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Abstract. In this article we introduce and study the concepts of α-almost

quasi Artinian and α-quasi Krull modules. Using these concepts we extend

some of the basic results of α-almost Artinian and α-Krull modules to α-

almost quasi Artinian and α-quasi Krull modules. We observe that if M is an

α-quasi Krull module then the quasi Krull dimension of M is either α or α+1.
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1. Introduction

The concept of Noetherian dimension of a module M , (the dual of Krull di-

mension of M , in the sense of Rentschler and Gabriel, see [17,26]) introduced in

Lemonnier [27], and Karamzadeh [20], is almost as old as Krull dimension of M ,

and their existence are equivalent. Later, Chambless [4] studied dual Krull dimen-

sion and called it N -dimension. Roberts [28] calls this dual dimension again Krull

dimension. The latter dimension is also called dual Krull dimension in some other

articles, see for example, [1,2]. The former dimension has received some attention;

see [1,2,16,21,23,24]. In this article, all rings are associative with 1 6= 0, and all

modules are unital right modules. If M is an R-module, then n-dimM and k-dimM

will denote the Noetherian dimension and the Krull dimension of M , respectively.

Davoudian, Karamzadeh and Shirali in [14] introduce and study the concepts of

α-short modules and α-almost Noetherian modules. We recall that an R-module M

is called an α-short module, if for each submodule N of M , either n-dimN ≤ α or

n-dim M
N ≤ α and α is the least ordinal number with this property. We also recall

that an R-module M is called α-almost Noetherian, if for each proper submodule

N of M , n-dimN < α and α is the least ordinal number with this property, see

[14]. Later Davoudian, Halali and Shirali undertook a systematic study of the

concepts of α-almost Artinian and α-Krull modules, which are the dual of the

concepts of α-almost Noetherian and α-short modules, respectivly, see [12]. We
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introduce and extensively investigate quasi-Krull dimension and quasi-Noetherian

dimension of an R-module M , see [5]. The quasi-Noetherian dimension (resp.,

quasi-Krull dimension), which is denoted by qn-dimM (resp., qk-dimM) is defined

to be the codeviation (resp., deviation) of the poset of all non-finitely generated

submodules of M . We recall that an R-module M is called α-quasi critical, where

α is an ordinal, if qk-dimM = α and qk-dim M
N < α for any non-finitely generated

submodule N of M . M is said to be quasi-critical if it is α-quasi critical for some

α. We also extensively investigate the concepts of α-almost quasi Noetherian and

α-quasi short modules, see [6]. Recall that an R-module M is called α-almost quasi

Noetherian if for each non-finitely generated submodule N of M , qn-dimN < α

and α is the least ordinal with this property. We also recall that an R-module

M is called α-quasi short if for each non-finitely generated submodule N of M ,

either qn-dimN < α or qn-dim M
N < α and α is the least ordinal number with this

property. It is convenient, when we are dealing with the latter dimensions, to begin

our list of ordinales with −1. In this article we introduce and study the concepts of

α-almost quasi Artinian and α-quasi Krull modules. These concepts are the dual of

the concepts of α-almost quasi Noetherian and α-quasi short modules, respectively;

and at the same time are the extension of the concepts of α-almost Artinian and

α-Krull modules, respectively. Let us give a brief outline of this paper. Section 1

is the introduction. In Section 2, we introduce and study the concept of α-almost

quasi Artinian and α-quasi Krull modules. Hein [19] introduced almost Artinian

modules and studied some of the properties of these modules. Later Davoudian,

Halali and Shirali undertook a systematic study of the concept of α-almost Artinian

modules. We recall that an R-module M is called α-almost Artinian, if for each

non-zero submodule N of M , k-dim M
N < α and α is the least ordinal number with

this property, see [14]. We shall call an R-module M to be α-almost quasi Artinian

if for each non-finitely generated submodule N of M , qk-dim M
N < α and α is the

least ordinal number with this property. Using this concept we extend some of the

basic results of α-almost Artinian modules to α-almost quasi Artinian modules.

In particular, we observe that each α-almost quasi Artinian module M has quasi

Krull dimension and qk-dimM ≤ α. We also introduce and study the concept of

α-quasi Krull modules, which is the dual of α-quasi short modules, see [6]. We

recall that an R-module M is called an α-Krull module, if for each submodule N of

M , either k-dimN ≤ α or k-dim M
N ≤ α and α is the least ordinal number with this

property. We shall call an R-module M to be α-quasi Krull if for each non-finitely

generated submodule N of M , either qk-dimN ≤ α or qk-dim M
N ≤ α and α is

the least ordinal number with this property. In the last section we also investigate
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some properties of α-almost quasi Artinian and α-quasi Krull modules. Finally, we

should emphasize here that the results in Section 2 and Section 3 are new and are

the dual of the corresponding results in [6] and at the same time are the extensions

of the results in [12]. For all concepts and basic properties of rings and modules

which are not defined in this paper, we refer the reader to [3,5,7,8,9,10,11,13,17].

