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Abstract. In a commutative ring R with unity, given an ideal I of R, Ander-

son and Badawi in 2011 introduced the invariant ω(I), which is the minimal

integer n for which I is an n-absorbing ideal of R. In the specific case that

R = k[x1, . . . , xn] is a polynomial ring over a field k in n variables x1, . . . , xn,

we calculate ω(I) for certain monomial ideals I of R.
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1. Introduction

Throughout this paper, we set N := {1, 2, . . .}, N0 := {0, 1, 2, . . .}, and R will

denote a commutative ring with unity. Given a nonzero ideal I of R, Ass(R/I) will

denote the set of associated primes of I in R. The primary notion we are interested

in this paper is the following:

Definition 1. Let n ∈ N, R a commutative ring with unity, and I an ideal of R.

I is said to be an n-absorbing ideal of a ring R if for any x1, . . . , xn+1 ∈ R such

that x1 · · ·xn+1 ∈ I, there are n of the xi’s whose product is in I. I is said to be

a strongly n-absorbing ideal of a ring R if for any ideals I1, . . . , In+1 of R such that

I1 · · · In+1 ⊆ I, there are n of the Ii’s whose product is in I.

(Strongly) 2-absorbing ideals were initially defined and investigated by Badawi

in [3] as a generalization of prime ideals, which are precisely the proper 1-absorbing

ideals. In 2011, Anderson and Badawi together generalized this further to the

notion of a (strongly) n-absorbing ideal for any n ∈ N defined above in [1]. For

an ideal I in a ring R, we let ω(I) denote the minimal integer n ∈ N such that

I is n-absorbing. In a general ring, I may not be n-absorbing for any n ∈ N, in

which case we set ω(I) = ∞. Similarly, we can define the invariant ω•(I) to be

the smallest integer n ∈ N for which an ideal I is strongly n-absorbing, and set

ω•(I) = ∞ if no such integer exists. We set ω(R) = ω•(R) = 0. It is easy to see

that ω(I) ≤ ω•(I) holds for each ideal I of R. In fact, Anderson and Badawi in
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Conjecture 1 of [1, page 1669] postulate that ω(I) = ω•(I) holds for any ideal I in

an arbitrary ring R; that is, they conjecture that the notion of an n-absorbing ideal

and strongly n-absorbing ideal coincide. As of this writing, this problem remains

open. However, it is known that the conjecture holds true for any n ∈ N if R is a

Prüfer domain, i.e., an integral domain such that the set of ideals of RM is totally

ordered under set inclusion for each maximal ideal M of R ([1, Corollary 6.9]), or if

R is a commutative algebra over an infinite field ([7]), and for any ring R if n = 2

([3, Theorem 2.13]). The interested reader may refer to the survey article [4, Section

5] for further information on strongly n-absorbing ideals. Anderson and Badawi

made two more conjectures in [1] which were investigated by several researchers,

and affirmative answers were given, either partial or complete. For example, the

second Anderson-Badawi conjecture states that given an ideal I of a ring R and an

indeterminate X, ωR[X](I[X]) = ωR(I) ([1, page 1661]). That is, for each n ∈ N,

I is an n-absorbing ideal of R if and only if I[X] is an n-absorbing ideal of R[X].

This conjecture originates from the well-known result that I is a prime ideal (i.e.,

1-absorbing ideal) of R if and only if I[X] is a prime ideal of R[X]. Anderson and

Badawi themselves proved this conjecture for an arbitrary commutative ring when

n = 2 ([1, Theorem 4.15]), and Nasehpour proves that the second conjecture holds

for every n ∈ N when R belongs to certain classes of rings, including the class

of Prüfer domains ([15]). In [11] Laradji independently proved that the second

conjecture holds when R is an arithmetical ring, i.e., when the set of ideals of RM

is totally ordered under set inclusion for each maximal ideal M of R.

Recall that for an ideal I in a ring R, the Noether exponent of I, denoted by

e(I), is the minimal integer µ ∈ N such that (
√
I)µ ⊆ I. If such an integer does not

exist, we set e(I) = ∞. We also set e(R) = 0. In a Noetherian ring, since
√
I is

finitely generated for any ideal I, e(I) <∞. Anderson and Badawi in [1] establish

a connection between ω•(I) and Noether exponents:

Theorem 1.1. [1, Remark 2.2, Theorem 5.3, Section 6, Paragraph 2 on page 1669]

Let I1, . . . , Ir be ideals of a ring R. Then ω(I1 ∩ · · · ∩ Ir) ≤ ω(I1) + · · · + ω(Ir)

and ω•(I1 ∩ · · · ∩ Ir) ≤ ω•(I1) + · · · + ω•(Ir). In particular, let I be an ideal in

a Noetherian ring R. If I = Q1 ∩ · · · ∩Qn, where the Qi are primary ideals, then

ω(I) ≤ ω•(I) ≤
n∑
i=1

e(Qi). Thus every ideal in a Noetherian ring is n-absorbing for

some n ∈ N.

On the other hand, the third Anderson-Badawi conjecture claims that for each

n ∈ N and an n-absorbing ideal I of a ring R, (
√
I)n ⊆ I ([1, Conjecture 2, page
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1669]). This conjecture was proved for n = 2 by Badawi ([3]), for n = 3 by Laradji

([11]), for n = 3, 4, 5 by Sihem and Sana ([17]), and for arbitrary n and R by the

authors ([6]) and Donadze ([8]), independently. We summarize this as the following

theorem in terms of ω(I) and e(I), along with the result concerning primary ideals

([1, Theorem 6.3(c), Theorem 6.6]).

Theorem 1.2. Given an ideal I of a ring R, e(I) ≤ ω(I). If Q is a primary ideal

of R, then ω(Q) = ω•(Q) = e(Q).

This raises the question then if for an arbitrary ideal I whether ω(I) can be

described purely in terms of Noether exponents or possibly other well-known ring-

theoretic invariants. This has been investigated to some extent by others in at least

one case. Namely, Moghimi and Naghani [13, Theorem 2.21(1)] show that in a

discrete valuation ring R, ω(I) is precisely the length of the R-module R/I.

In this spirit, we attempt to give in this paper a description of ω(I) in terms

of other ring-theoretic invariants in the special case that I is a monomial ideal of

a polynomial ring over a field. In some cases, our arguments are general enough

to also give the same results for ω•(I), and thus as a side-effect we can show that

in some cases the notions of a n-absorbing ideal and a strongly n-absorbing ideal

coincide as Anderson and Badawi conjecture.

