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1. Introduction

One of the aims of the modern representation theory is to solve classification

problems for subcategories of modules over a unitary ring R. We make the general

point that over most rings it is impossible to classify all modules: even algebras

of tame representation type typically are “wild” when their infinitely generated

representations are considered. The reader is referred to [3], [24], [25, Chapter 1 and

6] and [26] for a detailed discussion of classification problems, their representation

types (finite, tame, or wild), and useful computational reduction procedures. Pure-

injective modules seem to form one of the classes of modules which arise in practice

and where there is hope of some kind of classification. Pure-injective modules

play a central role in the model theory of modules. Let Ri be a local Dedekind

domain, R̄ be a common field and let vi : Ri → R̄ be a homomorphism of Ri onto

R̄ for both i = 1, 2. Denote the pullback R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) =

v2(r2)} by (R1
v1−→ R̄

v2←− R2), where R̄ = R1/J(R1) = R2/J(R2). Then R

is a ring under coordinate-wise multiplication. Denote the kernel of vi, i = 1, 2,

by Pi. Then Ker(R → R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R1/P1
∼= R2/P2, and

P1P2 = P2P1 = 0 (so R is not a domain). Furthermore, there is an exact sequence

0 → Pi → R → Rj → 0 of R-modules (see [21]), for i 6= j. For such a pullback

ring R, indecomposable pure-injective modules with finite-dimensional top (for any

module M we define its top as M/rad(M)) over R have already been classified by
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the first author [5]. Also, the classification of an arbitrary indecomposable pure-

injective module over the R̄-algebra R̄[x, y : xy = 0](x,y) which is the pullback

(R̄[x](x) → R̄← R̄[y](y)) (see [2, Section 6]) appears to be a very difficult problem.

Therefore the classification of subclass of pure-injective modules over a pullback of

two local Dedekind domains over a common factor field is very important. One

point of this paper is to introduce a subclass of pure-injective modules over such

rings. Indeed, this article includes the classification of all indecomposable quasi

comultiplication modules over R̄[x, y : xy = 0](x,y).

Modules over pullback rings have been studied by several authors (see for ex-

ample [4], [8], [9], [11], [12], [14], [15], [18], [19], [23] and [28]). Notably, there

is the monumental work of Levy [22], resulting in the classification of all finitely

generated indecomposable modules over Dedekind-like rings. Common to all these

classification is the reduction to a “matrix problem” over a division ring (see [25,

Section 17.9] for background on matrix problems and their applications).

In the present paper we introduce a new class of R-modules, called quasi co-

multiplication modules (see Definition 2.1), and we study them in detail from the

classification point of view. We are mainly interested in the case where R is ei-

ther a Dedekind domain or a pullback ring of two local Dedekind domains. The

classification is divided into two stages: the description of all indecomposable sepa-

rated quasi comultiplication R-modules and then, using this list of separated quasi

comultiplication modules, we show that the only non-zero indecomposable quasi

comultiplication non-separated R-module, up to isomorphism, is E(R/P ), the R-

injective hull of R/P . For the sake of completeness, we state some definitions and

notations used throughout. In this paper all rings are commutative with identity

and all modules are unitary.

Definition 1.1. An R-module S is defined to be separated if there exist Ri-modules

Si, i = 1, 2, such that S is a submodule of S1 ⊕ S2 (the latter is made into an R-

module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).

Equivalently, S is separated if it is a pullback of an R1-module and an R2-

module and then, using the same notation for pullbacks of modules as for rings,

S = (S/P2S → S/PS ← S/P1S) [21, Corollary 3.3] and S ⊆ (S/P2S) ⊕ (S/P1S).

Also, we show S is separated if and only if P1S ∩ P2S = 0 [21, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a sep-

arated R-module, indeed every R-module has a “minimal” such representation: a

separated representation of an R-module M is an epimorphism ϕ = (S
f→ S′ →M)

of R-modules where S is separated and, if ϕ admits a factorization ϕ : S
f→ S′ →M
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with S′ separated, then f is one-to-one. The module K = Ker(ϕ) is an R̄-

module, since R̄ = R/P and PK = 0 [21, Proposition 2.3]. An exact sequence

0 → K → S → M → 0 of R-modules with S separated and K an R̄-module is a

separated representation of M if and only if PiS ∩K = 0 for each i and K ⊆ PS

[21, Proposition 2.3]. Every module M has a separated representation, which is

unique up to isomorphism [21, Theorem 2.8]. Moreover, R-homomorphisms lift

to a separated representation, preserving epimorphisms and monomorphisms [20,

Theorem 2.6].

Now, in the following definition, we have collected several notions, which we use.

Definition 1.2. (a) If R is a ring and N is a submodule of an R-module M , then

the ideal {r ∈ R : rM ⊆ N} is denoted by (N :R M). The ideal (0 :R M) is the

annihilator of M .

(b) A proper ideal I of R is said to be quasi-prime if for each pair of ideals A and

B of R, A∩B ⊆ I yields either A ⊆ I or B ⊆ I (see [16]). A proper submodule N of

an R-module M is called quasi-prime if (N :R M) is a quasi-prime ideal of R. The

set of all quasi-prime submodules of M is denoted by qSpecR(M) (see [1]). Every

maximal submodule of an R-module M is prime and every prime submodule of M

is a quasi-prime submodule. Therefore MaxR(M) ⊆ SpecR(M) ⊆ qSpecR(M) by

[1, Remark 2.3].