2. α-Almost quasi Artinian and α-quasi Krull modules

In this section we introduce and study α-almost quasi Artinian and α-quasi

Krull modules. We extend some of the basic results of α-almost Artinian modules

to α-almost quasi Artinian modules.

Let us recall that the deviation of an arbitrary partially ordered set E = (E,≤),

(shortly poset), denoted by dev(E) is defined as follows: dev(E) = −1 if and

only if E is a trivial poset, i.e., E has no two distinct comparable elements. If

E is nontrivial but satisfies the descending chain condition on its elements, then

dev(E) = 0. For a general ordinal α, we define dev(E) = α, provided:

(i) dev(E) 6= β < α;

(ii) for any descending chain x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of elements of E there is

some n0 ∈ N such that for all n ≥ n0 the deviation of the poset

xn
xn+1

:= {x ∈ E|xn+1 ≤ x ≤ xn}

already defined and satisfies

dev(
xn
xn+1

) < α.

If no ordinal α exists such that dev(E) = α, we say E does not have deviation.

For any R-module M we shall denote by NF(M) the poset of all non-finitely gen-

erated submodules of M . The quasi-Krull dimension of the right R-module M ,

denoted by qk-dimM , is defined to be the deviation of the poset (NF(M),⊆), see

[5, Definition 1].

We continue with our definition of α-almost quasi Artinian modules.

Definition 2.1. An R-module M is called α-almost quasi Artinian, if for each

non-finitely generated submodule N of M , qk-dim M
N < α and α is the least ordinal

number with this property.

We should remind the reader that the above concept is in fact the dual of α-

almost quasi Noetherian modules, see [6, Definition 2.1].

Remark 2.2. If M is an α-almost quasi Artinian module, then each submodule

and each factor module of M is β-almost quasi Artinian for some β ≤ α.
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We recall that an R-module M is called α-quasi critical, if qk-dimM = α and for

each non-finitely generated submodule N of M we have qk-dim M
N < α. M is called

quasi-critical if it is α-quasi critical for some ordinal number α, see [5, Definition

2]. The next three trivial, but useful facts, which are the dual of the corresponding

facts in [6, Lemmas 2.2, 2.3, 2.4] are needed.

Lemma 2.3. If M is an α-almost quasi Artinian module, then M has quasi Krull

dimension and qk-dimM ≤ α. In particular, qk-dimM = α if and only if M is

α-quasi critical.

Proof. For each proper non-finitely generated submodule N of M , we have

qk-dim M
N < α. In view of [5, Lemma 4], we get qk-dimM ≤ α. The final part

is now evident. �

Lemma 2.4. If M is a module with qk-dimM = α, then either M is α-quasi

critical, in which case it is α-almost quasi Artinian, or it is α + 1-almost quasi

Artinian.

Proof. Let M be an α-quasi critical module, then for each non-finitely generated

submodule N of M , we have qk-dim M
N < α. Hence M is β-almost quasi Artinian,

for some ordinal number β ≤ α. If β < α, then by Lemma 2.3 we have qk-dimM ≤ β
which is a contradiction. If M is not quasi critical, then there exists a non-finitely

generated submodule N of M such that qk-dim M
N = α. This implies that M is

γ-almost quasi Artinian for some γ ≥ α + 1. But for each non-finitely generated

submodule N of M , we have qk-dim M
N ≤ α < α+ 1, see [5, Theorem 1]. Therefore

M is α+ 1-almost quasi Artinian. �

Lemma 2.5. If M is an α-almost quasi Artinian module, then either M is α-quasi

critical or α = qk-dimM + 1. In particular, if M is an α-almost quasi Artinian

module, where α is a limit ordinal, then M is α-quasi critical.

Proof. We infer that M has quasi Krull dimension and qk-dimM ≤ α, by Lemma

2.3. If qk-dimM = α, then in view of Lemma 2.3, M is α-quasi critical. Now let

qk-dimM < α, then by Lemma 2.4, we get α = qk-dimM + 1 and we are done.

The final part is now evident. �

The following results are now immediate.

Corollary 2.6. Let M be a β + 1-almost quasi Artinian module, then either

qk-dimM = β or qk-dimM = β + 1.