The present paper is divided into two parts. In Section 2, we review some defini-

tions and facts concerning n-absorbing ideals and monomial ideals. Using these, we

calculate ω(I) for primary monomial ideals by computing Noether exponents and

the standard primary decomposition of monomial ideals. These results lead to the

study of how ω(I) can be explicitly computed from the generating set of I when I

is a monomial ideal of R = k[x1, . . . , xn] with n ≤ 3 in the following section.

The second part is Section 4, where we define and investigate ω-linear monomial

ideals, i.e., monomial ideals I such that ω(Im) = mω(I) for each m ∈ N. We give

a characterization theorem for primary ω-linear monomial ideals, and in particular

show that integrally closed monomial ideals in R = k[x, y] are w-linear, as well as

the edge ideal of a cycle.

2. Some background

As a prerequisite of the main section of this paper, we briefly review some of the

basic material excerpted from [10] regarding monomial ideals, and show that ω(I)

can be directly calculated from the generators of I when I is a primary monomial

ideal.
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Let k be a field and R = k[x1, . . . , xn] be the polynomial ring with n variables

over k. An element of R of the form xa11 · · · xann with ai ∈ N0 is called a monomial,

and an ideal of R generated by monomials is called a monomial ideal. The degree

of f = xa11 · · · xann , denoted by deg(f), is defined to be a1 + · · · + an. G(I) will

denote the set of monomials in I which are minimal with respect to divisibility.

Any element of R can be written uniquely as a k-linear combination of monomials;

that is, given f ∈ R, we may write f =
∑
auu where the sum is taken over the

monomial ideals of R and au ∈ k for each monomial u. Then the support of f ,

denoted by supp(f), is the set of monomials u such that au 6= 0. An ideal I of

a ring R is irreducible if there are no ideals I1, I2 of R such that I = I1 ∩ I2 and

I ( I1, I ( I2. We denote by m the unique maximal homogeneous ideal of R.

Lemma 2.1. [10, Chapter 1] Let R = k[x1, . . . , xn] and I a monomial ideal of R

generated by monomials u1, . . . , ur of R. Then the following hold:

(i) Given a monomial f ∈ I, there exists i ∈ {1, . . . , r} so ui|f .

(ii) G(I) is the unique minimal set of monomial generators of I.

(iii) I can be written as a finite intersection of ideals of the form (xd1i1 , . . . , x
dm
im

).

An irredundant presentation of this form is unique (I = Q1 ∩ · · · ∩ Qr is

irredundant if none of the ideals Qi can be omitted).

(iv) I is irreducible if and only if I is of the form (xd1i1 , . . . , x
dm
im

). Moreover, ev-

ery irreducible monomial ideal of the form (xd1i1 , . . . , x
dm
im

) is (xi1 , . . . , xim)-

primary.

(v) If J is another monomial ideal of R, then

I ∩ J = ({lcm(u, v) | u ∈ G(I), v ∈ G(J)}).

In particular, if a and b are coprime monomials of R and I is a monomial

ideal of R, then (ab, I) = (a, I) ∩ (b, I).

(vi) An ideal I ′ of R is monomial if and only if for each f ∈ I ′, supp(f) ⊆ I ′.

By Lemma 2.1(iv), the irredundant unique decomposition of Lemma 2.1(iii) is

also a primary decomposition of I, which is known as the standard decomposition

of I (see [10, P. 12]). We will also need the following characterization of primary

monomial ideals:

Lemma 2.2. [9, Exercise 3.6] Let R = k[x1, . . . , xn] and P = (xi1 , . . . , xir ) a

monomial prime ideal of R. Then given a P -primary monomial ideal Q, G(Q)

consists of monomials of the ring k[xi1 , . . . , xir ] and there exists a1, . . . , ar ∈ N
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so {xa1i1 , . . . , x
ar
ir
} ⊆ G(Q). Conversely, every monomial ideal of this form is a

P -primary ideal.

Proof. Let f ∈ G(Q). If f 6∈ k[xi1 , . . . , xir ], then xj |f for some xj 6∈ P and

g =
f

xj
∈ Q since Q is a P -primary ideal, but this contradicts the minimality of

G(Q). Hence f ∈ k[xi1 , . . . , xir ]. On the other hand, given j ∈ {1, . . . , r} there

exists aj ∈ N so x
aj
ij
∈ G(Q), since

√
Q = P .

To prove the converse, let Q be a monomial ideal such that G(Q) consists of mono-

mials of the ring k[xi1 , . . . , xir ] and there exists a1, . . . , ar ∈ N so {xa1i1 , . . . , x
ar
ir
} ⊆

G(Q). Then
√
Q = P by [10, Proposition 1.2.4]. On the other hand, if P1 ∈Ass(R/Q)\

{P}, then P1 = Q : f for some monomial f of R ([10, Corollary 1.3.10]). Now choose

d ∈ {1, . . . , n} so xd ∈ P1 \ P . Then xdf ∈ Q, and f ∈ Q by Lemma 2.1(i). But

then P1 = R, a contradiction. Hence Ass(R/Q) = {P} and Q is a P -primary

monomial ideal. �

Corollary 2.3. Let P be a prime monomial ideal and I, J be P -primary monomial

ideals of R. Then both I ∩ J and IJ are P -primary monomial ideals. Moreover,

I : J is a P -primary monomial ideal provided J 6⊂ I.

Proof. This is an immediate consequence of Lemma 2.1(v) and Lemma 2.2. �

We can now calculate ω(I), where I is an irreducible monomial ideal.

Lemma 2.4. Let R = k[x1, . . . , xn] denote a polynomial ring over a field k. Let

I = (xd1i1 , . . . , x
dm
im

), where d1, . . . , dn ∈ N and 1 ≤ i1 < i2 < · · · < im ≤ n. Then

ω(I) = ω•(I) = e(I) = d1 + · · ·+ dm −m+ 1.

Proof. Since I is an (xi1 , xi2 , . . . , xim)-primary ideal by Lemma 2.2, the first two

equalities follow from Theorem 1.2. Thus it suffices to show that e(I) = r, where

r = d1 + · · ·+ dm−m+ 1. We have
√
I = (xi1 , . . . , xim). For N ∈ N, (

√
I)N ⊆ I if

and only if for every c1, . . . , cm ∈ N0 with c1+· · ·+cm = N , we have xc1i1 · · ·x
cm
im
∈ I.

By Lemma 2.1(i), the latter happens precisely when ci ≥ di for some 1 ≤ i ≤ m.

Thus e(I) = r. �

Next, we produce a way to calculate ω(I) when I is a monomial primary ideal

not necessarily generated by pure powers.