(c) An R-module M is defined to be a comultiplication module if for each sub-

module N of M , N = (0 :M I), for some ideal I of R. In this case we can take

I = Ann(N).

(d) A submodule N of an R-module M is called pure submodule if any finite

system of equations over N which is solvable in M is also solvable in N . A sub-

module N of an R-module M is called relatively divisible (or an RD-submodule)

in M if rN = N ∩ rM for all r ∈ R.

(e) A module M is pure-injective if it has the injective property relative to all

pure exact sequences.

(f) A ring R is called to be a serial ring, if the set of all ideals of R is linearly

ordered.

Remark 1.3. (1) An R-module M is pure-injective if and only if it is alge-

braically compact (see [17] and [27]).

(2) Let R be a Dedekind domain, M an R-module and N a submodule of M .

Then N is pure in M if and only if IN = N ∩ IM for each ideal I of R.

Moreover, N is pure in M if and only if N is an RD-submodule of M [27].
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2. Some properties of quasi comultiplication modules

In this section, we collect some basic properties concerning quasi comultiplication

modules. We begin with the key definition of this paper.

Definition 2.1. Let R be a commutative ring and M be an R-module. Then

M is defined to be a quasi comultiplication module if qSpec(M) = ∅ or for every

quasi-prime submodule N of M , N = (0 :M I) for some ideal I of R.

One can easily show that if M is a quasi comultiplication module, then N =

(0 :M ann(N)) for every quasi-prime submodule N of M . It is easy to see that

the class of quasi comultiplication modules contains the class of comultiplication

modules defined in [7].

Lemma 2.2. Let R be a commutative ring and M be an R-module. If I, J are

proper ideals of R and I ⊆ (0 :R M), then the following hold:

(1) If I ⊆ J , then J is a quasi-prime ideal of R if and only if J/I is a quasi-

prime ideal of R/I.

(2) If N is a proper submodule of M , then N is a quasi-prime R-submodule of

M if and only if N is a quasi-prime R/I-submodule of M .

(3) M is a quasi comultiplication R-module if and only if M is a quasi comul-

tiplication R/I-module.

Proof. (1) The proof is straightforward.

(2) It is easy to see that (N :R M)/I = (N :R/I M). So the result follows from

Part(1).

(3) One can show that (0 :R N)/I = (0 :R/I N). So the result follows from Part

(2). �

Lemma 2.3. Let R be a commutative ring and M be an R-module. If N ⊆ L are

submodules of M , then the following hold:

(1) L is a quasi-prime submodule of M if and only if L/N is a quasi-prime

submodule of M/N .

(2) If M is a quasi comultiplication R-module and N is a pure submodule of

M , then M/N is a quasi comultiplication R-module.

(3) If M is a quasi comultiplication R-module, then every direct summand of

M is a quasi comultiplication R-module.

Proof. (1) The proof is straightforward, since (L :R M) = (L/N :R M/N).

(2) Let M be a quasi comultiplication module and let L/N be a quasi-prime sub-

module of M/N . Then by (1), L is a quasi-prime submodule of M , so L = (0 :M I)
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for some ideal I of R. Now we show that L/N = (0 :M/N I). Since L = (0 :M I),

so I(L/N) = (IL + N)/N = 0M/N . Hence L/N ⊆ (0 :M/N I). Assume that

m+N ∈ (0 :M/N I). Then a(m+N) = am+N = 0M/N for every a ∈ I. Therefore

am ∈ N and then Im ⊆ N ∩ IM = IN = 0, since IN ⊆ IL = 0. Then m ∈ L, so

m+N ∈ L/N and we have the equality.

(3) The result follows from (2), since direct summands are pure submodules. �

Proposition 2.4. Let R be a local Dedekind domain and M be an R-module. Then

the following hold:

(1) Every proper submodule of M is quasi-prime.

(2) M is a quasi comultiplication R-module if and only if M is a comultiplica-

tion R-module.

(3) If M is a quasi comultiplication R-module, then M is indecomposable.

Proof. (1) Since every local Dedekind domain is a serial ring, the proof follows

from [1, Lemma 2.4].

(2) Follows from (1).

(3) Let M be a quasi comultiplication R-module such that M = N ⊕ K with

N 6= 0 and K 6= 0. By (1), there are positive integers m,n, with m < n, such that

M = (0 :M Pn) + (0 :M Pm) = (0 :M Pn) and this contradicts N ∩K = 0. Thus

either N = 0 or K = 0, as required. �

Theorem 2.5. Let R be a local Dedekind domain with a unique maximal ideal

P = Rp. Then the quasi comultiplication modules over R are:

(1) R/Pn, n ≥ 1;

(2) E(R/P ), the injective hull of R/P .

Proof. The result follows from Proposition 2.4 and [7, Theorem 2.5]. �

3. The separated quasi comultiplication modules

Throughout this paper we shall assume unless otherwise stated, that

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two local Dedekind domains R1, R2 with maximal ideals P1, P2

generated respectively by p1, p2, P denotes P1⊕P2 and R1/P1
∼= R2/P2

∼= R/P ∼= R̄

is a field. In particular, R is a commutative Noetherian local ring with unique

maximal ideal P . The other prime ideals of R are easily seen to be P1 (that is

P1 ⊕ 0) and P2 (that is 0⊕ P2).
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Theorem 3.1. Let R be the pullback ring as described in (1), M be an R-module

and N be a proper submodule of M . Then N is a quasi-prime submodule of M if

and only if either (P1 ⊕ 0)M ⊆ N or (0⊕ P2)M ⊆ N .

