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1. Introduction

Let R be an associative ring. Writing R = R1 + R2, we mean that R1 and R2

are subrings of R and, for every r ∈ R, there exist r1 ∈ R1 and r2 ∈ R2 such that

r = r1 + r2.

Many authors studied problems and relationships among properties of R1, R2

and R (see [4], [5], [7], [8], [10], [11], [12], [13]). For instance, the question “is R nil

provided that R2
1 = 0 and R2 is nil?” is equivalent to the famous Köthe’s nil ideal

problem (see [14], [15] and [16]). Let us mention three other open problems in this

area.

Suppose that R1 and R2 are rings satisfying a polynomial identity. Does R

satisfies a polynomial identity ([1])? The answer to this problem is known in several

particular cases (cf. [3], [7], [8], [9], [10], [11], [12], [13]), and a full positive answer

in [12].

It is known [14] that if both R1 and R2 are nilpotent rings, then so is R. It is also

known that there exists a function f(n,m) such that if Rn
1 = 0 and Rm

2 = 0, then

Rf(n,m) = 0. However the best such a function is still unknown. It is conjectured

that f(m,n) = mn.

For the last problem, suppose that R1 is nil and R2 is reduced (it has no nonzero

nilpotent elements). Is R1 an ideal of R? The answer to this question is known to

be “yes” in many particular cases [13], but in general, is still unknown.
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We remark that a general method of constructing rings which are sums of two

subrings was invited by Kelarev [6]. As we mentioned before, all these problems,

on their substantial parts, concern due structure of rings which are sums of two

subrings. This is particularly clear for the question 3. Note that it also concerns

questions first and second. Namely, if R is a semiprime ring which satisfies a

polynomial identity, then the ring of Ore extension ofR is isomorphic to a direct sum

of matrix rings over division rings. Thus, when studying whether of R = R1 +R2,

and each Ri satisfies a polynomial identity implies R satisfies such an identity

in the case of semiprime R to study the structure of subrings of matrix rings of

two subrings. Here, we also note that, Bokut [2] proved that every algebra over

a field can be embedded into a simple algebra which is a sum of three nilpotent

subalgebras. In view of these two facts, we will a general method of constructing

2 and 3 dimensional algebras over a field F which are sums of to subalgebras

with respect to the isomorphisms. This general method may give us to describe

semiprime rings (even finite dimensional algebras) as a sum of two subrings.

2. Some general results

Suppose that F is a field and R is a finite dimensional (non-unitary) associative

F -algebra. Put A := F ×R and define binary operation + and · on A by the rule

(f1, r1) + (f2, r2) = (f1 + f2, r1 + r2)

and

(f1, r1) · (f2, r2) = (f1 · f2, f1r2 + f2r1 + r1r2),

where f1, f2 ∈ F and r1, r2 ∈ R. It is easy to say that A is an F -vector space and

we may identify elements r ∈ R with elements (0, r) in A.

Proposition 2.1. A is a finite dimensional F -algebra with a unit and R is a two

sided ideal of A such that dimF (A/R) = 1. Moreover, A/R ∼= F .

Proof. Since A is a vector space over F , it is easy to see that

f(a, b) = (f, 0) · (a, b)
= (fa, fb)

= (a, b) · (f, 0),

which shows that (1, 0) is a unit.
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For each (fi, ri) ∈ A, we get

(f1, r1)[(f2, r2)(f3, r3)] = (f1, r1)(f2f3, f2r3 + f3r2 + r2r3)

= (f1f2f3, f1f2r3 + f1f3r2 + f1r2r3 + f2f3r1 + f2r1r3

+f3r1r2 + r1r2r3)

= (f1f2, f1r2 + f2r1 + r1r2)(f3, r3)

= [(f1, r1)(f2, r2)](f3, r3).

Similarly

(f1, r1)[(f2 + f3, r2 + r3)] = (f1f2 + f1f3, f1r2 + f1r3 + f2r1 + f3r1 + r1r2 + r1r3)

= (f1, r1)(f2, r2) + (f1, r1)(f3, r3)

and

[(f2 + f3, r2 + r3)](f1, r1) = (f2, r2)(f1, r1) + (f3, r3)(f1, r1).

