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Abstract. A ringR is called right 2-simple J-injective if, for every 2-generated

right ideal I ⊆ J(R), every R-linear map from I to R with simple image ex-

tends to R. The class of right 2-simple J-injective rings is broader than that of

right 2-simple injective rings and right simple J-injective rings. Right 2-simple

J-injective right Kasch rings are studied, several conditions under which right

2-simple J-injective rings are QF -rings are given.
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1. Introduction

Throughout this paper, R is an associative ring with identity, m is a positive

integer unless otherwise stated, and all modules are unitary. As usual, J(R) or J

for short, Zl (Zr) and Sl (Sr) denote respectively the Jacobson radical, the left

(right) singular ideal and the left (right) socle of R. The left annihilator of a subset

X of R is denoted by l(X), and the right annihilator of X is denoted by r(X).

If M is an R-module, then the notation N ⊆max M means that N is a maximal

submodule of M , and the notation N EM means that N is an essential submodule

of M .

Recall that a ring R is called right simple injective [5] if for every right ideal I

of R, every R-linear map γ : I → R with γ(I) simple extends to R. We recall also

that a ring R is called quasi-Frobenius, briefly QF , if it is right (or left) artinian

(or noetherian), and right (or left) self-injective. Simple injective rings and their

relationship with QF-rings have been studied by many authors, for example, see [2,

8, 10, 11, 16]. And the concept of right simple injective rings have been generalized

in two ways in [18] and [16], respectively. Following [18], a ring R is called right

2-simple injective if for every 2-generated right ideal I of R, every R-linear map
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γ : I → R with γ(I) simple extends to R; and following [16], a ring R is called right

simple J-injective if for every right ideal I ⊆ J(R), every R-linear map γ : I → R

with γ(I) simple extends to R.

In this paper, we shall generalize the concept of right simple J-injective rings and

right 2-simple injective rings to 2-simple J-injective rings, some properties of this

class of rings are studied, and several conditions under which 2-simple J-injective

rings are QF-rings are given, many of them extending known results.

We next recall some other known concepts of general injectivity of modules and

rings and facts needed in the sequel.

A module MR is called FP-injective (or absolutely pure) if, for any finitely gener-

ated submodule K of a free right R-module F , every R-homomorphism KR →MR

extends to a homomorphism FR →MR. A ring R is called right FP-injective if RR

is FP-injective.

Let m be a positive integer. A ring R is called right m-injective [7] if, for any

m-generated right ideal I of R, every R-homomorphism from I to R extends to an

endomorphism of R. Right 1-injective rings are also called right P-injective [7]. A

ring R is called right JP-injective [15] if, for any principal right ideal I ⊆ J(R),

every R-homomorphism from I to R extends to an endomorphism of R.

A ring R is called right general principally injective (briefly right GP -injective)

[3] if, for any 0 6= a ∈ R, there exists a positive integer n such that an 6= 0 and

any right R-homomorphism from anR to R extends to an endomorphism of R. A

ring R is called right JGP-injective [15] if for any 0 6= a ∈ J(R), there exists a

positive integer n such that an 6= 0 and any right R-homomorphism from anR to

R extends to an endomorphism of R. A ring R is called right MGP-injective [19,

20] if, for any 0 6= a ∈ R, there exists a positive integer n such that an 6= 0 and any

right R-monomorphism from anR to R extends to an endomorphism of R. A ring

R is called right AGP -injective [12, 17] if for any 0 6= a ∈ R, there exists a positive

integer n such that an 6= 0 and Ran is a direct summand of l(r(an)).

A ring R is called right mininjective [8] if for any minimal right ideal I of R,

every R-homomorphism from I to R extends to an endomorphism of R.