Proof. Let N be a quasi-prime submodule of M . Since (P1 ⊕ 0) ∩ (0⊕ P2) = 0 ⊆
(N :R M), we have that P1 ⊕ 0 ⊆ (N :R M) or 0 ⊕ P2 ⊆ (N :R M). Therefore

(P1 ⊕ 0)M ⊆ N or (0 ⊕ P2)M ⊆ N . Conversely, suppose that N is a proper

submodule of M and (P1 ⊕ 0)M ⊆ N . Since R2 is a local Dedekind domain, so

N/(P1 ⊕ 0)M is a quasi-prime R2-submodule of M/(P1 ⊕ 0)M by Proposition 2.4.

So N/(P1 ⊕ 0)M is a quasi-prime R-submodule of M/(P1 ⊕ 0)M by Lemma 2.2.

Then N is a quasi-prime R-submodule of M by Lemma 2.3. So (N :R M)/(P1⊕ 0)

is a quasi-prime ideal, then (N :R M) is a quasi-prime ideal of R by Lemma 2.2

and so N is a quasi-prime submodule of M . �

Remark 3.2. Let R be the pullback ring as described in (1), and let T be an

R-submodule of a separated module S = (S1
f1−→ S̄

f2←− S2), with projection maps

πi : S → Si. Set

T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2},

T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.

Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1 ⊕ T2. Moreover,

we can define a mapping π′1 = π1|T : T → T1 by sending (t1, t2) to t1; hence

T1
∼= T/((0 ⊕ Ker(f2)) ∩ T ) ∼= T/(T ∩ P2S) ∼= (T + P2S)/P2S ⊆ S/P2S. So we

may assume that T1 is a submodule of S1. Similarly, we may assume that T2 is a

submodule of S2 (note that Ker(f1) = P1S1 and Ker(f2) = P2S2).

Proposition 3.3. Let R be the pullback ring as described in (1) and S be a non-zero

separated R-module with S̄ = 0. Then (0 :R S) ∈ {P1 ⊕ 0, 0⊕ P2, 0}.

Proof. It is clear that S = PS since S̄ = 0. First suppose that (0 :R S) = Pn
1 ⊕Pm

2

for some positive integers n and m. Now we consider the various possibilities for

m and n.

Case 1. If n > 1 and m > 1, then (Pn−1
1 ⊕ Pm−1

2 )S = (Pn−1
1 ⊕ Pm−1

2 )PS =

(Pn
1 ⊕ Pm

2 )S = 0. So Pn−1
1 ⊕ Pm−1

2 ⊆ (0 :R S) which is a contradiction.

Case 2. If n = 1 andm > 1, then (P1⊕Pm−1
2 )S = (P1⊕Pm−1

2 )PS = (P 2
1⊕Pm

2 )S =

0 since P 2
1 ⊕ Pm

2 ⊆ P1 ⊕ Pm
2 = (0 :R S). So P1 ⊕ Pm−1

2 ⊆ (0 :R S) which is a

contradiction.

Case 3. If n > 1 and m = 1, then the proof is similar to Case 2.

Case 4. If n = 1 and m = 1, then (0 :R S) = P . So S = PS = 0, which is a
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contradiction. Now suppose that (0 :R S) = Pn
1 ⊕0 for some positive integer n > 1.

So (Pn−1
1 ⊕ 0)S = (Pn−1

1 ⊕ 0)PS = (Pn
1 ⊕ 0)S = 0. So Pn−1

1 ⊕ 0 ⊆ (0 :R S) which

is a contradiction.

The case (0 :R S) = 0⊕ Pm
2 for some positive integer m > 1 is similar. �

Now, we find the separated quasi comultiplication modules over the pullback

ring R. We begin with the following proposition.

Proposition 3.4. Let S be any separated quasi comultiplication module over the

pullback ring as described in (1). Then the following hold:

(1) If (0 :R S) = 0, then S̄ = 0.

(2) If S̄ 6= 0, then (0 :R S) 6= Pn
1 ⊕ 0 and (0 :R S) 6= 0⊕ Pn

2 for every positive

integer n.

(3) If S̄ 6= 0 and (0 :R S) = Pn
1 ⊕ Pm

2 for some positive integers n,m, then

either m = 1 or n = 1.

Proof. (1) Suppose S̄ 6= 0. Then PS is a quasi-prime submodule of S by Theorem

3.1. Let (r1, r2) ∈ (0 :R PS). Then (r1, r2)(p1, p2)S ⊆ (r1, r2)PS = 0, so r1p1 = 0

and r2p2 = 0; hence r1 = 0 and r2 = 0, since Ri is an integral domain for i = 1, 2.

Therefore, (0 :R PS) = 0. Then S quasi comultiplication gives PS = (0 :S (0 :R

PS)) = (0 :S 0) = S, which is a contradiction.

