that b1 = α1b0 +β1g+ β̄1g
−1, b2 = α2b0 +β2g+ β̄2g

−1,

g = rb0 + sb1 + tb2, and g−1 = r̄b0 + s̄b1 + t̄b2. Note that α1 and α2 are real follows

from b1 and b2 being ∗-invariant. Again the ordering of the last two idempotents in

the basis E is not fixed, but switching the order only interchanges the second and

third rows of these change of basis matrices. We will have

∆(b1) = α1∆(b0) + β1∆(g) + β̄1∆(g−1)

= α1b00 + β1(g ⊗ g) + β̄1(g−1 ⊗ g−1)

= α1b00 + β1[(rb0 + sb1 + tb2)⊗ (rb0 + sb1 + tb2)]

+β̄1[(r̄b0 + s̄b1 + t̄b2)⊗ (r̄b0 + s̄b1 + t̄b2)]

= (α1 + β1r
2 + β̄1r̄

2)b00 + (β1rs+ β̄1r̄s̄)b01 + (β1rt+ β̄1r̄t̄)b02

+ (β1sr + β̄1s̄r̄)b10 + (β1s
2 + β̄1s̄

2)b11 + (β1st+ β̄1s̄t̄)b12

+ (β1tr + β̄1t̄r̄)b20 + (β1ts+ β̄1t̄s̄)b21 + (β1t
2 + β̄1t̄

2)b22,
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and the formula for ∆(b2) has the same pattern with α2 and β2 replacing α1 and β1.

Note that the coefficients of the bij occurring in ∆(b1) and ∆(b2) are guaranteed

to be real numbers.

The explicit formulas in the 3-dimensional table algebra case are too long to

express concisely here, but become easier in specific cases. We will demonstrate this

with some actual calculations for table algebras corresponding to familiar strongly-

regular graphs.

Example 6.5. The Hopf algebra structure of a rectangle. A rectangle is a strongly-

regular graph on 4 vertices, which means that it generates an association scheme

whose adjacency matrices form a table algebra basis. If b2 is the 4 × 4 adjacency

matrix of the rectangle, then the parameters of Example 6.4 for this table algebra

are k = 1, ` = 2, u = 0, and v = 1. Therefore, the character table of CB is

1 b1 b2 mχ

δ 1 1 2 1

φ 1 1 −2 1

ψ 1 −1 0 2

and the change of basis matrix from the group basis C3 to the table algebra basis

{b0, b1, b2} is

MN−1 =


1 1 1

1 1 −1

2 −2 0

 · 1

3


1 1 1

1 ζ2 ζ

1 ζ ζ2

 =


1 0 0
1
3

−2
3 ζ

−2
3 ζ

2

0 − 2
3ζ −

4
3ζ

2 − 4
3ζ −

2
3ζ

2

 .
Using this matrix and its inverse, we have b1 = 1

3e −
2
3ζg −

2
3ζ

2, b2 = (− 2
3ζ −

4
3ζ

2)g + (− 4
3ζ −

2
3ζ

2)g2 and g = 1
4ζ

2b0 − 3
4ζ

2b1 − 1
4 (2ζ + ζ2)b2, and g2 = 1

4ζb0 −
3
4ζb1 −

1
4 (ζ + 2ζ2)b2. From these we can obtain formulas for ∆(b1) and ∆(b2) as

before:

∆(b1) =
1

8
(3b00 − b01 − b02 − b10 + 3b11 + 3b12 − b20 + 3b21 − b22)

and

∆(b2) =
1

8
(−b00 + 3b01 − b02 + 3b10 − 9b11 + 3b12 − b20 + 3b21 + 3b22).

Example 6.6. The Hopf algebra structure of a pentagon. A pentagon is a strongly

regular graph on 5 vertices whose adjacency matrix generates the real table algebra
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of dimension 3 with parameters k = ` = 2 and u = v = 1. Its character table is

1 b1 b2 mχ

δ 1 2 2 1

φ 1 −1+
√

5
2

−1−
√

5
2 2

ψ 1 −1−
√

5
2

−1+
√

5
2 2

Therefore, the change of basis matrices between the bases C3 and B are

MN−1 =


1 0 0
1
3

5+
√
−15

6
5−
√
−15

6
1
3

5−
√
−15

6
5+
√
−15

6

 and NM−1 =


1 0 0
−1
5

3−
√
−15

10
3+
√
−15

10
−1
5

3+
√
−15

10
3−
√
−15

10

 .
So the unique Hopf algebra structure on the adjacency algebra of a pentagon has

its comultiplication given by

∆(b1) =
1

5
(2b00 − b01 + 0b02 − b10 + b11 + 2b12 + 0b20 + 2b21 − 2b22)

and

∆(b2) =
1

5
(2b00 + 0b01 − b02 + 0b10 − 2b11 + 2b12 − b20 + 2b21 + b22).

Example 6.7. The Petersen graph is a strongly regular graph whose adjacency

matrix generate the real table algebra of dimension 3 with parameters k = 3, ` = 6,

u = 2, and v = 2. Substituting these into our formulas, the character table of this

table algebra is

1 b1 b2 mχ

δ 1 3 6 1

φ 1 −2 1 4

ψ 1 1 −2 5

so our change of basis matrix is

M =


1 1 1

4 − 8
3

2
3

5 5
3 − 5

3

 .
From this matrix and the character table N of the group of order 3 we can produce

our formula for the Hopf algebra comultiplication on the adjacency algebra of the

Petersen graph:

∆(b1) =
1

10
(5b00 − 5b01 + 3b02 − 5b10 + 0b11 + 3b12 + 3b20 + 3b21 − 3b22)

and

∆(b2) =
1

10
(22b00 − 3b01 − 2b02 − 3b10 − 3b11 + 3b12 − 2b20 + 3b21 + 0b22).
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