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Abstract. In this article, basic ideals in a Leavitt path algebra over a com-

mutative unital ring are studied. It is shown that for a finite acyclic graph E

and a commutative unital ring R, the Leavitt path algebra LR(E) is a direct

sum of minimal basic ideals and that for a commutative ring R and a graph

E satisfying Condition (L), the Leavitt path algebra LR(E) has no non-zero

nilpotent basic ideals. Uniqueness theorems for Leavitt path algebras over

commutative unital rings are also discussed.
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1. Introduction

Leavitt path algebras of row-finite graphs, introduced by Abrams and Aranda

Pino in [2] and independently by Ara, Moreno, and Pardo in [9], have been of

interest to algebraists as well as analysts due to their connections with algebraic

structures such as matrix rings, Laurent polynomial rings and also with C∗-algebras

(see for example [1], [4], [5], [6], [7], [8], [10], [13], [14], [15]). Several generaliza-

tions of these algebras have also been studied in the last decade. On one hand,

Abrams and Aranda Pino generalized the concept to arbitrary graphs (see [3]) and

on the other, Tomforde considered these algebras where the coefficients came from

a commutative unital ring in place of a field (see [16]). It is not hard to see that

several results about these algebras over a field do not remain valid if we replace

field with a commutative unital ring. For example, Leavitt path algebra of a finite

line graph, being a matrix ring over a field, is simple; the Leavitt path algebra

over a field has no non-zero nilpotent ideals; and that the Jacobson radical of a

Leavitt path algebra over a field is always 0. In the case of a commutative unital

ring these results, however, are not true, in general. Tomforde showed that some of

the well-known results about Leavitt path algebras over a field can be generalized

to Leavitt path algebras over a commutative unital ring by suitably modifying the



192 PRAMOD KANWAR, MEENU KHATKAR AND R. K. SHARMA

statement. To accomplish this, Tomforde introduced the concepts of basic ideals,

basically simple Leavitt path algebras, among other things.

In this article, we continue the study of Leavitt path algebras over commutative

unital rings and show that in the definition of basic ideals of Leavitt path algebra

LR(E) given by Tomforde ([16]), the vertex v can be replaced by any basis element

of LR(E) (Theorem 3.8). For a finite acyclic graph E, we show that Leavitt path

algebra LR(E), is a direct sum of minimal basic ideals (Theorem 3.9) and that a

graph E satisfy Condition (L) if and only if every non-zero basic ideal of LR(E)

contains a vertex (Theorem 3.13 and Theorem 3.16). It is also shown that if R is a

commutative unital ring and E is a graph satisfying Condition (L) then the Leavitt

path algebra LR(E) has no non-zero nilpotent basic ideals (Theorem 3.10). We also

prove that for a graph having no isolated vertices and for any ring homomorphism

φ from LR(E) to a ring, the conditions “φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R”,

“φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R”, “φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and

0 6= r ∈ R” and “φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R” are equivalent and

use these to give additional equivalent conditions in Graded Uniqueness Theorem

(Theorem 4.6).

2. Preliminaries and notation

Throughout this article, a ring will mean a commutative unital ring and a graph

will always mean a directed graph.

A graph with E0 as the set of vertices, E1, the set of edges, and the functions

r, s : E1 → E0 is denoted by E = (E0, E1, r, s). For each edge e ∈ E1, the vertices

s(e) and r(e) are called the source and range of e respectively. For v ∈ E0, a loop

at v is an edge e for which r(e) = s(e). A vertex which does not receive any edge

is called a source. A vertex which does not emit any edge is called a sink. A vertex

v ∈ E0 such that |s−1(v)| = ∞ is called an infinite emitter. A vertex v which is

either a sink or an infinite emitter is called a singular vertex. A vertex v which is

not a singular vertex is called a regular vertex. A vertex which is both a source and

a sink is called an isolated vertex.