(2) Let (0 :R S) = Pn
1 ⊕ 0. If (0 ⊕ P2)S = 0, then 0 ⊕ P2 ⊆ Pn

1 ⊕ 0, which

is a contradiction. So (0 ⊕ P2)S 6= 0 and (0 :R (0 ⊕ P2)S) 6= R. Then (0 :R

(0⊕P2)S) = P1⊕ 0 by [10, Proposition 3.8]. Moreover, by Theorem 3.1, (0⊕P2)S

is a quasi-prime submodule of S, so (0 ⊕ P2)S = (0 :S P1 ⊕ 0) since, S is quasi

comultiplication. We may assume that n > 1. Since (P1⊕ 0)(Pn−1
1 ⊕P2)S = 0, we

must have (Pn−1
1 ⊕ P2)S ⊆ (0 :S P1 ⊕ 0) = (0 ⊕ P2)S. Let s1 ∈ S1. Then there

is an element s2 ∈ S2 such that (s1, s2) ∈ S. Hence (pn−1
1 , p2)(s1, s2) ∈ (0⊕ P2)S;

hence pn−1
1 s1 = 0 and so Pn−1

1 S1 = 0. Therefore, Pn−1
1 ⊆ (0 :R1

S1) = Pn
1 by

[10, Proposition 3.6], which is a contradiction. Thus (0 :R S) 6= Pn
1 ⊕ 0 for every

positive integer n. Similarly, (0 :R S) 6= 0⊕ Pn
2 for every positive integer n.

(3) Suppose not. We may assume that n > 1 and m > 1. Clearly, 0 6= (P1 ⊕ 0)S ⊆
PS 6= S, 0 6= (0 ⊕ P2)S ⊆ PS 6= S, and they are quasi-prime submodules of

S by Theorem 3.1. Since S is a quasi comultiplication R-module, we must have

(P1 ⊕ 0)S = (0 :S (0 :R (P1 ⊕ 0)S)) = (0 :S (Pn−1
1 ⊕ P2)) and (0 ⊕ P2)S = (0 :S

(P1 ⊕ Pm−1
2 )) by [10, Lemma 3.4]. Let s1 ∈ S1. There exists s2 ∈ S2 such that

(s1, s2) ∈ S. It follows that pn1 s1 = 0 and pm2 s2 = 0 by [10, Proposition 3.6].

Therefore, (p1, p
m−1
2 )(pn−1

1 s1, p2s2) = 0, so (pn−1
1 s1, p2s2) ∈ (0 :S P1 ⊕ Pm−1

2 ) =
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(0 ⊕ P2)S; hence pn−1
1 s1 = 0. By a similar way, we get p1s1 = 0. Therefore,

P1S1
∼= (P1 ⊕ 0)S = 0, which is a contradiction. �

Theorem 3.5. Let R be the pullback ring as described in (1), and let S = (S1 →
S̄ ← S2) be a separated R-module. Then S is a quasi comultiplication R-module if

and only if each Si is a quasi comultiplication Ri-module, for both i = 1, 2.

Proof. Let S be a quasi comultiplication R-module. If qSpec(S) = ∅, then (P1 ⊕
0)S = (0 ⊕ P2)S = S by Theorem 3.1. Then for each i = 1, 2, Si = 0 is a

quasi comultiplication Ri-module by [21, Corollary 3.3]. So, we may assume that

qSpec(S) 6= ∅. If S̄ = 0. Then by [5, Lemma 2.7], S = S1 ⊕ S2; hence for each

i = 1, 2; Si is a quasi comultiplication R-module by Lemma 2.2. Therefore for

each i = 1, 2; Si is a quasi comultiplication Ri-module by Lemma 2.2. So, we may

assume that S̄ 6= 0.

Let L (resp. L′) be a quasi-prime submodule of S1 (resp S2). Then there exists a

separated submodule T = (T/P2S = T1
g1−→ T̄ = T/PT

g2←− T2 = T/P1T ) (resp.

T ′ = (T ′/P2T
′ = T ′1

g′
1−→ T̄ ′ = T ′/PT ′

g′
2←− T ′2 = T ′/P1S)) of S, where gi (resp. g′i)

is the restriction of fi over Ti (resp. T ′i ), i = 1, 2 such that L = T1 (resp. L′ = T ′2).

Since (0⊕ P2)S ⊆ T ((P1 ⊕ 0)S ⊆ T ′); hence T (resp. T ′) is a proper quasi-prime

R-submodule of S by Theorem 3.1. We split the proof into two cases for (0 :R S)

by Proposition 3.4.

Case 1. (0 :R S) = P1 ⊕ Pm
2 for some positive integer m. If m = 1, then

(0 :R S) = P1 ⊕ P2 = P . Hence PT ⊆ PS = 0 and so P ⊆ (0 :R T ). Then we have

(0 :R T ) = P . Thus S is quasi comultiplication implies that T = (0 :S P ) = S,

which is a contradiction. So we may assume that m > 1. By [10, Proposition

3.6], (0 :R1 S1) = P1 and (0 :R2 S2) = Pm
2 . Since (P1 ⊕ 0)S ∼= P1S1 = 0 and

(0 ⊕ P2)S ⊆ T , we get PS ⊆ T ⊆ S, so (0 :R S) ⊆ (0 :R T ) ⊆ (0 :R PS); thus

P1 ⊕ Pm
2 ⊆ (0 :R T ) ⊆ P1 ⊕ Pm−1

2 by [10, Proposition 3.7]. Therefore, either

(0 :R T ) = P1 ⊕ Pm
2 or (0 :R T ) = P1 ⊕ Pm−1

2 . Since S is quasi comultiplication,

we have either T = (0 :S P1 ⊕ Pm
2 ) = S or T = (0 :S P1 ⊕ Pm−1

2 ) = PS; hence

T = PS and T1 = (PS)/PS = 0. Then L = T1 = (0 :S1 R1) gives S1 is quasi

comultiplication. Now we will prove that S2 is a quasi comultiplication R2-module.