Lemma 2.5. Let I be an ideal of a ring R. Suppose there is P ∈ Spec(R) such

that I = J1∩· · ·∩Jr, where Ji are ideals of R with
√
Ji = P for each i ∈ {1, . . . , r}.

Then e(I) = max1≤i≤r{e(Ji)}.
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Proof. Note that
√
I =
√
J1 ∩ · · · ∩

√
Jr = P . Thus given µ ∈ N, (

√
I)µ ⊆ I if and

only if (
√
Ji)

µ ⊆ Ji for each i ∈ {1, . . . , r}, from which the conclusion of the lemma

follows. �

Corollary 2.6. Let R = k[x1, . . . , xn] denote a polynomial ring over a field k. If Q

is a monomial primary ideal of R and Q =
⋂r
i=1Qi is its standard decomposition,

then

ω(Q) = ω•(Q) = max
1≤i≤r

{e(Qi)}.

Example 2.7. Let R = k[x, y, z] with a field k and I = (x4, y3, z2, xy, y2z). Then

repeatedly applying Lemma 2.1(v), we obtain the standard decomposition I =

(x, y2, z2) ∩ (x4, y, z2) ∩ (x, y3, z). Thus by Lemma 2.4 and Corollary 2.6,

ω(I) = ω•(I) = max{1 + 2 + 2− 3 + 1, 4 + 1 + 2− 3 + 1, 1 + 3 + 1− 3 + 1} = 5.

3. When I is a monomial ideal of R = k[x1, . . . , xn] with n ≤ 3

In this section we show that when I is a monomial ideal of R = k[x1, . . . , xn] with

n ≤ 3, then ω(I) can be explicitly calculated from G(I). We first prove a theorem

analogous to [2, Theorem 2.5]. Note that by a1 · · · âi · · · an we mean
∏

1≤j≤n,j 6=i aj .

Lemma 3.1. Let R be a UFD and p an irreducible element of R. Then given

n ∈ N, I is an n-absorbing ideal of R if and only if pI is an (n+ 1)-absorbing ideal

of R. In particular, ω(pI) = ω(I) + 1.

Proof. Suppose that I is n-absorbing. Let f1, . . . , fn+2 ∈ R and f1 · · · fn+2 ∈ pI.

Then since p is irreducible, p | fi for some i. Without loss of generality, suppose

that p | f1. Then f1/p ∈ R, and so (f1/p)f2 · · · fn+2 ∈ I. Since I is n-absorbing,

and hence (n+ 1)-absorbing as well, we have that either (f1/p)f2 · · · f̂i · · · fn+2 ∈ I
for some i ∈ {2, . . . , n + 2}, in which case f1f2 · · · f̂i · · · fn+2 ∈ pI and we are

done, or f2 · · · fn+2 ∈ I. This is a product of length n + 1, so that since I is n-

absorbing, for some j with 2 ≤ j ≤ n + 2, we have f2 · · · f̂j · · · fn+2 ∈ I. Thus

pf2 · · · f̂j · · · fn+2 ∈ pI, and so f1f2 · · · f̂j · · · fn+2 ∈ pI. This shows that pI is then

(n+ 1)-absorbing, and ω(pI) ≤ ω(I) + 1.

To show the converse, suppose that pI is an (n+1)-absorbing ideal. If I is not an

n-absorbing ideal, then there exists f1, . . . , fn+1 ∈ R such that f = f1 · · · fn+1 ∈ I
but f1 · · · f̂i · · · fn+1 6∈ I for each i. Since pI is (n + 1)-absorbing and pf ∈ pI, it

follows that either pf1 · · · f̂i · · · fn+1 ∈ pI for some i or f ∈ pI. But the former is

impossible by our choice of fi’s, and without loss of generality we may assume that
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p|f1. Now (f1/p)f2 · · ·fn ∈ I, and neither (̂f1/p)f2 · · ·fn+1 nor (f1/p)f2 · · · f̂i · · ·fn+1

is an element of I for each i ≥ 2. Therefore, since R is a UFD, we may assume that

none of fi are divisible by p. Now pf1 · · · fn+1 ∈ pI, but pf1 · · · f̂i · · · fn+1 6∈ pI and

f1 · · · fn+1 6∈ pI, which contradicts the assumption that pI is an (n+ 1)-absorbing

ideal. Hence I is an n-absorbing ideal and ω(pI) ≥ ω(I) + 1. �

The following corollary is now immediate.

Corollary 3.2. Given a monomial f and an ideal I of R = k[x1, . . . , xn],

ω(fI) =deg(f) + ω(I). In particular, ω(fR) =deg(f).

Given a monomial ideal I with the standard decomposition I =
⋂t
`=1 T`, we can

define an equivalence relation on {1, . . . , t} by defining i ∼ j iff
√
Ti =

√
Tj , and

set {Si}ri=1 to be the corresponding equivalence classes. Then Qi =
⋂
`∈Si

T` is a

monomial primary ideal for each i ∈ {1, . . . , r}, and I =
⋂r
i=1Qi is an irredundant

primary decomposition of I. We will call this decomposition the canonical primary

decomposition of I.

Theorem 3.3. Let R = k[x1, . . . , xn]. Let I be a monomial ideal with canonical

primary decomposition I =
⋂r
i=1Qi. If there exists k ∈ {1, . . . , r} such that

√
Qi ⊆

√
Qk for all i ∈ {1, . . . , r}, then ω(I) = max{e(Qk), ω(

⋂
1≤i≤r,i 6=kQi)} and ω•(I) =

max{e(Qk), ω•(
⋂

1≤i≤r,i 6=kQi)}.

Proof. Let t = max{e(Qk), ω(
⋂

1≤i≤r,i 6=kQi)}. We will first show that I is t-

absorbing. If not, then there are f1, . . . , ft+1 ∈ R such that f =
∏t+1
j=1 fj ∈ I but

gj := f/fj 6∈ I for each j ∈ {1, . . . , t + 1}. Hence given any i ∈ {1, . . . , t + 1},
there exists ` ∈ {1, . . . , r} such that gi 6∈ Q`, and since figi = f ∈ I ⊆ Q`, we

must have fi ∈
√
Q` ⊆

√
Qk. Therefore, gj ∈ (

√
Qk)t ⊆ (

√
Qk)e(Qk) ⊆ Qk for

all j ∈ {1, . . . , t + 1}. On the other hand,
⋂

1≤i≤r,i 6=kQi is t-absorbing and f ∈⋂
1≤i≤r,i 6=kQi, so that we conclude gj ∈

⋂
1≤i≤r,i 6=kQi for some j ∈ {1, . . . , t + 1}

and thereby gj ∈ I, a contradiction. Thus ω(I) ≤ t. Next, we show that ω(I) ≥ t;

that is, I is not (t− 1)-absorbing. We now consider two cases.