A path µ in a graph E is a finite sequence of edges µ = e1e2 · · · en such that

r(ei) = s(ei+1) for i = 1, 2, . . . , n − 1. In this case, s(e1) is called the source of µ

(denoted by s(µ)), r(en) is called the range of µ (denoted by r(µ)), and n is called

the length of µ. We view the elements of E0 as paths of length 0. An edge e is an

exit for a path µ = e1e2 · · · en if there exists i such that s(e) = s(ei) and e 6= ei.

If µ = e1e2 . . . en then we denote the set {s(ei), r(ei) : i = 1, 2, . . . , n} by µ0. If µ
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is a path such that v = s(µ) = r(µ) then µ is called a closed path based at v. If

r(µ) = s(µ) and s(ei) 6= s(ej) for every i 6= j then µ is called a cycle. A graph

without any cycles is called acyclic.

We say that a graph E satisfies condition (NE) if no cycle in E has an exit and

that it satisfies condition (L) if every cycle in E has an exit.

For n ≥ 2, we denote the set of paths of length n by En and the set of all paths

by E∗. We define a relation ≤ on E0 by setting v ≤ w if there is a path µ ∈ E∗ with

s(µ) = v and r(µ) = w. A subset H of E0 is called hereditary if v ≤ w and v ∈ H
imply w ∈ H. A hereditary set is called saturated if s−1(v) 6= φ and r(s−1(v)) ⊂ H
then v ∈ H.

A graph is called row-finite if every vertex emits only finite number of edges.

Note that, a row-finite graph is finite if E0 is finite.

Given a graph E, the extended graph of E is defined as the graph

Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗i : ei ∈ E1} and r′|E1 = r, r′(ei
∗) =

s(ei), s
′|E1 = s and s′(ei

∗) = r(ei). The elements of (E1)
∗

are called ghost edges.

Let R be a commutative unital ring and E be a graph. Following Tomforde, we

define a Leavitt E-family to be the set {v, e, e∗ : v ∈ E0, e ∈ E1} in R such that

(1) vw = δvwv for all v, w ∈ E0,

(2) s(e)e = er(e) = e for all e ∈ E1,

(3) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,

(4) e∗f = δefr(e) for all e, f ∈ E1,

(5) v =
∑
e∈s−1(v) ee

∗ for every regular vertex v ∈ E0.

Note that the Condition (2) and Condition (3) can be combined to read s′(e)e =

er′(e) = e for all e ∈ E1 ∪ (E1)∗. The conditions (4) and (5) are referred to as

Cuntz-Kreiger relations in the literature and are denoted by (CK1) and (CK2),

respectively.

The Leavitt path algebra of E with coefficients in R, denoted by LR(E), is defined

as the universal R-algebra generated by a Leavitt E-family.

We remark that if E0 is finite then LR(E) is unital R-algebra with unit as

sum of all the vertices. If E0 is infinite then LR(E) is an algebra with local

units. Also LR(E) is a Z-graded algebra with grading induced by degree(vi) = 0,

degree(ei) = 1, degree(ei
∗) = −1 for all vi ∈ E0 and ei ∈ E1, that is, LR(E) =⊕

n∈Z LR(E)n, where LR(E)0 = RE0 + A0, LR(E)n = An for n 6= 0 and An =∑
{rei1ei2 · · · eiσej1∗ej2∗ · · · ejτ ∗ : σ+τ ≥ 0, eis ∈ E1, ejt

∗ ∈ (E1)
∗
, r ∈ R, σ−τ =

n} for all n.
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An element x ∈ LR(E) is called a normal element if xx∗ = x∗x. The commu-

tative core MR(E) of Leavitt path algebra LR(E) is defined as the commutative

R-subalgebra of LR(E), generated by the normal elements of the form αβ∗, where

α and β are paths in E having the same range.

3. On basic ideals of Leavitt path algebras

Let R be a commutative unital ring and let E be a graph. An ideal I of LR(E)

is called a basic ideal if whenever r ∈ R \ {0} and v ∈ E0, we have rv ∈ I implies

v ∈ I (see [16]). A basic ideal of LR(E) is called a minimal basic ideal if it does not

contain any non-zero basic ideal other than itself. The Leavitt path algebra LR(E)

is called basically simple if the only basic ideals of LR(E) are {0} and LR(E).