Clearly, R is F -subspace of A such that dimF (A) = dimF (R) + 1 and

(f, r)(0, s) = (0, fs+ rs)

(0, s)(f, r) = (0, sf + sr)

for every (f, r) ∈ A and s ∈ R. Hence R is a two-sided ideal of A. Finally,

A/R ∼= F . �

For an algebra R, the symbol R∗ denotes R with an identity adjoined.

Theorem 2.2. If R does not contain a unit, then it is an ideal of finite dimensional

F -algebra A such that dimF (A) = dimF (R) + 1, i.e. there exists a complete orthog-

onal set of primitive idempotents e0, . . . , em such that e0 ∈ A \ R, e1, . . . , em ∈ R,

R = A(1− e0)A and dimF (e0A/e0J(A)) = 1.

Proof. The first part follows from Proposition 2.1. The rest of the claim follows

from [17, Proposition VIII.4.1], since every orthogonal set of idempotents of R +

J(A)/J(A) can be lifted to an orthogonal set of idempotents of R. �

Remark 2.3. Fix A from Theorem 2.2 if R does not contain a unit and put

A = R otherwise. We know that there exists a complete orthogonal set of primitive

idempotents e0, . . . , em of A such that e1, . . . , em ∈ R and dimF (e0A/e0J(A)) = 1

if A 6= R. Then m < dimF R.

Proof. Obviously, m ≤ dimF R ≤ dimF A and, moreover, m 6= dimF R if R = A.

Let R 6= A. If e0A is simple, then 1− e0 ∈ R is a unit of R, a contradiction. Thus

dimF (e0A) > 1, hence m < dimF R. �
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3. Two structure theorems

The following observation is easy.

Lemma 3.1. If 0 6= R1 and 0 6= R2 are proper subalgebras of the algebra R over a

field F and dimF R = 2, then dimF R1 = 1 = dimF R2.

Assume that dimF R = 2 such that R is a sum of subalgebras R1 and R2. By

Lemma 3.1, we may assume that dimF R1 = 1 = dimF R2. Let R1 = Fe and

R2 = Ff , where e2 = e ∈ R and f2 = f ∈ R, or e2 = 0 or f2 = 0 if R1
∼= F 0 or

R2
∼= F 0, where F 0 denotes F with zero multiplication. Then we have the following

cases on R1 (or R2).

* If R2
1 = 0, then R1

∼= F 0. Hence we have either R2
∼= F 0 or R2

∼= F .

** If R2
1 6= 0, then R1

∼= F . Hence we have either R2
∼= F 0 or R2

∼= F .

Case 1. Let R2
1 = 0, R1

∼= F 0 and R2
∼= F 0. For α ∈ R1 and β ∈ R2, write

ef = αe+ βf. (1)

Note that, in this case, e2 = 0 = f2. Multiplying the equation (1) by f on the

right, we get αef = 0 which implies α = 0 or ef = 0. If α = 0, we get ef = βf .

Thus βef = 0. It follows ef = 0. Similarly, we obtain that fe = 0. Now it is

enough to take R = F 0 × F 0, e = (1, 0) and f = (0, 1).

Case 2. Let R2
1 6= 0, R1

∼= F and R2
∼= F . Then, for α ∈ R1 and β ∈ R2, we

get again the equation (1). Multiplying the equation (1) by e on the left, we get

ef = αe+ βef. (2)

Now, 0 = β(ef − f) implies either β = 0 or ef = f . If β = 0, then, by equation

(1), ef = αe. Since αe = ef = ef2 = αef = α2e, we get either α = 1 or α = 0. By

equation (1), if β = 0 and α = 0, then we have ef = 0 and so fe = 0, if β = 0 and

α = 1 then ef = e. Therefore ef ∈ {0, e, f}.
By similar reasoning as above we can obtain that fe ∈ {0, e, f}. Assume that

ef = 0. Multiplying the equation (3) by f on the right, we have β1f = 0. So

β1 = 0. Consequently 0 = efe = α1e which implies α1 = 0. Hence fe = 0. We can

take R = F × F and e = (1, 0), f = (0, 1).