Clearly, the following implications hold:

• right self-injective ⇒ right simple injective and right FP-injective;

• right simple injective⇒ right 2-simple injective and right simple J-injective;

• right FP-injective ⇒ right m-injective for m ≥ 2 ⇒ right 2-injective ⇒
right P-injective ⇒ right GP-injective ⇒ right AGP-injective and right

JGP-injective and right MGP-injective;
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• right P-injective ⇒ right JP-injective ⇒ right JGP-injective ⇒ right min-

injective;

• right MGP-injective ⇒ right mininjective.

2. 2-Simple J-injective rings

We start with the following definition.

Definition 2.1. Let m be a positive integer. A ring R is called right m-simple

J-injective if, for every m-generated right ideal I ⊆ J(R), every R-linear map

γ : I → R with γ(I) simple extends to an endomorphism of R.

Recall that a ring R is called right (J, Sr)-m-injective [16] if, for any m-generated

right ideal I ⊆ J(R), every R-linear map γ : I → R with γ(I) ⊆ Sr extends to

an endomorphism of R; a ring R is called right (R,Sr)-m-injective [16] if, for any

m-generated right ideal I of R, every R-linear map γ : I → R with γ(I) ⊆ Sr

extends to an endomorphism of R. Clearly, a right (R,Sr)-m-injective ring is right

(J, Sr)-m-injective.

Proposition 2.2. A ring R is right m-simple J-injective if and only if R is right

(J, Sr)-m-injective.

Proof. Assume that R is right m-simple J-injective. Let I be an m-generated right

ideal contained in J(R) and γ a homomorphism from I to R with γ(I) semisimple.

If γ(I) = 0 then γ = 0. Otherwise, let γ(I) = K1 ⊕ · · · ⊕ Kn, where the Ki are

simple right ideals. If πi : γ(I) → Ki is the projection, then πiγ = ci· for some

ci ∈ R by hypothesis. It is routine to verify that γ = (c1+· · ·+cn)·, as required. �

Clearly, right simple J-injective rings and right 2-simple injective rings are both

right 2-simple J-injective, but right 2-simple J-injective rings need neither be right

simple J-injective nor right 2-simple injective.

Example 2.3. Let

R =

{[
n x

0 n

]∣∣∣∣∣n ∈ Z, x ∈ Z2

}
,

then, by [16, Example 1.6], R is right simple J-injective but not right (R,Sr)-1-

injective. So R is right 2-simple J-injective but not right 2-simple injective.

Example 2.4. Let R = Z2[x1, x2, · · · ], where the xi are commuting indeterminates

satisfying the relations x3i = 0 for all i, xixj = 0 for all i 6= j, and x2i = x2j for all

i and j. Write m = x21 = x22 = · · · . Then by [9, Example 2.6], R is a commutative
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FP -injective ring. So R is a commutative 2-injective ring and whence 2-simple

injective ring, but it is not simple J-injective by the argument in [9, Example 5.45]

because, in the notation of that example, γ(J) = Z2m is simple. So, in general,

2-simple J-injective rings need not be simple J-injective.

Recall that a ring R is called right Kasch [9] if every simple right R-module

embeds in R, equivalently if l(T ) 6= 0 for every maximal right ideal T of R. Left

Kasch rings can be defined similarly. R is called Kasch if it is left and right Kasch.

Proposition 2.5. If R is right 1-simple J-injective, then

(1) R is right mininjective.

(2) If R is right Kasch, then l(J(R)) ∩ L 6= 0 for any non-zero small left ideal

L of R.

Proof. (1) Let aR be simple. If (aR)2 6= 0, then aR = eR for an idempotent e ∈ R.

Thus, every R-homomorphism from aR to R extends to R. If (aR)2 = 0, then

a ∈ J(R). Since R is right 1-simple J-injective, so every right R-homomorphism

from aR to R extends to R.

(2) Let L be a non-zero small left ideal of R and 0 6= a ∈ L. Then a ∈ J(R).