Example 3.1. If R = Z4 and E is the graph

v1 v2 v3 v4

e1 e2

then each of the ideals

(
Z4 Z4

Z4 Z4

)
and


Z4 Z4 Z4

Z4 Z4 Z4

Z4 Z4 Z4

 is a basic ideal of the

Leavitt path algebra LR(E) of E with coefficients in R. We further observe that

each of these is a minimal basic ideal and hence LR(E) is not basically simple. We

also note that the ideal

(
2Z4 2Z4

2Z4 2Z4

)
is not a basic ideal of LR(E).

We now give conditions that are equivalent to the condition rv ∈ I implies v ∈ I
in the definition of a basic ideal. To do this we use (v), (e), and (e∗) to denote the

conditions:

(v) : for r ∈ R \ {0} and v ∈ E0, rv ∈ I implies v ∈ I,

(e) : for r ∈ R \ {0} and e ∈ E1, re ∈ I implies e ∈ I, and

(e∗) : for r ∈ R \ {0} and e∗ ∈ (E1)∗, re∗ ∈ I implies e∗ ∈ I
for any ideal I of LR(E). Note that I is basic if it satisfies Condition (v).

Proposition 3.2. Let R be a commutative unital ring and E be a graph. If I

is an ideal in LR(E) satisfying Condition (v) then I satisfies Condition (e) and

Condition (e∗).

Proof. Let I satisfies Condition (v) and suppose r ∈ R \ {0} and e ∈ E1 be such

that re ∈ I. Then re∗e ∈ I, that is, r · r(e) ∈ I. Since I satisfies Condition (v), we

get r(e) ∈ I. But then e · r(e) ∈ I, that is, e ∈ I. Hence I satisfies Condition (e).
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Similarly, if re∗ ∈ I then re∗e ∈ I, that is, r · r(e) ∈ I. Thus r(e) ∈ I, which is

equivalent to saying that s(e∗) ∈ I. But then s(e∗) · e∗ ∈ I, that is, e∗ ∈ I. Hence

I satisfies Condition (e∗). �

The converse of Proposition 3.2 is not true, in general. For example, if R = Z4

and E is the graph

v1 v2 v3

then the ideal < 2v1 > satisfy Condition (e) and Condition (e∗), but does not

satisfy Condition (v). If the graph has no isolated vertices then the converse is true

as shown in the following propositions (Proposition 3.3 and Proposition 3.4).

Proposition 3.3. Let R be a commutative unital ring and E be a graph without

any isolated vertices. If I is an ideal in LR(E) satisfying Condition (e) then I

satisfies Condition (v).

Proof. Let I satisfies Condition (e) and let r ∈ R \ {0} and v ∈ E0 be such that

rv ∈ I. First assume v is a sink (not necessarily a source) and let e be an edge such

that r(e) = v. Then rv ∈ I gives rev ∈ I. Hence re ∈ I. Since I satisfies Condition

(e), we get e ∈ I. Thus e∗e ∈ I, that is, v ∈ I. Next assume v is a regular vertex

and let e be an edge such that s(e) = v. Then rv ∈ I gives rve ∈ I. Hence re ∈ I.

Since I satisfies Condition (e), we get e ∈ I. But then ee∗ ∈ I for every edge e with

s(e) = v. Hence v =
∑

{e | s(e)=v}
ee∗ ∈ I. Thus I satisfies Condition (v). �

Proposition 3.4. Let R be a commutative unital ring and E be a graph without

any isolated vertices. If I is an ideal in LR(E) satisfying Condition (e∗) then I

satisfies Condition (v).

Proof. The proof is similar to that of Proposition 3.3. �

By combining Proposition 3.2, Proposition 3.3, and Proposition 3.4, we get the

following theorem.

Theorem 3.5. Let R be a commutative unital ring and E be a graph without

any isolated vertices. Then for any ideal I of LR(E), the following conditions are

equivalent.