By hypothesis, T ′ = (0 :S P s
1 ⊕ P t

2) for some positive integers s, t. We show that

T ′2 = (0 :S2 P
m
2 ). Since the inclusion T ′2 ⊆ (0 :S2 P

m
2 ) is clear, we will prove the

reverse inclusion. Let s2 ∈ (0 :S2
Pm

2 ). Then Pm
2 s2 = 0 and there exists s1 ∈ S1

such that (s1, s2) ∈ S, so (P s
1 ⊕ P t

2)(s1, s2) = 0; hence (s1, s2) ∈ T ′. Therefore,

s2 ∈ T ′2, and so we have the equality.



ON QUASI COMULTIPLICATION MODULES OVER PULLBACK RINGS 103

Case 2. (0 : S) = Pm
1 ⊕ P2 for some positive integer m. The proof is similar to

that in Case 1.

Conversely, assume that Si is a quasi comultiplication Ri-module for each i,

i = 1, 2 and let T be a proper quasi-prime submodule of S. We consider the various

possibilities for (0 :R T ).

Case 1. If (0 :R T ) = 0, then (0 :R1
T1) = 0 and (0 :R2

T2) = 0. So T1 = S1 and

T2 = S2 implies that T = S which is a contradiction.

Case 2. If (0 :R T ) = Pn
1 ⊕ Pm

2 for some positive integer n and m, then T1 =

(0 :S1 P
n
1 ) and T2 = (0 :S2 P

m
2 ) by Proposition 2.4 and [10, Proposition 3.6]. So

T = (0 :S P
n
1 ⊕ Pm

2 ).

Case 3. If (0 :R T ) = Pn
1 ⊕ 0 for some positive integer n, then T1 = (0 :S1

Pn
1 ),

T2 = S2 by Proposition 2.4 and [10, Proposition 3.6]. So it is easy to see that

T = (0 :S P
n
1 ⊕ 0).

The case (0 :R T ) = 0 ⊕ Pm
2 is similar. So S is a quasi comultiplication R-

module. �

Proposition 3.6. Let R be the pullback ring as described in (1), and let S =

(S1
f1−→ S̄

f2←− S2) be a separated quasi comultiplication R-module with S̄ 6= 0.

Then S is an indecomposable R-module.

Proof. Let S be a separated quasi comultiplication module. Then, for both i,

i = 1, 2, Si is a quasi comultiplication Ri-module by Theorem 3.5. Therefore for

both i, i = 1, 2, Si is an indecomposable Ri-module by Proposition 2.4, and so, S

is an indecomposable R-module by [5, Lemma 2.7]. �

Theorem 3.7. Let R be the pullback ring as described in (1). Then the indecom-

posable separated quasi comultiplication modules over R are:

(I) S = (E(R1/P1) → 0 ← 0) and S = (0 → 0 ← E(R2/P2), where E(Ri/Pi)

is the Ri-injective hull of Ri/Pi for i = 1, 2;

(II) S = (R1/P
n
1 → R̄← R2/P

m
2 ).

Proof. By [5, Lemma 2.8], these modules are indecomposable and by Theorems

2.5 and 3.5 they are quasi comultiplication.

Now, let S be an indecomposable separated quasi comultiplication R-module. First,

suppose that S = PS. Then by [5, Lemma 2.7 (i)], S = S1 or S2 and so, S is an

indecomposable quasi comultiplication Ri-module for some i and, since PS = S,

is type (I) in the list. So we may assume that S 6= PS. By Theorem 3.5, Si is

a quasi comultiplication Ri-module, for each i = 1, 2. Hence, by the structure of

quasi comultiplication modules over a local Dedekind domain (see Theorem 2.5),
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we must have Si = E(Ri/Pi) or Ri/P
n
i (n ≥ 1). Since S is indecomposable and

S/PS 6= 0, it follows that for each i = 1, 2, Si is torsion and it is not divisible

Ri-module. Then there are positive integers m,n and k such that Pm
1 S1 = 0,

P k
2 S2 = 0 and PnS = 0. For t ∈ S, let o(t) denote the least positive integer l such

that P lt = 0. Now choose t ∈ S1 ∪ S2 with t̄ 6= 0 and such that o(t) is maximal.

There exists a t = (t1, t2) such that o(t) = n, o(t1) = m and o(t2) = k. Then

Riti is pure in Si for i = 1, 2 (see [5, Theorem 2.9]). Therefore, R1t1 ∼= R1/P
m
1

(resp. R2t2 ∼= R2/P
k
2 ) is a direct summand of S1 (resp. S2), since for each i, Riti is

pure-injective. Hence S1 = R1t1 ∼= R1/P
m
1 since, S1 is indecomposable. Similarly,

S2 = R2t2 ∼= R2/P
k
2 . Let M̄ be the R̄-subspace of S̄ generated by t̄. Then M̄ ∼= R̄.

