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1. Introduction

Borel ideals appear in characteristic zero as generic initial ideals. By applying

the stretching operator of Kalai [17] to a Borel ideal, one obtains a squarefree Borel

ideal, also called squarefree strongly stable ideal. It has the same graded Betti

numbers as the original ideal, see for example [14, Lemma 11.2.6]. This class of

ideals was introduced by Hibi and the first author of this paper in [2]. In the sequel,

algebraic properties of squarefree strongly stable ideals and their powers have been

studied by many authors, see for example [1], [3], [11], [12] and [18].

Among the squarefree strongly stable ideals, the squarefree principal Borel ideals

and their powers are best understood. The squarefree principal ideal with Borel

generator u is denoted by BS(u). We use some of the known results from Aslam

[3], Francisco, Mermin and Schweig [12] and De Negri [7], to get some additional

information about the algebraic and homological properties of powers of BS(u).

These known facts are recalled in Section 3. In this section we also show that

BS(u) is normally torsion free if and only if it is almost normally torsion free, and

that this happens if and only if the Borel generator u of the ideal has a specific form,

see Corollary 3.4. In Corollary 3.13 we determine the height and bigheight of BS(u),

and characterize those squarefree principal Borel ideals which are Cohen-Macaulay.

Corollary 3.12 makes more explicit the set Ass∞(BS(u)), as it is described by Aslam

in Theorem 3.10.

For our proofs we essentially use monomial localization. Some of the basic facts

about monomial localization are recalled in Section 2. We close this section by
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characterizing in Corollary 2.5 k-strongly stable ideals. This type of ideals play an

important role in Section 4, where the socle of the powers of BS(u) is determined.

It turns out, see Corollary 4.2, that the socle of BS(u)k is a (k − 1)-stable set of

monomials. By using this fact we exhibit in Corollary 4.5 for each k a monomial wk

with the property that depthS/BS(u)k = 0, if and only if wkxn ∈ BS(u)k. Here

u is a squarefree monomial in S = K[x1, . . . , xn] with x1 - u and xn | u. These

conditions on u are not restrictive, because one can always reduce to this case, see

Lemma 5.1 and Proposition 5.2.

The invariant astab(u) is the smallest number k for which Ass(BS(u)k stabilizes,

and dstab(BS(u)) is the smallest number k for which depthS/BS(u)k stabilizes. As

the main result of Section 5 we show in Theorem 5.5 that for any u, astab(BS(u)) =

dstab(BS(u)). For general monomial ideals I, the the Ass-stability and the depth

stability are usually unrelated.

For the proof of Theorem 5.5 we use the interesting fact, shown in Theorem 5.4,

that the depth stability of monomial localizations of BS(u) are bounded by the

depth stability of BS(u).

In the last section we study the depth of S/BS(u)k as a function of k. For short

we set f(k) = depthS/BS(u)k. Since all powers of BS(u)k have a linear resolution

it follows from [13, Proposition 2.1] that f(k) ≤ f(k − 1) for k ≥ 1. We also know

that the depth function f(k) becomes constant for k ≥ deg u, see Proposition5.3.

By considering many example it seems to be the case that f(k) < f(k − 1), before

f(k) becomes constant. This is true if deg u ≤ 3, and follows from Proposition 6.5,

where we compute f(k) explicitly for deg u ≤ 3. In Proposition 6.2 we show that

f(1) = deg u − 1, and in Proposition 6.3 we determine all squarefree monomials u

for which f(2) = 0. Finally in Theorem 6.6 we show that f(2) < f(1), as expected,

unless f(1) = f(k) for some k ≥ 2, and in this case f(k) is a constant function.

2. Preliminaries

In this section we introduce some concepts and results which are important in

this paper.

Monomial localizations. In this paper, monomial localizations are an important

tool. Let K be a field and let S = K[x1, . . . , xn] be the polynomial ring in n

variables. Let T ⊂ [n]. We define the monomial prime ideal PT to be the ideal

(xj : j ∈ T c). Here T c = [n] \ T and [n] = {1, . . . , n}. We also set [0] = ∅. Notice

that P[0] = (x1, . . . , xn) and P[n] = (0).
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Definition 2.1. Let I ⊂ K[x1, . . . , xn] be a monomial ideal, and let T ⊂ [n]. The

monomial localization of I with respect to PT is the monomial ideal I(PT ) ⊂ S(PT ),

where S(PT ) = K[xj : j ∈ T c] and I(PT ) = ϕ(I)S(PT ), where ϕ : S → S(PT ) is

the K-algebra homomorphism with xj 7→ xj if j ∈ T c, and xj 7→ 1 if j ∈ T .