(1) I satisfies Condition (v).

(2) I satisfies Condition (e).

(3) I satisfies Condition (e∗).
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Corollary 3.6. Let R be a commutative unital ring and E be a graph without

any isolated vertices. Then an ideal I of LR(E) is basic if and only if I satisfies

Condition (e) if and only if I satisfies Condition (e∗).

Proposition 3.7. Let R be a commutative unital ring, E be a graph and I be an

ideal in LR(E). Then for any path µ in LR(E) and r ∈ R \ {0}, rµ ∈ I implies

µ ∈ I if and only if I satisfies Condition (v).

Proof. Suppose I satisfies Condition (v). Let r ∈ R \ {0} and µ = e1e2 . . . en be

a path in LR(E) such that rµ ∈ I. Then r · e1∗e1e2 . . . en ∈ I, which is equivalent

to r · r(e1)e2 . . . en ∈ I. Since r(e1) = s(e2), we have r · e2 . . . en ∈ I. Again since I

is an ideal, r · e2∗e2 . . . en ∈ I. Repeating this process, finally we get r · en∗en ∈ I,

that is, r · r(en) ∈ I. Since I satisfies Condition (v), we get r(en) ∈ I and hence

en · r(en) ∈ I. Thus en ∈ I. Now using the fact that I is an ideal of LR(E), we

get e1e2 . . . en ∈ I, that is, µ ∈ I. Since vertices are paths of length 0, the other

direction is clear. �

A similar argument can be used to prove that the result of Proposition 3.7

remains true if we replace µ with pq∗, where p and q are paths in LR(E). Since the

elements of E0 ∪ E1 ∪ E1∗ and elements of the form pq∗ where p, q are paths in

LR(E) form a basis B of LR(E) [14, Theorem 3.7], we have the following theorem.

Theorem 3.8. Let R be a commutative unital ring and E be a graph. Then an

ideal I of LR(E) satisfies Condition (v) if and only if for r ∈ R \ {0} and for every

basis element x in B, rx ∈ I implies x ∈ I. Equivalently, I is a basic ideal if and

only if for r ∈ R \ {0} and x ∈ B, rx ∈ I implies x ∈ I.

Recall that a subset H of E0 is called hereditary saturated if for v, w ∈ E0,

v ∈ H and v ≤ w implies w ∈ H and if s−1(v) 6= φ for v ∈ E0 and r(s−1(v)) ⊂ H

then v ∈ H. Clearly, if v is an isolated vertex in E0 then {v} is a hereditary

saturated subset. Also if v is a sink then {v} is a hereditary subset of E0 and

SpanR{αβ∗ : r(α) = r(β) = v} is a basic ideal that contains only one vertex v. We

denote this basic ideal by Iv. By [16, Lemma 7.8] there is a saturation H of {v}
such that Iv = IH .

We further recall that the Leavitt path algebra LR(E) of a graph E with co-

efficients from a commutative unital ring R is basically simple if it has no basic

ideals other than {0} and LR(E). For a row-finite graph E, Tomforde showed that

LR(E) is basically simple if and only if E0 has no hereditary saturated subsets

other than φ and E0 and E satisfies Condition (L), namely, every cycle in E has
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an exit [16, Theorem 7.20]. Since a finite acyclic graph satisfies Condition (L), the

Leavitt path algebra LR(E) of a finite acyclic graph is basically simple if and only

if E0 has no hereditary saturated subsets other than φ and E0. In general, we have

the following for the Leavitt path algebras of finite acyclic graphs.

Theorem 3.9. Let R be a commutative unital ring and E be a finite acyclic graph.

Then the Leavitt path algebra LR(E) is a direct sum of minimal basic ideals.

Proof. Let v1, v2, . . . , vn be the sinks in E. Then LR(E) ∼=
⊕n

i=1 Ivi . It is, there-

fore, enough to show that if v is a sink then Iv is a minimal basic ideal. So let

v be a sink. As observed above, there exists saturation H (say) of {v} such that

Iv = IH is a graded basic ideal of LR(E) [16, Lemma 7.8]. To prove the minimality

of the basic ideal IH , let J be a non-zero basic ideal of LR(E) contained in IH .