Case 1: t = ω(
⋂

1≤i≤r,i 6=kQi). Since
⋂

1≤i≤r,i 6=kQi is not (t − 1)-absorbing, there

are h1, . . . , ht ∈ R such that h =
∏t
i=1 hi ∈

⋂
1≤i≤r,i 6=kQi and `j := h/hj 6∈⋂

1≤i≤r,i 6=kQi for each j ∈ {1, . . . , t}. By an argument similar to the first paragraph

of this proof, hi ∈
√
Qk for each i ∈ {1, . . . , t}, and so h ∈ Qk. Hence h ∈ I and

`j 6∈ I for each j ∈ {1, . . . , t}, so that I is not (t− 1)-absorbing.

Case 2: t = e(Qk). Consider the standard decomposition of I, and choose an

irreducible component T of I such that e(T ) = e(Qk) and
√
T =

√
Qk. Since



n-ABSORBING MONOMIAL IDEALS IN POLYNOMIAL RINGS 211

we obtained the canonical primary decomposition I =
⋂r
i=1Qi from the standard

decomposition, we can choose a monomial g ∈ (
⋂

1≤i≤r,i 6=kQi) \ T by Lemma

2.1(vi). Now T = (xa1i1 , . . . , x
al
il

) for some aj ∈ N and 1 ≤ i1 < · · · < il ≤ n. Note

that we may assume that g =
∏l
j=1 x

cj
ij

for some cj ∈ N0 such that cj < aj for each

j ∈ {1, . . . , l}. Set

f := xa1−1i1
· · · xal−1il

(xi1 + · · ·+ xil).

Then f is a product of e(T ) elements of
√
T by Lemma 2.4, and so f ∈ (

√
T )e(T ) =

(
√
Qk)e(Qk) ⊆ Qk. Since g | f it also follows that f ∈

⋂
1≤i≤r,i 6=kQi. Hence f ∈ I.

However, given j ∈ {1, . . . , l},
f

xij
6∈ T . Indeed, xa1−1i1

· · · xal−1il
∈ supp

( f

xij

)
\ T

by Lemma 2.1(i), and
f

xij
6∈ T by Lemma 2.1(vi). Similarly xa1−1i1

· · · xal−1il
=

f

xi1 + · · ·+ xil
6∈ T . Therefore I is not (e(Qk)−1)-absorbing, and ω(I) ≥ e(Qk) = t.

Hence we have shown that ω(I) = max{e(Qk), ω(
⋂

1≤i≤r,i 6=kQi)}. The proof of

ω•(I) = max{e(Qk), ω•(
⋂

1≤i≤r,i 6=kQi)} can be obtained in a similar manner, and

is omitted. �

The following corollary is immediate.

Corollary 3.4. Let R = k[x1, . . . , xn] and I a monomial ideal of R with standard

decomposition I =
⋂r
i=1 Ti. Then ω(I) = ω•(I) = max1≤i≤r{e(Ti)} if Ass(R/I) is

totally ordered under set inclusion.

In the next proposition, we give a characterization of when the upper bound of

ω(I) from Theorem 1.1 is sharp.

Proposition 3.5. Let I be a monomial ideal of R = k[x1, . . . , xn] with an irredun-

dant primary decomposition I = Q1 ∩ · · · ∩ Qr. Then ω(I) = ω•(I) =
r∑
i=1

e(Qi) if

and only if I has no embedded associated primes.

Proof. Set Pi =
√
Qi for each i = 1, . . . , r.

⇒: We prove the contrapositive; assume that P1, . . . , Pr are not incomparable

prime ideals. Then without loss of generality we may assume that P1 ( P2, and

we have ω(Q1 ∩Q2) = max{e(Q1), e(Q2)} by Corollary 3.4. Therefore by Theorem
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1.1 we have

ω(I) = ω
(
Q1 ∩Q2 ∩ (

⋂
i 6=1,2

Qi)
)

≤ ω
(
Q1 ∩Q2

)
+ ω

( ⋂
i 6=1,2

Qi

)
= max{e(Q1), e(Q2)}+ ω

( ⋂
i 6=1,2

Qi

)
≤ max{e(Q1), e(Q2)}+

∑
i 6=1,2

e(Qi)

<

r∑
i=1

e(Qi).

⇐: Assume that P1, . . . , Pr are incomparable prime ideals. The case when r = 1

follows from Theorem 1.2, so we may assume that r ≥ 2. Since ω(I) ≤ ω•(I) ≤
r∑
i=1

e(Qi) by Theorem 1.1, it suffices to show that I is not (
r∑
i=1

e(Qi)−1)-absorbing.

Now given i ∈ {1, . . . , r}, choose Ti to be an irreducible component of I with
√
Ti = Pi and e(Ti) = e(Qi). Write Ti = (xa1i1 , . . . , x

asi
isi

) with 1 ≤ i1 < · · · < isi ≤ n
and a1, . . . , asi ∈ N. For i ∈ {1, . . . , r} and j ∈ {1, . . . , si}, set

fi,j = xij +
∑
t 6=j

x2it and fi =
( si∑
l=1

xil

)( si∏
j=1

f
aj−1
i,j

)
.

It follows that fi ∈ P e(Ti)
i = (

√
Qi)

e(Qi) ⊆ Qi. Thus f :=
∏r
i=1 fi ∈ I, and f is a

product of
r∑
i=1

e(Qi) elements of R. We wish to show that
f

si∑
l=1

xil

6∈ I and
f

fi,j
6∈ I

for each i ∈ {1, . . . , r} and j ∈ {1, . . . , si}. Without loss of generality, we let i = 1.

Note that
f1

f1,j
6∈ T1, since

∏s1
t=1 x

at−1
1t

∈ supp
( f1

f1,j

)
\ T1. On the other hand,

si∑
l=1

xil 6∈ P1 and fi,l 6∈ P1 for each i 6= 1 and l ∈ {1, . . . , si}. Therefore fi 6∈ P1 for

each i 6= 1, and
f

f1
=
∏r
i=2 fi 6∈ P1. Hence

f

f1,j
=
( f
f1

)( f1

f1,j

)
6∈ Q1. The proof

that
f

s1∑
l=1

x1l

6∈ Q1 follows similarly. Hence we have ω(I) =
r∑
i=1

e(Qi). �

Theorem 3.3 and Proposition 3.5 yield the following corollary.
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Corollary 3.6. Let I be a monomial ideal of R = k[x1, . . . , xn] with dim(R/I) = 1.