Let ef = f = fe. So e is an identity element of R. Therefore e − f and f are

orthogonal idempotents of R. Consequently R = F × F and we can take e = (1, 1)

and f = (0, 1). The case where ef = e = fe can be treated analogously.
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In the case where ef = f and fe = e, consider R =

(
F F

0 0

)
, where e =

(
1 0

0 0

)

and f =

(
1 1

0 0

)
.

Analogously, if ef = e and fe = f , let R =

(
F 0

F 0

)
, where e =

(
1 0

0 0

)
and

f =

(
1 0

1 0

)
.

Case 3. Let R2
1 6= 0, R1

∼= F and R2
∼= F 0. Multiplying the equation (1) by f

on the right, we get 0 = αef which implies either α = 0 or ef = 0.

If α = 0, then ef = βf by equation (1). Now ef = e2f = eef = eβf = βef =

β2f which implies either β = 0 or β = 1. Clearly, if β = 0 then ef = 0 and if

β = 1, then ef = f .

Finally, multiplying the equation (3) by f on the right, we get α1ef = fef . So

α1e = 0 because ef = f or ef = 0. Hence fe = β1f = β2
1f . It follows that β1 = 1

or β1 = 0. Consequently, fe = 0 or fe = f .

In the case where ef = fe = 0, we take R = F × F 0, where e = (1, 0) and

f = (0, 1). Note that if R =

(
F F

0 0

)
, e =

(
1 0

0 0

)
and f =

(
0 0

1 0

)
, then ef = 0

and fe = f .

Finally, let R = (F 0)∗, e = (1, 0) and f = (0, 1). Clearly, ef = f = fe.

As a result of above calculations, we have the following observation.

Theorem 3.2. Assume that dimF R = 2 and R = R1 + R2 is a sum of proper

subalgebras R1 and R2. Then we have the following cases.

(I) If R1
∼= F 0 and R2

∼= F 0, then R = F 0 × F 0.

(II) If R1
∼= F and R2

∼= F , then one of the following cases holds true:

(1) R = F × F ,

(2) R =

(
F F

0 0

)
,

(3) R =

(
F 0

F 0

)
.

(III) If R1
∼= F and R2

∼= F 0, then one of the following cases holds true:

(1) R = F × F 0,

(2) R =

(
F F

0 0

)
,
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(3) R =

(
F 0

F 0

)
,

(4) R = (F 0)∗.

In the next Theorem, we will use the following.

Remark 3.3. Let M be an A-A-bimodule, denote µ(M) a matrix µ(M) = (dij)

where dij = dimF (eiMej). Denote by S a ring of polynomials in two noncommuting

variables x1, x2 over F . If A = (akl) is a matrix where akl ∈ F , 1 ≤ k, l ≤ 2, then

define

S(A) = S/〈a22x
2
1−a11x

2
2, a21x1x2−a12x2x1, a22x1x2−a12x

2
2, a22x2x1−a21x

2
2, x

3
1, x

3
2〉,

where a11, a12, a21, a22 6= 0. Moreover,

S(A) = S/〈x2
1, a21x1x2 − a12x2x1, a22x1x2 − a12x

2
2, a22x2x1 − a21x

2
2, x

3
2〉

if a11 = 0,

S(A) = S/〈x2
1, x1x2, a22x2x1 − a21x

2
2, x

3
2〉

if a11 = a12 = 0,

S(A) = S/〈x2
1, x1x2, x2x1, x

3
2〉

if a11 = a12 = a21 = 0. Analogously we define S(A) in the case a11 = a22 = 0 or

a11 = a12 = a22 = 0.

Assume that dimF R = 3 such that R is a sum of subalgebras order of R1 and

R2.

Theorem 3.4. Assume that dimF R = 3 such that R is a sum of subalgebras order

of R1 and R2.