Since IH = Iv = SpanR{αβ∗ : r(α) = r(β) = v} and J ⊂ IH , it can be seen that

0 6= rv ∈ J for some r ∈ R. Since J is basic, v ∈ J . Since J ⊂ IH , J0, the set

of vertices in J , is a subset of H. Since v ∈ J0 and J0 is a hereditary saturated

subset of E0 [16, Lemma 7.6], minimality of H (being the saturation of {v}) gives

J0 = H. But then J = IH = Iv. Hence Iv is a minimal basic ideal. It follows that

LR(E) is the direct sum of minimal basic ideals. �

It is known that the Leavitt path algebra LK(E) over a field K has no non-zero

nilpotent ideals (see [3, Proposition 6.1]). More generally, if R is a commutative

unital ring with no non-zero nilpotent elements (equivalently, if R is a commutative

semiprime unital ring) then the Leavitt path algebra LR(E) over R has no non-

zero nilpotent left, right, or two-sided nilpotent ideals (see [12, Proposition 4.5]). In

general, this result is not true for Leavitt path algebras over arbitrary commutative

unital rings. For example, if R = Z4 and E is the graph

v1 v2

then

(
2Z4 2Z4

2Z4 2Z4

)
is a non-zero nilpotent ideal of LR(E). We, however, have the

following theorem.

Theorem 3.10. Let R be a commutative unital ring and E be a graph satisfying

Condition (L). Then the Leavitt path algebra LR(E) has no non-zero nilpotent basic

ideals.

Proof. Let I be a non-zero basic ideal of LR(E) and let I2 = {0}. By [16, Lemma

7.6], the set I0 of vertices in I is a hereditary saturated subset. By [16, Lemma 7.9],
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the ideal < I0 > generated by I0 is a graded basic ideal. Since I0 ⊂ I, < I0 >⊂ I.

But I2 = {0}. Thus < I0 >
2

= {0}. Since < I0 >, being a graded basic ideal, is

idempotent, < I0 >= {0}. Thus I0 = φ. Hence I does not contain any vertex, a

contradiction by Proposition 3.13. Hence I is not nilpotent. �

We recall that LR(E) is Z-graded with grading induced by degree(v) = 0 for any

vertex v in E0 and degree(e) = 1, degree(e∗) = −1 for every e ∈ E1. If α is a non-

zero homogeneous element in LR(E) then there exits a path β such that 0 6= αβ is

homogeneous and is in real edges only (see Theorem 2.2.11 and Corollary 2.2.12 in

[1] and Theorem 5.1 in [11]). Thus αβ =
∑n
i=1 riγi, where 0 6= ri ∈ R and γi’s are

distinct paths of equal length. Since γ∗1γ1 = r(γ1) and γ∗1γi = 0 for 2 ≤ i ≤ n, it

follows that γ∗1αβ = r1 · r(γ1). We, thus, have the following proposition.

Proposition 3.11. Let R be a commutative unital ring and E be an arbitrary

graph. Let α be a non-zero homogeneous element of LR(E). Then there exist

β, γ ∈ Path(E), 0 6= r ∈ R, and v ∈ E0 such that 0 6= γ∗αβ = rv.

Since for a basic ideal rv ∈ I implies v ∈ I, we have the following corollary.

Corollary 3.12. Let R be a commutative unital ring and E be an arbitrary graph.

Every non-zero graded basic ideal of LR(E) contains a vertex.

In the case of graphs satisfying Condition (L), every non-zero basic ideal contains

a vertex as is shown in the following theorem.

Theorem 3.13. Let R be a commutative unital ring and E be an arbitrary graph

satisfying Condition (L). Then every non-zero basic ideal of LR(E) contains a ver-

tex.