Let I =
⋂r
i=1Qi be the canonical primary decomposition of I. Then

ω(I) = ω•(I) =


max{e(Qk),

∑
i6=k

e(Qi)} if
√
Qk = m for some k ∈ {1, . . . , r}.

r∑
i=1

e(Qi) otherwise.

Corollary 3.7. Let f be a monomial of R. Then ω•(fR) = deg(f). In particular,

ω(fR) = ω•(fR).

Proof. Let f =
∏r
k=1 x

ak
ik

for some a1, . . . , ar ∈ N and 1 ≤ i1 < i2 < · · · < ir ≤ n.

Then fR = xa1i1 R ∩ · · · ∩ x
ar
ir
R, and by Lemma 2.4 and Proposition 3.5 we have

ω(fR) = ω•(fR) =
∑r
i=1 e(x

ak
ik
R) =

∑r
i=1 ak =deg(f). �

Given a monomial ideal I of R = k[x, y, z], we can produce an algorithm that

can compute ω(I). If I is principal, then Corollary 3.7 says that ω(I) is equal to

the degree of a generator for I. Otherwise, I = hJ for some monomial h and a

monomial ideal J with dim(R/J) ≤ 1. Now, ω(J) can be calculated explicitly using

Corollary 2.6 or Corollary 3.6 after obtaining a canonical primary decomposition

of J , and we have ω(I) = deg(h) + ω(J) by Corollary 3.2.

Example 3.8. Let R = k[x, y, z] and I = (x3y4, x2y5, x4y3z2, x5y3z, x2y4z2).

Then I = x2y3J with canonical primary decomposition J = (x2, y) ∩ (y, z) ∩
(x3, y2, z2, xy). By Lemma 2.4 and Corollary 2.6, the standard decomposition

(x3, y2, z2, xy) = (x, y2, z2) ∩ (x3, y, z2) yields that e((x3, y2, z2, xy)) = 4. Thus

by Corollary 3.6,

ω(I) = deg(x2y3) + ω(J)

= 5 + max{e((x3, y2, z2, xy)), e((x2, y)) + e((y, z))}

= 5 + max{4, 2 + 1}

= 9.

Another interesting result that follows from Lemma 3.1 and Theorem 3.3 is a

formula of ω(I) and ω•(I) for monomial ideals of R = k[x, y] where k is a field and

x, y are indeterminates over k.

Theorem 3.9. Let R = k[x, y] and J a monomial ideal of R. Write

J = (xa1yb1 , . . . , xarybr ), where {ai} is strictly decreasing and {bi} is strictly in-

creasing. Then

ω(J) = ω•(J) =

{
a1 + b1 if r = 1.

max1≤i≤r−1{ai + bi+1} − 1 if r > 1.
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Proof. The case when r = 1 follows from Corollary 3.7. For r > 1, first observe

the standard decomposition of J is J = xarR ∩ yb1R ∩ (xa1 , yb2) ∩ (xa2 , yb3) ∩ · ·
· ∩ (xar−1 , ybr ) ([12, Proposition 3.2]). The case b1 = ar = 0 follows from Corollary

2.6. Suppose that at least one of ar and b1 is nonzero. Then by Lemma 2.4 and

Corollary 3.6,

ω(J) = ω•(J) = max{e((xa1 , yb2) ∩ (xa2 , yb3) ∩ · · · ∩ (xar−1 , ybr )), e(xarR) + e(yb1R)}

= max{ max
1≤i≤r−1

{e((xai , ybi+1))}, ar + b1}

= max{ max
1≤i≤r−1

{ai + bi+1 − 1}, ar + b1}

= max
1≤i≤r−1

{ai + bi+1} − 1.

�

Example 3.10. If R = k[x, y] and J = (x11y4, x8y5, x7y9, x4y10, x2y16), then by

Theorem 3.9,

ω(J) = ω•(J) = max{11 + 5, 8 + 9, 7 + 10, 4 + 16} − 1 = 19.

4. ω-Linear ideals

Given an ideal I of a ring R, we will say that I is an ω-linear ideal if ω(Im) =

mω(I) for each m ∈ N. Perhaps the most common example of ω-linear ideals can

be found amongst those P ∈ Spec(R) for which Pn is P -primary for each n ∈ N
([1, Theorem 3.1, Theorem 5.7]). For instance,

1. R is a Prüfer domain and P 2 6= P .

2. R is a Noetherian ring and P is a maximal ideal that contains a nonzerodivisor.

3. R = k[x1, . . . , xn] and P is a monomial ideal.

In this section, we investigate the properties of ω-linear ideals. Again, we will

restrict our concern to monomial ideals of a polynomial ring R = k[x1, . . . , xn]

where k is a field.

We first consider a few useful inequalities regarding monomial ideals.

Lemma 4.1. Let I be a monomial ideal of R = k[x1, . . . , xn]. Then ω(I) ≥
max{deg(f) | f ∈ G(I)}.

Proof. Let f ∈ G(I). Then f =
∏r
k=1 x

ak
ik

for some a1, . . . , ar ∈ N and 1 ≤ i1 <

i2 < · · · < ir ≤ n. Since f ∈ I but
f

xik
6∈ I for each k ∈ {1, . . . , r} by minimality

of G(I), we have that I is not (deg(f) − 1)-absorbing. Hence ω(I) ≥ deg(f), and

since f was chosen arbitrarily, we have the desired conclusion. �
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Lemma 4.2. Let I ⊆ J be ideals of a ring R. If
√
I =

√
J , then e(J) ≤ ω(I).

In particular, if I and J are both P -primary ideals of a prime ideal P of R, then

ω(J) ≤ ω(I).

Proof. Since
√
I =

√
J , (
√
J)ω(I) ⊆ (

√
I)e(I) ⊆ I ⊆ J by Theorem 1.2 and

e(J) ≤ ω(I). The second statement follows immediately since e = ω for primary

ideals. �

Lemma 4.3. Let P be a prime monomial ideal of R = k[x1, . . . , xn]. If I, J are P -

primary monomial ideals of R, then ω(I+J) ≤ min{ω(I), ω(J)} ≤ max{ω(I), ω(J)} =

ω(I ∩ J) ≤ ω(IJ) ≤ ω(I) + ω(J). Moreover, ω(I : J) ≥ ω(I)− ω(J).