Suppose that T is a maximal submodule of aR. By the right Kasch hypothesis,

let σ : aR/T → R be monic, and define f : aR → R by f(x) = σ(x + T ), then

im(f) = im(σ) is simple. Since R is right 1-simple J-injective, f = c· for some

c ∈ R, and then ca = f(a) = σ(a + T ) 6= 0. But caJ(R) = f(a)J(R) = σ(a +

T )J(R) ⊆ SrJ(R) = 0, so 0 6= ca ∈ Ra ∩ l(J(R)). And hence l(J(R)) ∩ L 6= 0. �

Theorem 2.6. Let R be a right 2-simple J-injective, right Kasch ring. Then

(1) R is left JP -injective, and hence right and left mininjective.

(2) Ra is simple if and only if aR is simple. In particular, Sr = Sl.

(3) J(R) = Zl = r(Sr).

(4) If e2 = e is local then Soc(Re) is simple.

(5) The map θ : T 7→ l(T ) gives a bijection from the set of maximal right ideals

of R to the set of minimal left ideals of R, whose inverse map is given by

K 7→ r(K).

Proof. (1) Since R is right Kasch, by [9, Proposition 1.44], rl(T ) = T for every

maximal right ideal T of R, and so rl(J) ⊆ rl(T ) = T . It follows that rl(J) ⊆ J ,

and hence rl(J) = J . For every a ∈ J(R), we always have aR ⊆ rl(a). If

b ∈ rl(a) − aR, then b ∈ J . Let aR ⊆ T ⊆max (aR + bR). By the Kasch hy-

pothesis, let σ : (aR+ bR)/T → R be monic, and then define γ : aR+ bR→ R by
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γ(x) = σ(x+T ). Since im(γ) = im(σ) is simple and R is right 2-simple J-injective,

γ = c· for some c ∈ R. So ca = γ(a) = 0. This gives cb = 0 because b ∈ rl(a). But

cb = σ(b+T ) 6= 0 because b 6∈ T , which is a contradiction. Hence rl(a) = aR. This

shows that R is left JP-injective by [15, Lemma 1.1].

(2) By (1), R is right and left mininjective, and so Ra is simple if and only if aR is

simple by [8, Theorem 1.14 (1)]. Hence Sr = Sl.

(3) By (1), R is left JP -injective, so that R is left JGP -injective, and thus J(R) ⊆
Zl by [15, Theorem 3.6]. On the other hand, since R is right Kasch, by [9, Propo-

sition 1.46], Zl ⊆ J(R), and hence J(R) = Zl. For every maximal right ideal T of

R, since R is right Kasch, R/T can be embedded in RR, thus for each x ∈ r(Sr),

(R/T )x = 0, and then x ∈ J(R). This implies that r(Sr) ⊆ J(R). Noting that

J(R) ⊆ r(Sr) always holds, we have therefore that J(R) = r(Sr).

(4) First we have l(J)e ∼= HomR(eR/eJ,R) by [9, Lemma 3.1]. Since eR/eJ is

simple (because e is local), and since R is right mininjective and right Kasch, by

[9, Theorem 2.31], l(J)e is a simple submodule of Soc(Re). Hence (2) gives that

l(J)e ⊆ Soc(Re) = Sl ∩ Re = Sle = Sre ⊆ l(J)e. It follows that Soc(Re) = l(J)e

is simple.

(5) Let K = Rk be any minimal left ideal. Then kR is a minimal right ideal by

(2). Since R is right mininjective by Proposition 2.5 (1), we have that lr(K) = K

by [8, Lemma 1.1], and therefore (5) follows from [8, Theorem 2.3]. �

We call a ring R left finite dimensional in case RR is of finite Goldie dimension.

We recall that a ring R is called right C2 [9] if every right ideal of R that is

isomorphic to a direct summand of R is itself a direct summand of R; a ring R

is called right GC2 [15] if every right ideal of R that is isomorphic to R is itself a

direct summand of R.

Theorem 2.7. Let R be a right 2-simple J-injective and right Kasch ring with

Sr E RR. Then the following conditions are equivalent:

(1) R is left finitely cogenerated;

(2) R is left finite dimensional;

(3) R is a semilocal ring;

(4) Sr is a finitely generated left ideal;

(5) R is left Kasch and right finitely cogenerated;

(6) R is left Kasch and right finite dimensional;

(7) R is right C2 and right finite dimensional.