ON α-ALMOST QUASI ARTINIAN MODULES 33

Proposition 2.7. An R-module M has quasi Krull dimension if and only if M is

α-almost quasi Artinian for some ordinal α.

We recall that an R-module M has finite uniform dimension if it does not contain

a direct sum of an infinite number of non-zero submodules. Now in view of [5,

Proposition 2], we have the following result.

Corollary 2.8. Every α-almost quasi Artinian module has finite uniform dimen-

sion.

We continue with the following definition, which is in fact the dual of α-quasi

short modules, see [6, Definition 2.7], and in the subsequent results we try to present

counterparts of the appropriate results in [6].

Definition 2.9. An R-module M is called α-quasi Krull, if for each non-finitely

generated submodule N of M , either qk-dimN ≤ α or qk-dim M
N ≤ α, and α is the

least ordinal number with this property.

Now, we cite the following example.

Example 2.10. If M1 = M2 = Zp∞ , then M1 and M2 are -1-quasi Krull (resp.

0-almost quasi Artinian) Z-modules such that M1 ⊕M2 is 0-quasi Krull (resp. 1-

almost quasi Artinian). Now let M1 = M2 = Z. In this case the Z-module Z is

−1-quasi Krull (resp. −1-almost quasi Artinian), the Z-module Z ⊕ Z is also −1-

quasi Krull (resp. −1-almost quasi Artinian). We should also note that Zp∞ ⊕Z is

a 0-quasi Krull Z-module which is 1-almost quasi Artinian.

Remark 2.11. If M is an R-module with qk-dimM = α, then M is β-quasi Krull

for some β ≤ α.

In view of [5, Lemma 2 and Theorem 1], we have the following result.

Remark 2.12. If M is an α-quasi Krull module, then each submodule and each

factor module of M is β-quasi Krull for some β ≤ α.

We need the following result.

Lemma 2.13. If M is an R-module and for each non-finitely submodule N of M,

either N or M
N has quasi Krull dimension, then so does M .

Proof. Let M1 ⊇M2 ⊇ · · · be any descending chain of non-finitely generated sub-

modules of M . If there exists some i such that Mi has quasi Krull dimension, then

each Mk

Mk+1
has quasi Krull dimension for each k ≥ i, see [5, Lemma 2]. Otherwise
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M
Mi

has quasi Krull dimension for each i. Thus in either case there exists some

integer k such that each Mi

Mi+1
has quasi Krull dimension for each i ≥ k, see [5,

Lemma 2]. Consequently M has quasi Krull dimension. �

The previous result and Remark 2.11, immediately yield the next result.

Corollary 2.14. Let M be an α-quasi Krull module. Then M has quasi Krull

dimension and qk-dimM ≥ α.

Proposition 2.15. An R-module M has quasi Krull dimension if and only if M

is α-quasi Krull for some ordinal α.

In view of [5, Proposition 2], we have the following result.

Corollary 2.16. Every α-quasi Krull module has finite uniform dimension.

Proposition 2.17. If M is an α-quasi Krull R-module, then either qk-dimM = α

or qk-dimM = α+ 1.

Proof. Clearly in view of Remark 2.11 and Corollary 2.14, we have qk-dimM ≥ α.

If qk-dimM 6= α, then qk-dimM ≥ α + 1. Now let M1 ⊇ M2 ⊇ · · · be any

descending chain of non-finitely generated submodules of M . If there exists some

k such that qk-dimMk ≤ α, then qk-dim Mi

Mi+1
≤ qk-dimMi ≤ qk-dimMk ≤ α for

each i ≥ k, [5, Lemma 2]. Otherwise qk-dim M
Mi
≤ α (note, M is α-quasi Krull) for

each i, hence qk-dim Mi

Mi+1
≤ α for each i. Thus in any case there exists an integer

k such that for each i ≥ k, qk-dim Mi

Mi+1
≤ α. This shows that qk-dimM ≤ α + 1,

i.e., qk-dimM = α+ 1. �

Remark 2.18. An R-module M is −1-quasi Krull if and only if it is Noetherian or

1-atomic (note, an R-module M is called α-atomic, if n-dimM = α and n-dimN <

α for each proper submodules N of M).

Proposition 2.19. Let M be an R-module, with qk-dimM = α, where α is a limit

ordinal. Then M is α-quasi Krull.