Let M = (R1t1 = M1 → M̄ ← M2 = R2t2). Then M is an R-submodule of S

which is quasi comultiplication by Theorem 3.5 and is a direct summand of S; this

implies that S = M , and S is as in (II) in the list (see [5, Theorem 2.9]). �

We refer to modules of type (I) in Theorem 3.7 as P1-Prüfer and P2-Prüfer

respectively.

Theorem 3.8. Let R be the pullback ring as described in (1) and let S be a separated

quasi comultiplication R-module. Then S has finite-dimensional top.

Proof. Apply Theorem 3.7 (note that S = U ⊕X, where dimR̄(U/PU) ≤ 1 and

X/PX = 0). �

4. The non-separated quasi comultiplication modules

We continue to use the notation already established, so R is the pullback ring

as described in (1). In this section, we will determine all the indecomposable

non-separated quasi comultiplication R-modules over R. It turns out that each

can be obtained by amalgamating finitely many indecomposable separated quasi

comultiplication modules.

We begin by the following lemma.

Lemma 4.1. Let R be a pullback ring as described in (1) and M , S be two R-

modules. Let ϕ : S −→M be an epimorphism.

(1) If N is a submodule of M , then (N :R M) = (ϕ−1(N) :R S).

(2) If T is a proper submodule of S, then (0 :R T ) = (0 :R ϕ(T )).

(3) If either (T :R S) = P1 ⊕ 0 or (T :R S) = 0⊕ P2, then

(T :R S) = (ϕ(T ) :R M).

(4) If N is a quasi-prime submodule of M , then ϕ−1(N) is a quasi-prime sub-

module of S.
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(5) If T is a quasi-prime submodule of S, then ϕ(T ) is a quasi-prime submodule

of M .

Proof. (1) Suppose (r1, r2) ∈ (N :R M) and (s1, s2) ∈ S. Then ϕ(s1, s2) ∈ M

and so ϕ(r1s1, r2s2) = (r1, r2)ϕ(s1, s2) ∈ (r1, r2)M ⊆ N . Thus (r1, r2)(s1, s2) =

(r1s1, r2s2) ∈ ϕ−1(N). Hence (r1, r2)S ⊆ ϕ−1(N) and we have (r1, r2) ∈ (ϕ−1(N) :R

S). For the reverse inclusion, suppose that (r′1, r
′
2) ∈ (ϕ−1(N) :R S) and let m ∈M .

Then ϕ(s′1, s
′
2) = m for some (s′1, s

′
2) ∈ S. Thus (r′1, r

′
2)(s′1, s

′
2) ∈ ϕ−1(N). Hence

(r′1, r
′
2)m = (r′1, r

′
2)ϕ(s′1, s

′
2) = ϕ(r′1s

′
1, r
′
2s
′
2) ∈ ϕ(ϕ−1(N)) ⊆ N , and we have the

equality.

(2) First suppose that (0 :R T ) = 0 and (r1, r2) ∈ (0 :R ϕ(T )). Therefore

ϕ((r1, r2)T ) = (r1, r2)ϕ(T ) = 0, hence (r1, r2)T ⊆ K. So (r1, r2)(p1, p2)T = 0

since PK = 0 by [21, Proposition 2.4 ]. Thus (r1p1, r2p2) ∈ (0 :R T ) implies that

r1 = 0 and r2 = 0 since Ri is a domain for each i = 1, 2. So we get (0 :R ϕ(T )) = 0

and we have the equality. It is clear that (0 :R T ) ⊆ (0 :R ϕ(T )). Now, we consider

the possibilities for (0 :R ϕ(T )):

Case 1. If (0 :R ϕ(T )) = Pn
1 ⊕ 0 for some positive integer n, then ϕ((Pn

1 ⊕ 0)T ) =

(Pn
1 ⊕ 0)ϕ(T ) = 0. Hence (Pn

1 ⊕ 0)T ⊆ K ∩ (P1 ⊕ 0)S = 0 by [21, Proposition 2.3]

and so, Pn
1 ⊕ 0 ⊆ (0 :R T ) as required.

Case 2. If (0 :R ϕ(T )) = 0⊕ Pm
2 for some positive integer m, the proof is similar

to Case 1.

Case 3. If (0 :R ϕ(T )) = Pn
1 ⊕Pm

2 for some positive integer n, m, then by an argu-

ment like in Case 1, we get Pn
1 ⊕0 ⊆ (0 :R T ). Similarly, by Case 2, 0⊕Pm

2 ⊆ (0 :R

ϕ(T )) implies that 0 ⊕ Pm
2 ⊆ (0 :R T ). Thus (0 :R ϕ(T )) = Pn

1 ⊕ Pm
2 ⊆ (0 :R T )

and we have the equality.