In these cases, dim(RR) = length[(R/J)R].
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Proof. (1)⇒ (2) and (5)⇒ (6) are obvious.

(2) ⇒ (3) Since R is right Kasch, by [9, Proposition 1.46], it is left C2, and hence

left GC2. Note that a left GC2 left finite dimensional ring is semilocal by [15,

Corollary 2.5 ], so R is semilocal.

(3)⇒ (4) Since R is a semilocal and right mininjective ring, by [9, Theorem 5.52],

Sr is a finitely generated left ideal.

(4) ⇒ (1) By (4) and Theorem 2.6 (2), Sl is a finitely cogenerated left ideal. But

Sl E RR by hypothesis and Theorem 2.6 (2), so R is left finitely cogenerated.

(3), (4)⇒ (5) Since a semilocal two-sided mininjective right Kasch ring is left Kasch

by [9, Lemma 5.49], so R is left Kasch. Observing that R is left JP-injective by

Theorem 2.6 (1), we have Sr = Sl E RR by [15, Theorem 3.8]. Moreover, as R is

a semilocal left mininjective ring, by [9, Theorem 5.52], Sl is a finitely generated

semisimple right R-module, and so Sl is a finitely cogenerated right ideal, which

in turn implies that Sr is finitely cogenerated for Sr = Sl. Therefore, R is right

finitely cogenerated.

(6)⇒ (7) By [9, Proposition 1.46], a left Kasch ring is right C2.

(7)⇒ (4) Since right C2 is right GC2, and a right GC2 right finite dimensional ring

is semilocal.

Finally, assume that these equivalent conditions hold. Then observe that l(J) ∼=
Hom(R/J,R) and R/J = K1 ⊕ · · · ⊕ Kn, where each Ki is a simple right R-

module, so we have Sl = Sr = l(J) ∼= Hom(R/J,R) = Hom(K1 ⊕ · · · ⊕Kn, R) ∼=
Hom(K1, R)⊕· · ·⊕Hom(Kn, R). Since R is right mininjective and right Kasch, by

[9, Theorem 2.31 (2)], each Hom(Ki, R) is simple. Noting that Sl E RR, we have

dim(RR) = dim(RSl) = n = length((R/J)R. �

Recall that a ring R is called semiregular [9] if R/J(R) is regular and idempotents

of R/J(R) lift to idempotents of R.

The three results of the following Theorem 2.8 improve the results of [16, Lemma

2.3(1), Theorem 2.11(3),(4)] respectively.

Theorem 2.8. Let R be a semiregular ring and m be a positive integer. Then

(1) R is right m-simple injective if and only if R is right m-simple J-injective.

(2) R is right simple-injective if and only if R is right simple J-injective.

(3) R is right self-injective if and only if every R-homomorphism from a small

right ideal of R to R can be extended to an endomorphism of R.

Proof. (1) We need only to prove the sufficiency. Let I be an m-generated right

ideal and f : I → R be a homomorphism from I to R with simple image. Since
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R is semiregular, by [9, Theorem B.51], R = P ⊕K with P ⊆ I and I ∩K � K.

Hence R = I + K, I = P ⊕ I ∩ K and so I ∩ K is an m-generated right ideal in

J(R). Clearly, f(I ∩K) is simple or 0. Since R is right m-simple J-injective, there

exists a homomorphism g : R → R such that g(x) = f(x) for all x ∈ I ∩K. Now

we define h : R → R by h(y + k) = f(y) + g(k), where y ∈ I, k ∈ K. Then it is

easy to see that h is a right R-homomorphism which extends f .

(2) and (3) have proofs similar to the proof of part (1) and so are omitted. �

As the end of this section, we give two properties of a class of special 2-simple

injective rings.