Proof. Note that by Corollary 2.3, IJ ⊆ I∩J ⊆ I+J are all P -primary monomial

ideals. Therefore ω(I + J) ≤ min{ω(I), ω(J)} ≤ max{ω(I), ω(J)} ≤ ω(I ∩ J) ≤
ω(IJ) by Lemma 4.2. On the other hand, let I =

⋂r
i=1Qi and J =

⋂s
j=1 Tj be

the standard decompositions of I and J , respectively. Then I ∩ J = (
⋂r
i=1Qi) ∩

(
⋂s
j=1 Tj) is an irreducible decomposition of I ∩ J , and by throwing away any

redundant components, there are A ⊆ {1, . . . , r} and B ⊆ {1, . . . , s} so that I∩J =

(
⋂
i∈AQi) ∩ (

⋂
j∈B Tj) is the standard decomposition of I ∩ J . Thus by Corollary

2.6,

ω(I ∩ J) = max{max
i∈A
{e(Qi)},max

j∈B
{e(Tj)}}

≤ max{max
1≤i≤r

{e(Qi)}, max
1≤j≤s

{e(Tj)}}

= max{ω(I), ω(J)}.

Moreover, (
√
IJ)e(I)+e(J) = P e(I)+e(J) = P e(I)P e(J) = (

√
I)e(I)(

√
J)e(J) ⊆ IJ , and

so e(IJ) ≤ e(I)+e(J). Combined with Theorem 1.2, we have ω(IJ) ≤ ω(I)+ω(J).

It remains to show that ω(I : J) ≥ ω(I) − ω(J). When J ⊆ I, then we have

I : J = R and ω(I : J) = 0 ≥ ω(I) − ω(J) by Lemma 4.2. If J 6⊆ I, then I : J is

P -primary by Corollary 2.3, and since J(I : J) ⊆ I, we have ω(I : J)+ω(J) ≥ ω(I)

by the first part of this lemma, hence the claim. �

As Anderson and Badawi pointed out ([1, Example 2.7]), the conclusion of

Lemma 4.3 does not hold in every ring R. We add, that even in a polynomial

ring over a field, the conclusion of the above lemma may fail if we drop any part of

the hypothesis.

Example 4.4. Let R = k[x, y, z] and I = (x2, xy, y2, xz2) and J = (x2, xy, y2, yz3),

so that neither I nor J are primary ideals. The standard decompositions of I, J
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and I ∩ J are

I = (x2, y, z2) ∩ (x, y2)

J = (x, y2, z3) ∩ (x2, y)

I ∩ J = (x, y2) ∩ (x2, y)

I + J = (x, y) ∩ (x, y2, z3) ∩ (x2, y, z2).

Thus we have ω(I) = 3, ω(J) = 4, ω(I ∩ J) = 2 and ω(I + J) = 4, so that

ω(I ∩ J) < ω(I + J) = max{ω(I), ω(J)}.

Example 4.5. Let R = k[x, y, z] and I = (x, y) and J = (y, z2), so that I and J are

both primary, but
√
I 6=
√
J . Then we have ω(I) = 1, ω(J) = 2 and ω(I ∩ J) = 3,

so that ω(I ∩ J) > max{ω(I), ω(J)}.

Corollary 4.6. Let I be a primary monomial ideal of R = k[x1, . . . , xn]. Then for

each m ∈ N we have ω(Im) ≤ mω(I).

Proof. Follows immediately by induction on m and Lemma 4.3. �

Next, we derive a characterization of primary monomial ω-linear ideals.

Lemma 4.7. Let R = k[x1, . . . , xn] and Q a primary monomial ideal of R, so

that G(Q) consists of monomials of the ring k[xi1 , . . . , xir ] for some 1 ≤ i1 < i2 <

· · · < ir ≤ n and there exists a1, . . . , ar ∈ N so {xa1i1 , . . . , x
ar
ir
} ⊆ G(Q). Choose

s ∈ {1, . . . , r} so as = max1≤j≤r{aj}.

(1) If G(Q) = {xa1i1 , . . . , x
ar
ir
} , then ω(Qm) = (m−1)as+ω(Q) for each m ∈ N.

(2) Q is ω-linear if and only if ω(Q) = as.

Proof. (1) Let Q = (xa1i1 , . . . , x
ar
ir

). Then given m ∈ N, set Sm = {(k1, . . . , kr) ∈

Nr |
r∑
j=1

kj = m+r−1} and Qk = (xk1a1i1
, . . . , xkrarir

) for each k = (k1, . . . , kr) ∈ Sm.

Then Qm =
⋂
k∈Sm

Qk ([14, Theorem 6.2.4]). Now by Corollary 2.6 and Lemma

2.4,

ω(Qm) = max
k∈Sm

{e(Qk)} = max
k∈Sm

{
r∑
j=1

kjaj} − r + 1 = (m− 1)as + ω(Q).

(2) Fix m ∈ N and set

I1 = (xa1i1 , . . . , x
ar
ir

)m, I2 = (xi1 , . . . , xis−1
, xmasis

, xis+1
, . . . , xir ).

It follows that I1 ⊆ Qm ⊆ I2 are (xi1 , . . . , xir )-primary ideals, so we have

mas = ω(I2) ≤ ω(Qm) ≤ ω(I1) = (m − 1)as +
∑r
j=1 aj − r + 1 by Corollary 4.2,
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Lemma 2.4 and part 1 of this lemma. Therefore if Q is ω-linear, then ω(Q) =

lim
m→∞

mω(Q)

m
= lim

m→∞

ω(Qm)

m
= as. Conversely, suppose that ω(Q) = as and fix

m ∈ N. Then since xmasis
∈ G(Qm) we have ω(Qm) ≥ mas = mω(Q) by Lemma

4.1. Hence ω(Qm) = mω(Q) by Corollary 4.6 and so Q is ω-linear. �

Corollary 4.8. Let I be an irreducible monomial ideal of R = k[x1, . . . , xn] so that

I = (xa1i1 , . . . , x
ar
ir

) for some 1 ≤ i1 < i2 < · · · < ir ≤ n and a1, . . . , an ∈ N. Set

as = max1≤j≤r{aj}. Then the following are equivalent.

(1) I is ω-linear.

(2) ω(Im) = mω(I) for some m > 1.

(3) ω(I) = as.

(4) ai = 1 for each i 6= s.

Proof. (1)⇒ (2) Obvious.

(2) ⇒ (3) Suppose that ω(Im) = mω(I) for some m > 1. By Lemma 4.7(1) we

have ω(Im) = (m− 1)as + ω(I). Hence ω(I) = as.

(3)⇔ (4) Immediate consequence of Lemma 2.4.