(3) Let (T :R S) = P1 ⊕ 0. It is clear that (P1 ⊕ 0)M ⊆ ϕ(T ). Now, suppose that

(r1, r2) ∈ (ϕ(T ) :R M). It suffices to show that r2 = 0. Let (s1, s2) ∈ S. Then

(r1, r2)ϕ(s1, s2) ∈ (r1, r2)M ⊆ ϕ(T ). So ϕ(r1s1, r2s2) = ϕ(t1, t2) for some (t1, t2) ∈
T . Hence (r1, r2)(s1, s2) = (t1, t2) + (k1, k2) for some (k1, k2) ∈ K. This implies

that (r1, r2)S ⊆ T +K. So (0, p2)(r1, r2)S ⊆ T since (o, p2)K ⊆ K ∩ (0⊕P2)S = 0.

Hence (0, p2r2) ∈ (T :R S) = P1⊕0. Then p2r2 = 0 implies that r2 = 0, since R2 is

a domain. Therefore (ϕ(T ) :R M) = P1 ⊕ 0. The case (T :R S) = 0⊕P2 is similar.

(4) Clear by Theorem 3.1 and Case (1).

(5) Let T be a quasi-prime submodule of S. Then by Theorem 3.1, we may assume

that (P1 ⊕ 0)S ⊆ T . We show that (P1 ⊕ 0)M ⊆ ϕ(T ). Assume that m ∈ M ,

then there exists s ∈ S where ϕ(s) = m. Therefore (p1, 0)m = (p1, 0)ϕ(s) =

ϕ((p1, 0)s) ∈ ϕ(T ) for every m ∈ M . Hence (P1 ⊕ 0)M ⊆ ϕ(T ). Similarly, if

(0⊕ P2)S ⊆ T , then (0⊕ P2)M ⊆ ϕ(T ). �
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Proposition 4.2. Let R be the pullback ring as described in (1) and let M be any

R-module. Let 0→ K
i−→ S

ϕ−→M → 0 be a separated representation of M . Then

the following hold:

(1) qSpecR(S) = ∅ if and only if qSpecR(M) = ∅.
(2) (0 :R S) = 0 if and only if (0 :R M) = 0.

(3) If (0 :R S) = 0, then qSpecR(S) 6= ∅.
(4) If (0 :R M) = 0, then qSpecR(M) 6= ∅.
(5) If either P1 ⊕ 0 ⊆ (0 :R S) or 0⊕ P2 ⊆ (0 :R S), then M is separated.

Proof. (1) Follows from Lemma 4.1.

(2) Clear by [13, Proposision 5.2].

(3) Assume that (0 :R S) = 0. If (P1⊕0)S = S, then (0⊕P2)S = (0⊕P2)(P1⊕0)S =

0 and so 0⊕ P2 ⊆ (0 :R S) which is a contradiction. So (P1 ⊕ 0)S is a quasi-prime

submodule of S by Theorem 3.1. Similarly, (0⊕ P2)S ∈ qSpecR(S).

(4) If (0 :R M) = 0, then (0 :R S) = 0 by Part (2). Thus qSpecR(S) 6= ∅ by Part

(3). Hence the result follows from Part (1).

(5) Let P1 ⊕ 0 ⊆ (0 :R S). Then P1 ⊕ 0 ⊆ (0 :R M) since (0 :R S) ⊆ (0 :R M).

Then (P1 ⊕ 0)M = 0 and M is a separated R-module by [21, Lemma 2.9 ]. The

case 0⊕ P2 ⊆ (0 :R S) is similar. �

Theorem 4.3. Let R be the pullback ring as described in (1) and let M be any

non-separated R-module. Let 0→ K → S → M → 0 be a separated representation

of M . Then S is a quasi comultiplication R-module if and only if M is a quasi

comultiplication R-module.

Proof. Let S be a quasi comultiplication R-module. By Proposition 4.2, we may

assume that qSpec(S) 6= ∅. First suppose that S̄ 6= 0. Then either (0 :R S) =

P1 ⊕ Pn
2 or (0 :R S) = Pn

1 ⊕ P2 for some positive integer n by Proposition 3.4. So

either P1 ⊕ 0 ⊆ (0 :R S) or 0 ⊕ P2 ⊆ (0 :R S); hence M is a separated R-module

by Proposition 4.2 which is a contradiction. Now, assume that S̄ = 0, if either

(0 :R S) = P1 ⊕ 0 or (0 :R S) = 0 ⊕ P2, then M is a separated R-module by

Proposition 4.2 which is a contradiction. So we may assume that (0 :R S) = 0

by Proposition 3.3. Let N be a quasi-prime submodule of M . Then ϕ−1(N) is a

quasi-prime submodule of S by Lemma 4.1. So ϕ−1(N) = (0 :S (0 :R ϕ−1(N))).

We show that N = (0 :M (0 :R ϕ−1(N))). If n ∈ N , then ϕ(s) = n for some

s ∈ S. Hence s = ϕ−1(n) ∈ ϕ−1(N). Let (r1, r2) ∈ (0 :R ϕ−1(N)). Then

(r1, r2)s = 0. Then we have (r1, r2)n = (r1, r2)ϕ(s) = ϕ((r1, r2)s) = 0 and n ∈
(0 :M (0 :R ϕ−1(N))). Therefore N ⊆ (0 :M (0 :R ϕ−1(N))). Now assume that

m ∈ (0 :M (0 :R ϕ−1(N))). By Theorem 3.1, we can assume that (P1 ⊕ 0)M ⊆ N
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and so by Lemma 4.1, (P1⊕0)S ⊆ ϕ−1(N). Since (0 :R S) = 0, it is easy to see that

(0 :R (P1⊕0)S) = 0⊕P2. Since (P1⊕0)S ⊆ ϕ−1(N), we have (0 :R ϕ−1(N)) ⊆ (0 :R

(P1 ⊕ 0)S) = 0 ⊕ P2. Therefore (0 :R ϕ−1(N)) = 0 ⊕ P k
2 for some positive integer

k. So ϕ−1(N) = (0 :S 0⊕P k
2 ) and m ∈ (0 :M 0⊕P k

2 ). There exists t = (t1, t2) ∈ S
such that ϕ(t) = ϕ(t1, t2) = m. Thus ϕ(0, pk2t2) = ϕ((0, pk2)(t1, t2)) = (0, pk2)m = 0.