Proof. Let I be a non-zero basic ideal of LR(E) and let α be a non-zero element

in I. Since E satisfies Condition (L), E has no cycles without exits and hence, by

[11, Theorem 5.1], there exists µ, η ∈ Path(E) such that either 0 6= µ∗αη = rv for

some 0 6= r ∈ R, and v ∈ E0. Since I is a basic ideal and 0 6= rv = µ∗αη ∈ I, we

have v ∈ I. Thus I contains a vertex. �

Before we prove the converse of the Proposition 3.13 we prove a lemma which is

also of independent interest. The proof of lemma is similar to that of Lemma 2.7.1

in [1]. We include it here for the sake of completeness.

Lemma 3.14. Let R be a commutative unital ring and E be a graph. Let c be a

cycle without exits such that s(c) = v and ∧v be a set of paths in E which ends
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in v but which do not contain all edges of c. If I is a basic ideal generated by the

vertices of c then I ∼= M∧v (R[x, x−1]).

Proof. Let J be the basic ideal generated by v. Clearly J ⊆ I. Now for any

w ∈ c0 if µ denotes the portion of cycle c from v to w then µ is a path from v to

w and w = µ∗vµ. Thus w ∈ J . Hence J contains all vertices of c. Thus I ⊆ J

and hence I = J . Now let A be the set of elements of the form αckβ∗ where

α, β ∈ ∧v and k ∈ Z where ck = v for k = 0 and ck = (c∗)−k for k < 0. Since

the elements of the form αβ∗ where α, β are paths form a R-basis of LR(E) [14,

Theorem 3.7], A is a R-linearly independent set. Also every element of J is a R-

linear combination of elements of the form pq∗, where p, q are paths in E such that

r(p) = r(q) ∈ T (v) (the tree of v). Since c has no exits, T (v) is precisely the set of

vertices in c. Hence p = αcl and q = βcm for some α, β ∈ ∧v and l,m ≥ 0. Thus

A generates the basic ideal J . Now let φ : J →M∧v (R[x, x−1]) is the map defined

as φ(αckβ∗) = xkeα,β where eα,β denotes the element of M∧v (R[x, x−1]) which is

1 in the (α, β) entry and zeros otherwise. Clearly φ is an R-algebra isomorphism.

Hence I = J ∼= M∧v (R[x, x−1]). �

We also observe that if I is a graded basic ideal of LR(E) then by [16, Theorem

7.9], there exists a hereditary saturated subset H in E0 such that I = IH . But

then by [16, Theorem 7.15], I has a set of local units. By [16, Lemma 4.14], every

ideal of I is also an ideal of LR(E). We, thus, have the following proposition.

Proposition 3.15. Let R be a commutative unital ring and E be a graph. Every

ideal of a graded basic ideal of the Leavitt path algebra LR(E) is also an ideal of

LR(E).

Theorem 3.16. Let R be a commutative unital ring and E be an arbitrary graph.

If every non-zero basic ideal of LR(E) contains a vertex then E satisfies condition

(L).

Proof. On the contrary, let c be a cycle without exits in E and let I be the graded

basic ideal of LR(E) generated by the vertices of c. By Lemma 3.14, there exists

some vertex v in c such that I ∼= M∧(R[x, x−1]) for some set ∧ of paths in E which

ends in v but which do not contain all edges of c. Also by Proposition 3.15, the

ideals of I are ideals of LR(E). Since every non-zero basic ideal of LR(E) contains a

vertex, every non-zero basic ideal of M∧(R[x, x−1]) contains a non-zero idempotent,

a contradiction. Hence E satisfies condition (L). �
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4. Uniqueness theorems

We recall that for a Leavitt path algebra LK(E) of a graph E, a graded homo-

morphism φ : LK(E)→ A is injective if φ(v) 6= 0 for all v ∈ E0 (Graded Uniqueness

Theorem). In the case of Leavitt path algebras over rings, a graded homomorphism

φ : LR(E)→ A is injective if φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R [16, Theorem

5.3]. We show that the condition φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R is

equivalent to φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R as well as φ(re∗) 6= 0 for all

e∗ ∈ E1∗ and 0 6= r ∈ R in case the graph E has no isolated vertices. First we

prove the following proposition.