Monomial localization with respect to PT and the usual localization with respect

to the prime ideal PT are related as follows:

ISPT
= I(PT )SPT

.

This identity justifies the name “monomial localization”.

For example, if I = (x1x3, x1x4, x2x3x4, x3x5x7x8) ⊂ S = K[x1, . . . , x8] and

T = {3, 5}, then S(PT ) = K[x1, x2, x4, x6, x7, x8] and I(PT ) = (x1, x2x4, x7x8).

If I = PT , then I(PT ) is the graded maximal ideal of S(PT ) which we denote by

mS(PT ).

To simplify notation, we set I(j) = I(P{j}) and S(j) for S(P{j}). Note that

S(j) = K[xi : i ∈ [n] \ {j}].

Strongly stable ideals. Let u = xa11 · · ·xann be a monomial in S = K[x1, . . . , xn].

We set νi(u) = ai for i = 1, . . . , n. Now let I ⊂ S = K[x1, . . . , xn] be a monomial

ideal. We denote by G(I) the unique set of monomial generators of I. For a given

integer k ≥ 1, we let I≤k be the ideal generated by all u ∈ G(I) with νi(u) ≤ k for

i = 1, . . . , n.

A monomial u ∈ S be can be written as u = xi1xi2 · · ·xid with i1 ≤ i2 ≤ . . . ≤ id.
The monomial u is called squarefree if i1 < i2 < . . . < id. A monomial ideal I is

called a squarefree monomial ideal if all monomials in G(I) are squarefree. Note

that for any monomial ideal, the ideal I≤1 is a squarefree monomial ideal. Moreover,

the ideal I is squarefree if and only if I = I≤1.

Definition 2.2. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal, and let k ≥ 1 be

an integer, or k =∞. Then I is called k-strongly stable, if

(i) I = I≤k;

(ii) for all u ∈ G(I) and all integers 1 ≤ i < j ≤ n with νj(u) > 0 and νi(u) < k

it follows that xi(u/xj) ∈ I.

The following special cases are of particular interest: let I be a monomial ideal.

(α) If k = ∞, then there is no bound on the exponents and ∞-strongly stable

is simply called strongly stable. In other words, I is strongly stable, if for u ∈ G(I)

and all j such that xj divides u, it follows that xi(u/xj) ∈ I for all i ≤ j.
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(β) I is called squarefree strongly stable, if it is 1-strongly stable.

Let u1, . . . , um be monomials in S with νi(uj) ≤ k for i = 1, . . . , n and j =

1, . . . ,m. There exists a unique smallest k-strongly stable ideal containing u1, . . . , um

which we denote by BkS(u1, . . . , um). The monomials u1, . . . um are called Borel

generators of BkS(u1, . . . , um). A monomial ideal I is called k-principal Borel if

I = BkS(u) for some monomial u with νi(u) ≤ k for i = 1, . . . , n. We call 1-

principal Borel ideals also squarefree principal Borel. The k-principal Borel ideals

appear as powers of squarefree principal Borel ideals, see Theorem 4.1.

To simplify notation, we writeBS(u1, . . . , um) forB1
S(u1, . . . , um) when u1, . . . , um

are squarefree monomials. The unique strongly stable ideal containing the mono-

mials u1, . . . , um will be denoted by B∞S (u1, . . . , um).

For example, let I = BS(x2x4, x1x3). ThenG(I) = {x1x2, x1x3, x1x4, x2x3, x2x4}.

Let u, v be monomials of same degree, and assume that νi(u) ≤ k for i = 1, . . . , n.

Then we write v �k u if v ∈ BkS(u), and v ≺k u if v ∈ BkS(u) and v 6= u. For �∞
we simply write �.

For each d, �k defines a partial order on the set of monomials of degree d whose

exponents are bounded by k. For example, one has x21x
3
2x3 ≺3 x

3
2x

3
3. A set S of

monomials of degree d whose exponents are bounded by k is called a k-stable set,

if for u ∈ S and v �k u it follows that v ∈ S.