Proposition 2.9. Assume that R is a semiperfect, right 2-simple injective ring in

which Soc(eR) 6= 0 for every local idempotent e of R. Then the following hold:

(1) S = Sr = Sl = r(J) = l(J) is essential in RR and in RR, and Zr = Zl =

J = r(S) = l(S).

(2) R is left and right finitely cogenerated.

Proof. (1) By [18, Theorem 13], R is left P-injective and left Kasch. So, by [9,

Proposition 5.19], Sr is essential in RR. And thus (1) follows from [16, Proposition

2.5(2)].

(2) Since Sr E RR, by [16, Proposition 2.5 (3), (4)], R is left and right finitely

cogenerated. �

3. Applications to quasi-Frobenius rings

Recall that a ring R is called right CF [9] if every cyclic right R-module embeds

in a free R-module; a ring R is called left pseudo-coherent [1] if every left annihilator

of a finite subset of R is a finitely generated left ideal; a ring R is called right min-

coherent [6] if every minimal right ideal of R is finitely presented; a ring R is called

a left CS ring [9] if every left ideal of R is essential in a summand of RR; a ring R

is called right minsymmetric [8] if kR is simple, k ∈ R, implies that Rk is simple;

a ring R is called right semiartinian [9] if every nonzero right R-module has an

essential socle. Next we give some applications of 2-simple J-injective rings to QF

rings.

Theorem 3.1. Let R be a right 2-simple J-injective ring. Then the following

statements are equivalent:

(1) R is a QF-ring;

(2) R is right artinian;
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(3) R is left artinian;

(4) R is left perfect and every cyclic right R-module is finite dimensional;

(5) R is left perfect, right min-coherent;

(6) R is left perfect, left pseudo-coherent;

(7) R is right perfect, left pseudo-coherent;

(8) R is a right noetherian ring with Sr ERR;

(9) R has ACC on right annihilators and Sr ERR;

(10) R is a right Kasch left noetherian ring;

(11) R is right Kasch and left CF ;

(12) R is left CS and left CF ;

(13) R is semilocal and right CF;

(14) R is right GP-injective with ACC on right annihilators;

(15) R is right AGP-injective with ACC on right annihilators;

(16) R is right MGP-injective with ACC on right annihilators;

(17) R is left GP-injective with ACC on left annihilators;

(18) R is left AGP-injective with ACC on left annihilators;

(19) R is left MGP-injective with ACC on left annihilators;

(20) R is semiprimary with ACC on left annihilators;

(21) R is semiprimary with ACC on right annihilators;

(22) R is left and right perfect with ACC on left annihilators;

(23) R is left perfect with ACC on left annihilators;

(24) R is left perfect with ACC on right annihilators;

(25) R is a right noetherian right and left Kasch ring.

(26) R is a semilocal right 2-J-injective ring with ACC on right annihilators.

Proof. Since a semiperfect ring is semiregular, and by Theorem 2.8(1), every

semiregular right 2-simple J-injective ring is right 2-simple injective. So the equiv-

alences of (1), (2), (3), (4), (5), (20), (21), (22), (23) and (24) follow immediately

from [18, Theorem 3.1].

(1)⇒ (2)− (26), (8)⇒ (9) , (14)⇒ (15), (17)⇒ (18) are clear. (11)⇒ (3) by [4,

Corollary 2.6]. (12) ⇒ (3) by [4, Corollary 3.10]. (15) ⇒ (21) and (18) ⇒ (20) by

[17, Corollary 1.6]. (16)⇒ (21) and (19)⇒ (20) by [19, Corollary 3.12 (1)].

(13) ⇒ (2) Since R is right 2-simple J-injective, it is right mininjective, hence

Sr ⊆ Sl by [8, Theorem 1.14 (4)]. Therefore R is right artinian by [2, Theorem

2.10].

(6) ⇒ (3) Since R is left perfect, by [9, Theorem B.32], it is right semiartinian,
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and so Sr E RR. Then by Theorem 2.8 (1), R is left Kasch, and thus J = lr(J).