(I) Let m = 0 and R = A. Then one of the following cases holds true:

(a) If J(R) = 0, then R ∼= K, where K is a field of F -dimension 3 and

either R1 = R or R2 = R.

(b) If R/J(R) ∼= F and J2(R) = 0, then R ∼= F [x1, x2]/〈x2
1, x1x2, x

2
2〉 and

(1) R1 = R and R2 is an arbitrary subalgebra of R.

(2) R1
∼= F0 × F0 and R2

∼= F .

(3) R1
∼= F [x]/〈x2〉 and R2

∼= F0.

(4) R1
∼= F [x]/〈x2〉 and R2

∼= F0 × F0.

(5) R1
∼= R2

∼= F [x]/〈x2〉.
(c) If R/J(R) ∼= F and J2(R) 6= 0, then R ∼= F [x]/〈x3〉 and

(6) R1 = R and R2 is an arbitrary subalgebra of R,

(7) R1
∼= xF [x]/〈x3〉 and R2

∼= F ,



ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS137

(8) R1
∼= xF [x]/〈x3〉, R2

∼= F [x]/〈x2〉, where F [x]/〈x2〉 ∼= F +

x2F ⊂ R.

Furthermore, all the cases in (1) are commutative.

(II) Let m = 1 and R = A. Then one of the following cases holds true:

(a) If J(R) = 0, then R ∼= F ×G where G is a field of F -dimension 2 and

(1) R1 = R and R2 is an arbitrary subalgebra of R,

(2) R1
∼= G and R2

∼= F ,

(3) R1
∼= G and R2

∼= F × F .

(b) If J(R) 6= 0, then R ∼=

(
F F

0 F

)
and we have one of the following

cases.

(4) R1 = R and R2 is an arbitrary subalgebra of R,

(5) R1
∼= F 2 and R2

∼= F0,

(6) R1
∼=

(
F F

0 0

)
and R2

∼= F ,

(7) R1
∼=

(
0 F

0 F

)
and R2

∼= F ,

(8) R1
∼= F 2 and R2

∼=

(
0 F

0 F

)
,

(9) R1
∼= F 2 and R2

∼=

(
F F

0 0

)
,

(10) R1
∼=

(
F F

0 0

)
and R2

∼=

(
0 F

0 F

)
.

(III) Let m = 2 and R = A. Then R ∼= F × F × F whenever m = 2 and so we

have one of the following cases.

(a) R1 = R and R2 is an arbitrary (semisimple) subalgebra of R,

(b) R1
∼= F × F and R2

∼= F ,

(c) R1
∼= R2

∼= F × F .

(IV) Let m = 0 and R 6= A. If J2(R) = 0, then R ∼= F 3
0 , and so R1

∼= F k
0 and

R2
∼= F l

0 for k, l ≤ 3. We have one of the following cases.

(a) If J2(R) = 0, then R ∼= F 3
0 , and so R1

∼= F k
0 and R2

∼= F l
0 for k, l ≤ 3.

(b) If J2(R) 6= 0, J3(R) = 0 and dimF (J(R)/J2(R)) > dimF (J2(R)/J3(R)),

then R ∼= {x1, x2}S(A) and

(1) R1 = R and R2 is an arbitrary subalgebra of R,

(2) R1
∼= xF [x]/〈x3〉 and R2

∼= F0,

(3) R1
∼= F 2

0 and R2
∼= F0,

(4) R1
∼= R2

∼= xF [x]/〈x3〉,
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(5) R1
∼= xF [x]/〈x3〉 and R2

∼= F 2
0 ,

(6) R1
∼= F 2

0 and R2
∼= F 2

0 .

(c) If J3(R) 6= 0, then R = R1
∼= xF [x]/〈x4〉 and R2 is an arbitrary

(chain) subalgebra of R.

(V) Let m = 1 and R 6= A. Then A/J(R) ∼= F × G where G is a field and

dimF (G) ≤ 2. Let G ∼= F . We have one of the following cases.