Proof. We know that M is β-quasi Krull for some β ≤ α. If β < α, then by

Proposition 2.17, qk-dimM ≤ β + 1 < α, which is a contradiction. Thus M is

α-quasi Krull. �

Proposition 2.20. Let M be an R-module and qk-dimM = α = β + 1. Then M

is either α-quasi Krull or it is β-quasi Krull.
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Proof. We know that M is γ-quasi Krull for some γ ≤ α. If γ < β then by

Proposition 2.17, we have qk-dimM ≤ γ + 1 < β + 1, which is impossible. Hence

we are done. �

For the quasi critical modules we have the following proposition.

Proposition 2.21. Let M be an β + 1-quasi critical R-module, where α = β + 1.

Then M is a β-quasi Krull module.

Proof. Let N be a non-finitely generated submodule of M , then qk-dim M
N < α.

Thus qk-dim M
N ≤ β. This shows that for some β′ ≤ β, M is β′-quasi Krull. If

β′ < β, then β′ + 1 ≤ β < α. But qk-dimM ≤ β′ + 1 ≤ β < α, by Proposition 2.17,

which is a contradiction. Thus β′ = β and we are done. �

The following remark, which is a trivial consequence of the previous fact, shows

that the converse of Proposition 2.19, is not true in general.

Remark 2.22. Let M be an α + 1-quasi critical R-module, where α is a limit

ordinal. Then M is an α-quasi Krull module.

In view of Proposition 2.17 and Lemma 2.4, the following remark is now evident.

Remark 2.23. If M is a β-quasi Krull R-module, then it is an α-almost quasi

Artinian module such that β ≤ α ≤ β + 2, see Proposition 2.17 and Lemma 2.4.

We note that every 1-quasi critical module is 0-quasi Krull which is also 1-almost

quasi Artinian and every α-quasi critical module, where α is a limit ordinal, is an

α-quasi Krull module which is also α-almost quasi Artinian, see Lemma 2.5 and

Proposition 2.19.

Proposition 2.24. Let M be an R-module such that qk-dimM = α+1. Then M is

either an α-quasi Krull R-module or there exists a non-finitely generated submodule

N of M such that qk-dim M
N = qk-dimN = α+ 1.

Proof. We know that M is α-quasi Krull or an α + 1-quasi Krull R-module, by

Proposition 2.20. Let us assume that M is not an α-quasi Krull R-module, hence

there exists a non-finitely generated submodule N of M such that qk-dimN ≥ α+1

and qk-dim M
N ≥ α + 1. This shows that qk-dimN = α + 1 and qk-dim M

N = α + 1

and we are through. �

Proposition 2.25. Let M be an α-quasi Krull R-module. Then either M is β-

almost quasi Artinian for some ordinal β ≤ α + 1 or there exists a non-finitely

generated submodule N of M with qk-dimN ≤ α.
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Proof. Suppose that M is not β-almost quasi Artinian for any β ≤ α + 1. This

means that there must exist a non-finitely generated submodule N of M such that

qk-dim M
N 6≤ α. Inasmuch as M is α-quasi Krull, we infer that qk-dimN ≤ α and

we are done. �

3. Properties of α-quasi Krull modules and α-almost quasi Artinian

modules

In this section some properties of α-quasi Krull and α-almost quasi Artinian

modules over an arbitrary ring R are investigated.

First, in view of Proposition 2.17, we have the following two results.

Proposition 3.1. Let R be a ring and M be an α-quasi Krull module, which is

not a quasi critical module, then M contains a non-finitely generated submodule L

such that qk-dimL ≤ α.

Proof. Since M is not quasi critical, we infer that there exists a proper non-finitely

generated submodule L ⊂ M , such that qk-dim M
L = qk-dimM . We know that

qk-dimM = α or qk-dimM = α + 1, by Proposition 2.17. If qk-dimM = α it is

clear that qk-dimL ≤ α. Hence we may suppose that qk-dim M
L = qk-dimM = α+1.

Consequently, qk-dimL ≤ α and we are done. �

Theorem 3.2. Let M be an R-module and α be an ordinal number. Let for any

non-finitely generated submodule N of M , M
N be γ-quasi Krull for some ordinal

number γ ≤ α. Then qk-dimM ≤ α+ 2. In particular M is µ-quasi Krull for some

ordinal number µ ≤ α+ 1.

Proof. Let N ⊂ M be a non-finitely generated submodule of M . Since M
N is γ-

quasi Krull for some ordinal number γ ≤ α, we infer that qk-dim M
N ≤ γ+1 ≤ α+1,

by Proposition 2.17. This immediately implies that qk-dimM ≤ α + 2, see [5,

Lemma 4]. Now the last part of theorem is immediate. �

The next result is the dual of Theorem 3.2.