Moreover, by Proposition 2.9, r(J) is a finitely generated right ideal. But R is left

pseudo-coherent, so J is a finitely generated left ideal, and hence J is nilpotent by

[9, Lemma 5.64] since J is left T-nilpotent. Thus, R is semiprimary, and conse-

quently right perfect. Since J/J2 is a finitely generated left R-module, by Osofsky’s

Lemma [9, Lemma 6.50], R is left artinian.

(10)⇒ (3) Since R is left noetherian, it is left finite dimensional with ACC on left

annihilators. Since R is right Kasch, it is left JP -injective by Theorem 2.6 (1), and

so R is left JGP -injective. By [15, Theorem 3.6], J ⊆ Zl. Since R has ACC on

left annihilators, by Mewborn-Winton’s Lemma [9, Lemma 3.29], Zl is nilpotent,

and thus J is nilpotent. Note that a right Kasch ring is left C2 by [9, Proposition

1.46] and hence left GC2. By [15, Corollary 2.5], R is semilocal. Thus, R is a left

noetherian semiprimary ring, i.e., R is left artinian.

(7) ⇒ (21) Since R is right perfect, R has DCC on finitely generated left ideals.

Noting that R is left pseudo-coherent, every left annihilator of a finite subset of R

is a finitely generated left ideals. So every left annihilator of a subset of R is a left

annihilator of a finite subset of R, and hence every left annihilator in R is a finitely

generated left ideal. It follows that R has DCC on left annihilators and thus R has

ACC on right annihilators. This shows that R is semiprimary by [9, Lemma 4.20

(1)], and so (21) follows.

(9) ⇒ (21) Since a right 2-simple J-injective ring is right mininjective and hence

right minsymmetric by [8, Theorem 1.14 (1)]. So (21) follows from [14, Lemma

2.3].

(25) ⇒ (2) Since R is right noetherian, it is right finite-dimensional and has ACC

on right annihilators. Since R is right 2-simple J-injective and right Kasch, it is

left JP-injective by Theorem 2.6 (1). Thus R is a left JP-injective right finite-

dimensional ring, and so by [15, Theorem 3.8 (5)], R is semilocal. Since R is left

Kasch and left JP-injective, by [15, Theorem 3.8 (4)], J = Zr. Since R has ACC on

right annihilators, by Mewborn-Winton’s Lemma [9, Lemma 3.29], Zr is nilpotent,

and thus J is nilpotent. Therefore, R is a right noetherian semiprimary ring, i.e.,

R is right artinian.

(26)⇒ (21) Since R has the ascending chain condition on annihilator right ideals,

by [9, Lemma 3.29], Zr is nilpotent, and so Zr ⊆ J . Since R is right JP-injective,

by [15, Theorem 3.6], J ⊆ Zr. Hence, J = Zr is nilpotent. Therefore, R is a

semiprimary ring. �
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Corollary 3.2. The following statements are equivalent for a ring R:

(1) R is a QF-ring;

(2) [13, Corollary 3] R is right 2-injective with the ascending chain condition

on annihilator right ideals;

(3) [14, Theorem 2.8] R is a right simple injective ring with ACC on right

annihilators in which Sr ERR;

(4) [14, Theorem 3.17 (4)] R is a right small injective ring with ACC on right

annihilators in which Sr ERR;

(5) R is a right simple injective right Kasch left noetherian ring;

(6) R is a right 2-injective right Kasch left noetherian ring.

Proof. (1)⇔ (2) By Theorem 3.1 (14).

(1)⇔ (3) By Theorem 3.1 (9).

(1)⇔ (4) By Theorem 3.1 (9).

(1)⇔ (5)⇔ (6) By Theorem 3.1 (10). �

Corollary 3.3. Let R be a right MGP-injective ring. Then the following statements

are equivalent:

(1) R is a QF-ring.

(2) R is a right 2-simple injective ring with ACC on right annihilators.
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