Proposition 4.1. Let R be a commutative unital ring, S be any ring, and E be

a graph. Let φ : LR(E) → S be a ring homomorphism such that φ(rv) 6= 0 for

all v ∈ E0 and 0 6= r ∈ R. Then φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R and

φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and 0 6= r ∈ R.

Proof. We first prove that φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R. If there exists

e ∈ E1 and 0 6= r ∈ R such that φ(re) = 0 then φ(re∗e) = φ(e∗)φ(re) = 0. Since

e∗e = r(e), we have φ(r · r(e)) = 0, a contradiction, as φ(rv) 6= 0 for all v ∈ E0 and

0 6= r ∈ R. Hence φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R. The other part can be

proved similarly. �

Proposition 4.2. Let R be a commutative unital ring, S be any ring, and E be

a graph. Let φ : LR(E) → S be a ring homomorphism such that φ(rv) 6= 0 for all

v ∈ E0 and 0 6= r ∈ R. Then φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R.

Proof. Let, if possible, there is a path µ = e1e2 . . . en in LR(E) and 0 6= r ∈ R such

that φ(rµ) = 0, that is, φ(r·e1e2 . . . en) = 0. Then φ(en
∗e∗n−1 . . . e1

∗)φ(re1e2 . . . en) =

0, which is equivalent to φ(ren
∗e∗n−1 . . . e1

∗e1e2 . . . en) = 0. Since r(e1) = s(e2), we

have φ(ren
∗e∗n−1 . . . e2

∗r(e1)e2e3 . . . en) = 0. Repeating this process, finally we get

φ(ren
∗en) = 0, that is, φ(r · r(en)) = 0, a contradiction, as φ(rv) 6= 0 for all v ∈ E0

and 0 6= r ∈ R. Hence φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R. �

Proposition 4.3. Let R be a commutative unital ring, S be any ring, and E be a

graph without any isolated vertices. Let φ : LR(E) → S be a ring homomorphism

such that φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R. Then φ(rv) 6= 0 for all v ∈ E0

and 0 6= r ∈ R.

Proof. Let, if possible, there exists v ∈ E0 and 0 6= r ∈ R such that φ(rv) = 0.

If v is a sink then since v is not an isolated vertex it must be the range of some
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edge (say f). Thus φ(rf) = φ(rfv) = φ(f)φ(rv) = 0, a contradiction, as φ(re) 6= 0

for all e ∈ E1 and 0 6= r ∈ R. Hence φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R.

If v is a regular vertex then s−1(v) has at least one edge. Let e ∈ s−1(v). Then

φ(re) = φ(rve) = φ(rv)φ(e) = 0, a contradiction again. Hence φ(rv) 6= 0 for all

v ∈ E0 and 0 6= r ∈ R. �

A similar argument can be used to prove the following proposition.

Proposition 4.4. Let R be a commutative unital ring, S be any ring, and E be a

graph without any isolated vertices. Let φ : LR(E) → S be a ring homomorphism

such that φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and 0 6= r ∈ R. Then φ(rv) 6= 0 for all

v ∈ E0 and 0 6= r ∈ R.

Combining Proposition 4.1, Proposition 4.2, Proposition 4.3, and Proposition

4.4, we have the following theorem.

Theorem 4.5. Let R be a commutative unital ring, S be any ring, and E be a

graph without any isolated vertices. Let φ : LR(E) → S be a ring homomorphism.

Then the following conditions are equivalent.

(1) φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R.

(2) φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R.

(3) φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and 0 6= r ∈ R.

(4) φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R.

Recall that for a graph E, MR(E) denotes the commutative R-subalgebra of

LR(E), generated by the normal elements of the form αβ∗ where α, β are paths

in E with the same range. Using Theorem 4.5 and [11, Theorem 5.4], Graded

Uniqueness Theorem takes the following form.

Theorem 4.6. Let R be a commutative unital ring, S be a graded ring, and E be a

graph without any isolated vertices. Let φ : LR(E)→ S be a graded homomorphism.