(a) If J2(R) = 0 and µ(J(R)) =

(
1 0

0 1

)
, then R ∼= F0 × F [x]/〈x2〉 and

(1) R1 = R and R2 is an arbitrary subalgebra of R,

(2) R1
∼= F [x]/〈x2〉 and R2

∼= F0,

(3) R1
∼= F0 × F and R2

∼= F0,

(4) R1
∼= F [x]/〈x2〉 and R2

∼= F 2
0 ,

(5) R1
∼= F [x]/〈x2〉 and R2

∼= F0 × F .

(b) If J2(R) = 0 and µ(J(R)) =

(
0 1

0 1

)
, then R ∼=




0 0 b

0 a c

0 0 a

 | a, b, c ∈ F


and

(6) R1 = R and R2 is an arbitrary subalgebra of R,

(7) R1 = J(R) ∼= F 2
0 and R2

∼= F ,

(8) R1 =

(
F 0

F 0

)
and R2

∼= F0,

(9) R1
∼= F [x]/〈x2〉 and R2

∼= F0,

(10) R1 = J(R) ∼= F 2
0 and R2

∼= F [x]/〈x2〉,

(11) R1 = J(R) ∼= F 2
0 and R2

∼=

(
F 0

F 0

)
,

(12) R1
∼=

(
F 0

F 0

)
and R2

∼= F [x]/〈x2〉.

(c) If J2(R) = 0 and µ(J(R)) =

(
0 0

1 1

)
, then R ∼=




0 0 0

0 a 0

b c a

 | a, b, c ∈ F
.

In fact, this case is antiisomorphic to the case (b) (i.e. it has the struc-

ture of Rop).

(d) If J2(R) = 0 and µ(J(R)) =

(
1 0

1 0

)
, then R ∼=


F 0 F

0 0 F

0 0 0

 and

(13) R1 = R and R2 is an arbitrary subalgebra of R,

(14) R1
∼= F 2

0 and R2
∼= F ,
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(15) R1 =

(
F 0

F 0

)
and R2

∼= F0,

(16) R1
∼= F × F0 and R2

∼= F0,

(17) R1 = J(R) ∼= F 2
0 and R2

∼= F × F0,

(18) R1 = J(R) ∼= F 2
0 and R2

∼=

(
F 0

F 0

)
,

(19) R1
∼=

(
F 0

F 0

)
and R2

∼= F × F0.

(e) If J2(R) = 0 and µ(J(R)) =

(
1 1

0 0

)
, then R ∼=


F 0 0

0 0 0

F F 0

.

(f) If J2(R) = 0 and µ(J(R)) =

(
0 1

1 0

)
, then R ∼=



a b 0

0 0 c

0 0 a

 | a, b, c ∈ F


and

(20) R1 = R and R2 is an arbitrary subalgebra of R,

(21) R1
∼= F 2

0 and R2
∼= F ,

(22) R1 =

(
F 0

F 0

)
and R2

∼= F0,

(23) R1
∼=

(
F F

0 0

)
and R2

∼= F0,

(24) R1 = J(R) ∼= F 2
0 and R2

∼=

(
F F

0 0

)
,

(25) R1 = J(R) ∼= F 2
0 and R2

∼=

(
F 0

F 0

)
,

(26) R1
∼=

(
F 0

F 0

)
and R2

∼=

(
F F

0 0

)
.

(g) If dimF G = 2, then J(R) is not a G-module, hence R ∼= G× F0 and

(27) R1 = R and R2 is an arbitrary subalgebra of R,

(28) R1
∼= G and R2

∼= F0,

(29) R1
∼= G and R2

∼= F × F0.

(h) If J2(R) 6= 0, then R ∼= F × (xF [x]/〈x3〉) and

(30) R1 = R and R2 is an arbitrary subalgebra of R,

(31) R1
∼= xF [x]/〈x3〉 and R2

∼= F ,

(32) R1
∼= xF [x]/〈x3〉 and R2

∼= F × F0.
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(VI) Let m = 2 and R 6= A. Then A/J(R) ∼= F 3 and we have one of the

following cases.