Theorem 3.3. Let α be an ordinal number and M be an R-module such that every

proper non-finitely generated submodule of M is γ-quasi Krull for some ordinal

number γ ≤ α. Then qk-dimM ≤ α+ 1. In particular M is µ-quasi Krull for some

µ ≤ α+ 1.

Proof. Let N ⊂ M be any proper non-finitely generated submodule of M , such

that N is γ-quasi Krull for some ordinal number γ with γ ≤ α. We infer that

qk-dimN ≤ γ + 1 ≤ α + 1, by Proposition 2.17. But we know that qk-dimM =
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sup{qk-dimN : N ⊂ M,N ∈ NF(M)}, see [5, Lemma 3]. This shows that

qk-dimM ≤ α+ 1. Now the last part of theorem is immediate. �

The next immediate result is the counterparts of Theorems 3.2, 3.3, for α-almost

quasi Artinian modules.

Proposition 3.4. Let M be an R-module and α be an ordinal number. If each

proper non-finitely generated submodule N of M (resp. for each proper non-finitely

generated submodule N of M , M
N ) is γ- almost quasi Artinian with γ ≤ α, then M

is a µ-almost quasi Artinian module with µ ≤ α + 1, qk-dimM ≤ α (resp. with

µ ≤ α+ 1, qk-dimM ≤ α+ 1).

Clearly every α-almost quasi Artinian (resp. α-quasi Krull) module has quasi

Krull dimension (i.e., it has quasi-Noetherian dimension too, for by a nice result

due to Lemonnier, every module has quasi-Noetherian dimension if and only if it

has quasi Krull dimension, see the comment which follows [5, Lemma 12]). Conse-

quently, we have the following immediate result.

Proposition 3.5. The following statements are equivalent for a ring R.

(1) Every R-module with quasi Krull dimension is Noetherian.

(2) Every α-quasi Krull R-module is Noetherian for all α.

(3) Every α-almost quasi Artinian R-module is Noetherian for all α.

Moreover, if R is a right perfect ring (i.e., every R-module is a Loewy module)

then every α-quasi Krull (resp. α-almost quasi Artinian) R-module is both Artinian

and Noetherian, see [24, Proposition 2.1].

Before concluding this section with our last observation, let us cite the next

result which is in [24, Theorem 2.9], see also [18, Theorem 3.2].

Theorem 3.6. For a commutative ring R the following statements are equivalent.

(1) Every R-module with finite Noetherian dimension is Noetherian.

(2) Every Artinian R-module is Noetherian.

(3) Every R-module with Noetherian dimension is both Artinian and Noether-

ian.

Now in view of the above theorem, [14, Proposition 2.21], [12, Proposition 4.18],

[6, Proposition 2.24] and also [25, Corollary 2.15], we observe the following result.

Proposition 3.7. The following statements are equivalent for a commutative ring

R.

(1) Every Artinian R-module is Noetherian.
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(2) Every m-Krull module is both Artinian and Noetherian for all integers m ≥
−1.

(3) Every α-Krull module is both Artinian and Noetherian for all ordinals α.

(4) Every m-quasi Krull module is both Artinian and Noetherian for all integers

m ≥ −1.

(5) Every α-quasi Krull module is both Artinian and Noetherian for all ordinals

α.

(6) Every m-almost Artinian R-module is both Artinian and Noetherian for all

non-negative integers m.

(7) Every α-almost Artinian R-module is both Artinian and Noetherian for all

ordinals α.

(8) Every m-almost quasi Artinian R-module is both Artinian and Noetherian

for all non-negative integers m.

(9) Every α-almost quasi Artinian R-module is both Artinian and Noetherian

for all ordinals α.

(10) Every m-quasi short module is both Artinian and Noetherian for all integers

m ≥ −1.

(11) Every α-quasi short module is both Artinian and Noetherian for all ordinals

α.

(12) Every m-almost quasi Noetherian R-module is both Artinian and Noether-

ian for all non-negative integers m.

(13) Every α-almost quasi Noetherian R-module is both Artinian and Noetherian

for all ordinals α.

(14) Every m-short module is both Artinian and Noetherian for all integers m ≥
−1.

(15) Every α-short module is both Artinian and Noetherian for all ordinals α.

(16) Every m-almost Noetherian R-module is both Artinian and Noetherian for

all non-negative integers m.

(17) Every α-almost Noetherian R-module is both Artinian and Noetherian for

all ordinals α.

(18) No homomorphic image of R can be isomorphic to a dense subring of a

complete local domain of quasi Krull dimension 1.

Remark 3.8. Since our results in this article are related to the results in [14,21] and

there are two minor errors in these referencess (one in each), I strongly recommend

the reader to see [15,22] for corrections.
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