Then the following conditions are equivalent.

(1) φ is injective.

(2) Restriction of φ over the commutative core MR(E) is injective.

(3) φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R.

(4) φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R.

(5) φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and 0 6= r ∈ R.

(6) φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R.

For graphs without isolated vertices and satisfying Condition (L), we have the

following theorem.
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Theorem 4.7. Let R be a commutative unital ring, S be any ring, and E be a graph

without any isolated vertices such that E satisfies Condition (L). Let φ : LR(E)→
S be a ring homomorphism. Then the following conditions are equivalent.

(1) φ is injective.

(2) Restriction of φ over the commutative core MR(E) is injective.

(3) φ(rv) 6= 0 for all v ∈ E0 and 0 6= r ∈ R.

(4) φ(re) 6= 0 for all e ∈ E1 and 0 6= r ∈ R.

(5) φ(re∗) 6= 0 for all e∗ ∈ (E1)∗ and 0 6= r ∈ R.

(6) φ(rµ) 6= 0 for all µ ∈ Path(E) and 0 6= r ∈ R.

Proof. Follows by Theorem 4.5 and [11, Corollary 5.3]. �

References

[1] G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lecture Notes

in Mathematics, 2191, Springer, London, 2017.

[2] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Alge-

bra, 293(2) (2005), 319-334.

[3] G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs,

Houston J. Math., 34(2) (2008), 423-442.

[4] G. Abrams, G. Aranda Pino and M. S. Molina, Finite dimensional Leavitt path

algebras, J. Pure Appl. Algebra, 209(3) (2007), 753-762.

[5] G. Abrams and Z. Mesyan, Simple Lie algebras arising from Leavitt path alge-

bra, J. Pure Appl. Algebra, 216(10) (2012), 2302-2313.

[6] A. Alahmedi and H. Alsulami, On the simplicity of the Lie algebra of a Leavitt

path algebra, Comm. Algebra, 44(9) (2016), 4114-4120.

[7] A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Leavitt path algebras

of finite Gelfand-Kirillov dimension, J. Algebra Appl., 11(6) (2012), 1250225

(6 pp).

[8] A. Alahmedi, H. Alsulami, S. K. Jain and E. Zelmanov, Structure of Leavitt

path algebras of polynomial growth, Proc. Natl. Acad. Sci. USA, 110(38) (2013),

15222-15224.

[9] P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras,

Algebr. Represent. Theory, 10(2) (2007), 157-178.

[10] G. Aranda Pino and K. Crow, The center of a Leavitt path algebra, Rev. Mat.

Iberoam., 27(2) (2011), 621-644.

[11] C. Gil Canto and A. Nasr-Isfahani, The maximal commutative subalgebra of a

Leavitt path algebra, arXiv:1510.03992v1 [math.RA].



ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS 203

[12] P. Kanwar, M. Khatkar and R. K. Sharma, Basic one sided ideals of Leavitt

path algebras over commutative rings, preprint, submitted.

[13] H. Larki, Ideal structure of Leavitt path algebras with coefficients in a unital

commutative ring, Comm. Algebra, 43(12) (2015), 5031-5058.

[14] V. Lopatkin and T. G. Nam, On the homological dimensions of Leavitt path

algebras with coefficients in commutative rings, J. Algebra, 481 (2017), 273-

292.

[15] Z. Mesyan, Commutator Leavitt path algebras, Algebr. Represent. Theory,

16(5) (2013), 1207-1232.

[16] M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J.

Pure Appl. Algebra, 215(4) (2011), 471-484.

Pramod Kanwar (Corresponding Author)

Department of Mathematics

Ohio University-Zanesville

Zanesville, Ohio, USA

e-mail: kanwar@ohio.edu

Meenu Khatkar and R. K. Sharma

Department of Mathematics

Indian Institute of Technology Delhi

New Delhi, 110016, India

e-mails: meenukhatkar@gmail.com (M. Khatkar)

rksharmaiitd@gmail.com (R. K. Sharma)