(a) R ∼= F 2 × F0 and

(1) R1 = R and R2 is an arbitrary subalgebra of R,

(2) R1
∼= F 2 and R2

∼= F0,

(3) R1
∼= F × F0 and R2

∼= F ,

(4) R1
∼= F 2 and R2

∼= F × F0.

(b) R ∼= F ×

(
F 0

F 0

)
and

(5) R1 = R and R2 is an arbitrary subalgebra of R,

(6) R1
∼= F 2 and R2

∼= F0,

(7) R1
∼=

(
F 0

F 0

)
and R2

∼= F ,

(8) R1
∼= F × F0 and R2

∼= F ,

(9) R1
∼= F 2 and R2

∼= F × F0,

(10) R1
∼= F 2 and R2

∼=

(
F 0

F 0

)
,

(11) R1
∼=

(
F 0

F 0

)
and R2

∼= F × F0.

(c) R ∼= F ×

(
F F

0 0

)
and

(12) R1 = R and R2 is an arbitrary subalgebra of R,

(13) R1
∼= F 2 and R2

∼= F0,

(14) R1
∼=

(
F F

0 0

)
and R2

∼= F ,

(15) R1
∼= F × F0 and R2

∼= F ,

(16) R1
∼= F 2 and R2

∼= F × F0,

(17) R1
∼= F 2 and R2

∼=

(
F F

0 0

)
,

(18) R1
∼=

(
F F

0 0

)
and R2

∼= F × F0.

Proof. We can suppose without loss of generality that dimF (R1) ≥ dimF (R2).

(I) Let m = 0 and R = A. Then m = 0, R is a local algebra and either R/J(R) ∼= F

or J(R) = 0 and R is a field. Note that the case dimF (R/J(R)) = 2 is excluded,

since J(R)/J2(R) should be an R/J(R)-vector space and hence 2 | dimF (R).

If J(R) = 0, then R is a field and its subfields of F -dimension is either 1 or 3.

Hence either R1 = R or R2 = R.
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If R/J(R) ∼= F and J2(R) = 0, then R ∼= F [x1, x2]/〈x2
1, x1x2, x

2
2〉. Hence we

have one of the possibilities (1)-(5).

If R/J(R) ∼= F and J2(R) 6= 0, then J3(R) = 0 and there exists a basis 1, j, j2

of RF , where j ∈ J(R) and j2 ∈ J2(R). Hence R ∼= F [x]/〈x3〉. Now we have one

of the possibilities (6)-(8).

(II) If m = 1, dimF (R/J(R)) ≥ 2 and so dimF (J(R)) ≤ 1.

If J(R) = 0, then clearly, R ∼= F × G, where G is a field of F -dimension 2 and

we have one of the possibilities (1)-(3).

If J(R) 6= 0, then R/J(R) ∼= F ×F and dimF (J(R)) = 1. As J(R) is an F ×F -

module, we get that R ∼=

(
F F

0 F

)
. Note that R ∼=

(
F 0

F F

)
. Hence we have one

of the possibilities (4)-(10).

(III) This is clear.

(IV) We assume that m = 0. Then R = J(R) for a local algebra A of the dimension

4. If J2(R) = 0, then R ∼= F 3
0 . So (a) is clear. If J2(R) 6= 0 and J3(R) = 0, then we

get dimF (J(R)/J2(R)) = 2 and dimF (J2(R)/J3(R)) = 1. Then there exists a basis

{j1, j2, j3} of R and elements akl ∈ F , k, l ∈ {1, 2} such that j1, j2 ∈ J(R) \ J2(R),

j3 ∈ J2(R) and jkjl = aklj3 for all k, l ∈ {1, 2}. Now it is easy to see that

A ∼= S((akl)) and so we have one of the possibilities (1)-(6).

If J3(R) 6= 0, then J4(R) = 0 and dimF (J(R)/J2(R)) = dimF (J2(R)/J3(R)) =

dimF (J3(R)) = 1 and there is a base {j, j2, j3} of R. Hence R = R1
∼= xF [x]/〈x4〉

and R2 is an arbitrary (chain) subalgebra of R.