(3)⇔ (1) Follows from Lemma 4.7(2). �

Lemma 4.9. Let P be a monomial prime ideal of R. If I, J are P -primary ω-linear

monomial ideals of R, then so is I ∩ J .

Proof. Without loss of generality we may assume that ω(I) ≥ ω(J). By Lemma

4.7(2), there is j ∈ {1, . . . , r} so that x
ω(I)
ij
∈ G(I). There exists a ∈ N so xaij ∈

G(J). Then again, by Lemma 4.7(2), a ≤ ω(J). Now, x
ω(I)
ij

= lcm(x
ω(I)
ij

, xaij ) ∈
G(I ∩ J). On the other hand, ω(I ∩ J) = ω(I) by Lemma 4.3. Hence I ∩ J is

ω-linear by Lemma 4.7(2). �

Given a monomial ideal I of R = k[x, y] we will write I = (xa1yb1 , . . . , xarybr )

where {ai} and {bi} are strictly decreasing and strictly increasing sequences of non-

negative integers, respectively. Similarly, if J is a monomial ideal of R we write

J = (xc1yd1 , . . . , xcsyds) where {ci} and {di} are strictly decreasing and strictly

increasing sequence of non-negative integers, respectively. Hence b1 = ar = 0 iff I

is (x, y)-primary, and d1 = cs = 0 iff J is (x, y)-primary.

Lemma 4.10. Let R = k[x, y] and I, J be (x, y)-primary monomial ideals with

ω(I) ≥ ω(J). Then ω(IJ) ≤ ω(I) + max{c1, ds}.
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Proof. We may assume that c1 ≥ ds. Then e(I) = ω(I) ≥ ω(J) ≥ c1 by Lemma

4.1, so (x, y)e(I)+c1 = (x, y)e(I)(xc1 , yc1) = (
√
I)e(I)(xc1 , yc1) ⊆ IJ are (x, y)-

primary ideals. Therefore ω(IJ) ≤ ω((x, y)e(I)+c1) = e(I) + c1 = ω(I) + c1 by

Lemma 4.2. �

We now classify ω-linear monomial ideals I in R = k[x, y].

Proposition 4.11. Let R = k[x, y] and I = (xa1yb1 , . . . , xarybr ) be a monomial

ideal of R. Then the following are equivalent.

(1) I is ω-linear.

(2) ω(Im) = mω(I) for some m > 1.

(3) ω(I) = max{a1 + b1, ar + br}.

Proof. Note that given m ∈ N and a monomial f of R, by Lemma 3.1 we have

ω(Im) = mω(I)

⇔ m(deg(f)) + ω(Im) = m(deg(f)) +mω(I)

⇔ deg(fm) + ω(Im) = m(deg(f) + ω(I))

⇔ ω((fI)m) = mω(fI).

Moreover, if I is a principal ideal, then I satisfies all of 1, 2, and 3 by Corollary

3.2. Hence we may assume that I is a (x, y)-primary monomial ideal of R. That

is, ar = b1 = 0.

(1)⇒ (2) is trivial.

(2) ⇒ (3) Suppose that ω(Im) = mω(I) for some m > 1. Note that ω(Im−1) +

ω(I) ≥ ω(Im) = mω(I) by Lemma 4.3 and ω(Im−1) ≤ (m − 1)ω(I) by Corollary

4.6, and thereby ω(Im−1) = (m−1)ω(I). Hence we must have ω(I2) = 2ω(I). Since

ω(I2) ≤ ω(I)+max{a1, br} by Lemma 4.10, ω(I) = ω(I2)−ω(I) ≤ max{a1, br}. On

the other hand, ω(I) ≥ max{a1, br} by Lemma 4.1. Therefore ω(I) = max{a1, br}.
(3)⇒ (1) Follows from Lemma 4.7(2). �

Lemma 4.12. The set of monomial ω-linear ideals of R = k[x, y] is multiplicatively

closed.

Proof. Let I and J be monomial ω-linear ideals of R. By Lemma 3.1 we may

assume that I and J are (x, y)-primary ideals of R. Then ω(I) = max{a1, br},
ω(J) = max{c1, ds} by Proposition 4.11. Now, xa1+c1 and ybr+ds are elements of

G(IJ). Hence by Lemma 4.7(2) and Lemma 4.1, to show that IJ is ω-linear it

suffices to show that ω(IJ) ≤ max{a1 + c1, br + ds}. Suppose that ω(I) = a1 and
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ω(J) = c1. Then all we have to show is ω(IJ) ≤ a1+c1, which follows from Lemma

4.3. The case when ω(I) = br and ω(J) = ds can be derived in the exact same

manner. Therefore, without loss of generality we may assume that ω(I) = a1 > br

and ω(J) = ds > c1. Observe now that Ixc1 + Jybr is an (x, y)-primary ideal

contained in IJ . Thus by Lemma 4.2 and Theorem 3.9 we have

ω(IJ) ≤ ω(Ixc1 + Jybr )

= max{ max
1≤i≤r−1

{ai + bi+1 + c1} − 1, max
1≤j≤s−1

{cj + dj+1 + br} − 1}

= max{ω(I) + c1, ω(J) + br}

= max{a1 + c1, br + ds}.

�

Recall that given an ideal I of a commutative ring R, an element f ∈ R is said

to be integral over I if there is some k ∈ N and ci ∈ Ii for each i ∈ {1, . . . , k} so

that

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0.

The set of elements of R integral over I is called the integral closure of I and is

denoted by I. I is said to be integrally closed if I = I.

Corollary 4.13. Every integrally closed monomial ideal of R = k[x, y] is ω-linear.

Proof. Let I be an integrally closed monomial ideal of R. It is well known that

R is an integrally closed domain (i.e., R is an integral domain that contains every

nonzero element of the quotient field of R that is integral over R), and that each

principal ideal of R is integrally closed, and the product of an integrally closed ideal

of R and a nonzero element of R yields another integrally closed ideal of R. Hence

by Lemma 3.1 we may assume that I is (x, y)-primary. Now by [16, Proposition

2.6] there are monomial ideals I1 = ({xr−iybi}ri=0) and I2 = ({xaiyi}ri=0) of R

with 0 = b0 < b1 < · · · < br and a0 > a1 > · · · > ar = 0 so I = I1I2. Thus

by Lemma 4.12, it suffices to show that I1 and I2 are ω-linear. By Theorem 3.9,

ω(I1) = max0≤i≤r−1{ci}, where ci = r − i+ bi+1 − 1 for each i ∈ {0, 1, . . . , r − 1}.
Since ci+1 − ci = bi+1 − (bi + 1) ≥ 0 for each i ∈ {0, 1, . . . , r − 1}, we have

ω(I1) = cr−1 = br = max{r, br} and I1 is ω-linear by Proposition 4.11. The proof

that I2 is ω-linear follows similarly. �

Remark 4.14. (1) Even if I and J are ω-linear monomial primary ideals such that
√
I =
√
J , we may have ω(I ∩ J) < ω(IJ) < ω(I) + ω(J). Indeed, set R = k[x, y],
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I = (x3, xy, y2) and J = (x2, xy, y3). Then both I and J are ω-linear (x, y)-primary

ideals of R. However, IJ = (x5, x3y, x2y2, xy3, y5), so ω(IJ) = 5 < 6 = ω(I)+ω(J).