Therefore (0, pk2t2) ∈ K ∩ (0 ⊕ P2)S = 0 and so pk2t2 = 0 by [21, Proposition 2.3].

Hence t = (t1, t2) ∈ (0 :S (0⊕P k
2 )) = ϕ−1(N) and so m = ϕ(t) ∈ N . Then we have

the equality.

Conversely, let M be a quasi comultiplication R-module. By Proposition 4.2, we

may assume that qSpec(S) 6= ∅. Let T be a non-zero quasi-prime submodule of S.

Then K ⊆ T by [7, Proposition 4.3 ], and so T/K is a quasi-prime submodule of

S/K by Lemma 2.2. By an argument like that in [7, Theorem 4.4], S is a quasi

comultiplication R-module. �

We are ready to determine all indecomposable non-separated quasi comultipli-

cation R-modules.

Proposition 4.4. Let R be the pullback ring as described in (1). Then the injective

hull E(R/P ) of R/P is a non-separated quasi comultiplication R-module.

Proof. By [7, Proposition 4.2], E(R/P ) is a non-separated comultiplication R-

module. So it is a non-separated quasi comultiplication R-module. �

Proposition 4.5. Let R be the pullback ring as described in (1) and let M be a

non-zero indecomposable non-separated quasi comultiplication R-module. Let 0 →
K → S →M → 0 be a separated representation of M . Then S̄ = 0.

Proof. Assume to the contrary, S̄ 6= 0. By Theorem 4.3, S is quasi comulti-

plication; hence S is type (II) of Theorem 3.7 which are indecomposable. Then

PmS = 0 for some m, and so PmM = 0. If m = 1, then (P1 ⊕ 0)M ⊆ PM = 0; so

(P1 ⊕ 0)M ∩ (0⊕ P2)M = 0 that is a contradiction. So suppose that m ≥ 2. Let k

be the least positive integer such that P kM = 0 (so P k−1M 6= 0). It follows that

ϕ(P kx) = 0 for all x ∈ S; so ϕ(P k
1 x) = ϕ(P k

2 x) = 0. Since by [19, Proposition 2.3],

ϕ is one-to-one on PiS for each i, we get P k
1 x = P k

2 x = 0. Thus P kx = 0 and hence

P kS = 0. Set N = P k−1M . Then 0 → K → ϕ−1(N) = P k−1S → N → 0 is a

separated representation of N by [6, Lemma 3.1]; hence K ⊆ PP k−1S = P kS = 0

which is a contradiction since M is non-separated. Thus S̄ = 0. �

Before embarking on the proof of the next result let us explain its idea. Let M

be any R-module and let 0 → K
i−→ S

ϕ−→ M → 0 be a separated representation
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of M . If M is a quasi comultiplication non-separated R-module, then S is quasi-

comultiplication by Theorem 4.3. In this case, S = S1 ⊕ S2, where Si is of type (I)

(in statement of Theorem 3.7). In any separated representation 0→ K
i−→ S

ϕ−→
M → 0 the kernel of the map ϕ to M is annihilated by P , hence is contained in

the socle of the separated module S. Thus M is obtained by amalgamation in the

socles of the various direct summands of S.

Let M be any non-zero indecomposable non-separated quasi comultiplication R-

module and let 0→ K
i−→ S

ϕ−→ M → 0 be a separated representation of M . By

Proposition 4.4, the modules finite length do not occur among the direct summands

of S and S = S1 ⊕ S2, where Si is of type (I) (in statement of Theorem 3.7). If

there are two modules of type (I), then their generators cannot both be annihilated

by the same Pi. This contradicts there being two copies of the P1-Prüfer or two

copies of the P2-Prüfer. So S1 is P1-Prüfer and S2 is P2-Prüfer. It is clear that

the module obtained this amalgamation is, indeed, E(R/P ), the R-injective hull of

R/P which is an indecomposable quasi-comultiplication non-separated R-module

by Proposition 4.4 (also see [5, p. 4053]). Therefore we have the following theorem:

Theorem 4.6. Let R = (R1 → R̄ ← R2) be the pullback of two discrete valuation

domains R1, R2 with common factor field R̄. Then the only non-zero indecompos-

able quasi comultiplication non-separated R-module, up to isomorphism, is E(R/P ),

the R-injective hull of R/P .

Corollary 4.7. Let R be the pullback ring as described in Theorem 4.6. Then

every non-zero-indecomposable non-separated quasi comultiplication R-module is

pure-injective.

Proof. Apply [5, Theorem 3.5] and Theorem 4.6. �
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