(V) Let m = 1 and R 6= A. Then either e0J(R) 6= 0 or J(R)e0 6= 0 and A/J(R) ∼=
F ×G where G is a field and dimF (G) ≤ 2. Let G ∼= F . First, moreover, suppose

that J2(R) = 0 and we will discuss cases of µ(J(R)), denote {j1, j2} a base of

J(R) such that jk ∈ eak
J(R)ebk for a suitable ak and bk. Note that either the

first row or the first column is nonzero and jkjl = 0. Hence it remains to express

multiplications e1jk and jke1, which follows immediately from the occurrence of jk

in eak
Jebk .

If µ(J(R)) =

(
1 0

0 1

)
, then j1 ∈ e0J(R)e0, j2 ∈ e1J(R)e1, e1j1 = j1e1 = 0 and

e1j2 = j2e1 = j2. Thus R ∼= F0 × F [x]/〈x2〉 and one of the possibilities (1)-(5)

holds true.
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If µ(J(R)) =

(
0 1

0 1

)
, then j1 ∈ e0J(R)e1, j2 ∈ e1J(R)e1, e1j1 = 0, j1e1 = j1

and e1j2 = j2e1 = j2. Hence R ∼=




0 0 b

0 a c

0 0 a

 | a, b, c ∈ F
. Hence one of the

possibilities (6)-(12) holds true.

If If µ(J(R)) =

(
1 0

1 0

)
, then j1 ∈ e0J(R)e0, j2 ∈ e1J(R)e0, e1j1 = e1j2 =

j1e1 = 0 and j2e1 = j2. Thus R ∼=


F 0 F

0 0 F

0 0 0

 and one of the possibilities

(13)-(19) holds true

If µ(J(R)) =

(
1 1

0 0

)
, then j1 ∈ e0J(R)e0 and j2 ∈ e0J(R)e1. Hence e1j1 =

j2e1 = j1e1 = 0 and e1j2 = j2, and so R ∼=


F 0 0

0 0 0

F F 0

. Similarly as in (c), we

need not to describe R1 and R2, since the case is antiisomorphic to the case (d).

If µ(J(R)) =

(
0 1

1 0

)
, then j1 ∈ e0J(R)e1, j2 ∈ e1J(R)e0, e1j1 = j2e1 = 0,

j1e1 = j1 and e1j2 = j2, which implies that R ∼=



a b 0

0 0 c

0 0 a

 | a, b, c ∈ F
.

Hence one of the possibilities (20)-(26) holds true.

The the possibilities (27)-(29) are clear.

Finally assume that J2(R) 6= 0. Then dimF (J(R)/J2(R)) = dimF (J2(R)) = 1

and there exist a base j1, j2 of J(R) such that j2
1 = j2 ∈ J2(R). Note that j1 ∈

e0J(R)e0 since j2
1 6= 0 and e0J(R) 6= 0. Hence we get R ∼= F × (xF [x]/〈x3〉) and

the possibilities (30)-(22) are clear.

(VI) Let m = 2 and R 6= A. Clearly, A/J(R) ∼= F 3 and either e0J(R) 6= 0 or

J(R)e0 6= 0. As a similar calculation in (V), we get that:

If e0J(R) 6= 0 then R ∼= F 2 × F0 and one of the possibilities (1)-(4) holds.

If either e0J(R)e1 6= 0 or e0J(R)e2 6= 0, then R ∼= F ×

(
F 0

F 0

)
and one of the

possibilities (5)-(11) holds.
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If either e1J(R)e0 6= 0 or e2J(R)e0 6= 0, then R ∼= F ×

(
F F

0 0

)
and one of the

possibilities (12)-(18) holds. �

We conclude the paper with the following problems for further studies.

Problem 1. Describe all finite dimensional algebras over a field which are sums of

two subalgebras.

Problem 2. Describe all finite dimensional algebras over a field which are sums of

two nilpotent subalgebras.

Problem 3. Describe all finite dimensional algebras which are sums of two matrix

algebras over a field.
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