On the other hand, ω(I ∩ J) = max{ω(I), ω(J)} = 3 by Corollary 2.6.

(2) Not every ω-linear monomial ideal of R = k[x, y] is integrally closed. For

example, set I = (x3, xy2, y4). Then ω(I) = 4 by Theorem 3.9, and I is ω-linear

by Proposition 4.11. However, (x2y)2 = x3(xy2) ∈ I2 and x2y 6∈ I. Thus I is not

integrally closed ([10, Theorem 1.4.2]).

So far, we have considered only ω-linear monomial ideals of the form fI where f

is a monomial and I is a primary ideal, and most of the proof is solely based on the

fact that e(I) = ω(I) when I is a primary ideal. We now show that there exists a

class of (integrally closed) nonprimary ω-linear monomial ideals. In fact, some of the

squarefree monomial ideals are ω-linear. Recall that a monomial f = xa1i1 · · ·x
ar
ir

is said to be squarefree if a1 = · · · = ar = 1. A monomial ideal generated by

squarefree monomials is said to be a squarefree monomial ideal.

Lemma 4.15. Let I be a squarefree monomial ideal. Then ω(Im) ≥ mω(I) for

each m ∈ N.

Proof. Let P1, . . . , Pr be minimal prime ideals of I. Then I =
⋂r
i=1 Pi and ω(I) =

r by Proposition 3.5. Set fi =
∑

xj∈G(Pi)

xj for each i ∈ {1, . . . , r}. Then f :=

∏r
i=1 fi ∈

∏r
i=1 Pi ⊆ I, so fm ∈ Im. However,

fm

fi
6∈ Pmi , so

fm

fi
6∈ Im([10,

Proposition 1.4.4]). Thus Im is not (mr − 1)-absorbing and ω(Im) ≥ mω(I). �

Recall that a graph G consists of a set of vertices V = {v1, ..., vn} and a set

of edges E ⊆ {vivj |vi, vj ∈ V }, and is called bipartite if there exists two disjoint

subsets U1, U2 of V such that E ⊆ {vivj | vi ∈ U1, vj ∈ U2}. The edge ideal of G

is defined to be the ideal I = ({xixj |vivj ∈ E}) of R = k[x1, ..., xd], where k be a

field and d is the number of vertices of G. Given a graph G = (V,E), a subset W

of V is said to be a vertex cover if given vivj ∈ E, either vi ∈ W or vj ∈ W . A

vertex cover W of G is said to be a minimal vertex cover if each proper subset of

W is not a vertex cover of G.

If I is an edge ideal of a graph, then it is a squarefree monomial ideal and a

monomial prime ideal P is a minimal ideal of I if and only if the set of vertices that

corresponds to P is a minimal vertex cover. Also, a graph is bipartite if and only

if it has no cycle of odd length as its subgraph.
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Our first example of a nonprimary ω-linear ideal is the edge ideal of a bipartite

graph.

Lemma 4.16. Let R = k[x1, . . . , xn]. If I is an ideal of R that is also the edge

ideal of a bipartite graph G, then I is ω-linear.

Proof. Let I be an edge ideal of a graph G and let P1, . . . , Pr be the set of (in-

comparable) minimal prime ideals of I. Recall that a graph G is bipartite if and

only if

Im =
⋂

P is a minimal prime of I

Pm

for each m ∈ N ([18, Theorem 5.9]). Hence if G is bipartite, then by Proposition

3.5, ω(Im) =
r∑
i=1

e(Pmi ) =
r∑
i=1

m = mr for each m ∈ N. Therefore the conclusion

follows. �

There are nonbipartite graphs whose edge ideals are ω-linear.

Theorem 4.17. Let R = k[x1, . . . , xn]. Let I = (x1x2, x2x3, . . . , xn−1xn, xnx1)

(that is, I is the edge ideal of a cycle graph of length n). Then I is ω-linear.

Proof. Since a cycle of even length is bipartite, by Lemma 4.16 we may assume

that n = 2l+1 for some l ∈ N. Fix m ∈ N. I is a squarefree monomial ideal, so I =

P1∩·· ·∩Pr where P1, . . . , Pr are the minimal prime ideals of I ([10, Lemma 1.3.5]).

Thus by Proposition 3.5 we have ω(I) =
∑r
i=1 e(Pi) = r, and we only need to show

that ω(Im) = mr. Note that since I is an edge ideal of a cycle of length 2l + 1,

Ass(R/Im) = {P1, . . . , Pr} if m ≤ l and Ass(R/Im) = {P1, . . . , Pr,m} if m > l ([5,

Lemma 3.1]). Hence if m ≤ l, then Im =
⋂r
i=1 P

m
i and ω(Im) =

r∑
i=1

e(Pmi ) = mr

by Proposition 3.5, so we are done. Assume that m > l. Then Im = (
⋂r
i=1 P

m
i )∩Q

is the canonical primary decomposition of Im, where Q is an m-primary monomial

ideal of R ([10, Proposition 1.4.4]). Now, Q = (xa11 , . . . , x
an
n , f1, . . . , ft) for some

ai ∈ N and monomials fi. Since I is a squarefree monomial ideal and Q is a

primary component of Im, we must have ai ≤ m for each i ∈ {1, . . . , n}, and thus

e(Q) ≤ e((xa11 , . . . , x
an
n )) ≤ mn − n + 1 ≤ mr by Lemma 2.4 and since n ≤ r. It

follows that ω(Im) = max{
r∑
i=1

e(Pmi ), e(Q)} = max{mr, e(Q)} = mr by Theorem

3.3 and Proposition 3.5. �

We close the section with the following question: Is every integrally closed mono-

mial ideal ω-linear? Integrally closed monomial ideals considered in this note (cer-

tain monomial ideals in R = k[x, y], irreducible monomial ideals, or edge ideal of
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bipartite graphs) were all ω-linear. Note also that if this question has an affirmative

answer, then it follows that every edge ideal is ω-linear.
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