Note that BkS(u1, . . . , um) is generated by
⋃m
i=1{v : v �k ui}. Therefore,

BkS(u1, . . . , um) =

m∑
i=1

BkS(ui).

Let v, u ∈ S be monomials of degree d, where v = xi1 · · ·xid with i1 ≤ i2 ≤ · · · ≤
id and u = xj1 · · ·xjd with j1 ≤ j2 ≤ · · · ≤ jd. By [14, Lemma 4.2.4] one has

v � u if and only if ik ≤ jk for all k = 1, . . . , d. (1)

Remark 2.3. Let u, v ∈ S be monomials. It is clear that if v �k u, then v � u.

On the other hand, if the exponents of u and v are bounded by k and v � u, then

v �k u. This follows from the next lemma.

Lemma 2.4. Let u ∈ S be a monomial with νi(u) ≤ k for i = 1, . . . , n. Then

BkS(u) = B∞S (u)≤k.

Proof. Let v ∈ BkS(u). Then v �k u, and hence v � u. Therefore, v ∈ B∞S (u).

Since the exponent of v is bounded by k it follows that v ∈ B∞S (u)≤k.
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Conversely, let v ∈ B∞S (u)≤k, and let v = xi1 · · ·xid with i1 ≤ i2 ≤ · · · ≤ id and

u = xj1 · · ·xjd with j1 ≤ j2 ≤ · · · ≤ jd.
Let w be a monomial of degree d with v � w, and let w = xs1 · · ·xsd with

s1 ≤ s2 ≤ · · · ≤ sd. We define

δ(w, v) =

d∑
l=1

(sl − il).

Since v � w, it follows from (1) that δ(w, v) ≥ 0, and we have δ(w, v) = 0 if and

only if w = v.

Let l+ 1 be the smallest integer such that jl+1 > il+1. Let u1 = xjl+1−1u/xjl+1
.

Then the exponents of u1 are bounded by k, unless jl+1 − 1 = jl = jl−1 = · · · =

jl−k+1. Assume jl+1 − 1 = jl. By the choice of l it follows that il−k+1 = · · · il.
Since the exponents of v are bounded by k, it follows that il+1 > il. Moreover,

jl+1 > il+1. Then jl+1 ≥ il + 2 = jl + 2, a contradiction. This shows that indeed

the exponents of u1 are bounded by k, and v � u1, and hence v ∈ B∞S (u1)≤k. Since

δ(u1, v) < δ(u, v), we may assume by induction that v ∈ BkS(u1) ⊂ BkS(u), because

u1 ∈ BkS(u). �

An immediate consequence of Lemma 2.4 is

Corollary 2.5. Let u, v be monomials of degree d and assume that νi(u), νi(v) ≤ k
for i = 1, . . . , n. Let u = xj1 · · ·xjd with j1 ≤ j2 ≤ . . . ≤ jd and v = xi1 · · ·xid with

i1 ≤ i2 ≤ · · · ≤ id. Then v ≺k u if and only if ir ≤ jr for r = 1, . . . , d.

If L ⊂ [n], S′ = K[xi : i ∈ L] and u1, . . . , um ∈ S′ are monomials with νi(uj) ≤ k
for i ∈ L and j = 1, . . . ,m. Then BkS′(u1, . . . , um) is defined in a similar way as in

the case S′ = S. For example, if n = 6 and L = {2, 4, 6}, then S′ = K[x2, x4, x6].

Let u = x24x6 ∈ S′ and k = 2, then B2
S′(u) = {x22x4, x22x6, x2x4x6, x2x24, x24x6}.

3. Associated prime ideals of BS(u)k

In this paper we mainly study squarefree principal Borel ideals. This class of

ideals behave well under localization, see [3, Theorem 1.2].

Theorem 3.1. Let u ∈ S be a squarefree monomial of degree d, u = xi1xi2 · · ·xid
with i1 < i2 < . . . < id, and let j be an integer with ik−1 < j ≤ ik, where we set

i0 = 0. Then BS(u)(j) = BS(j)
(v), where v = u/xik .

Corollary 3.2. Let u ∈ S be a squarefree monomial, I = BS(u) and P ⊂ S a

monomial prime ideal. Then I(P ) is a squarefree principal Borel ideal in S(P ).
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Proof. Let P = PT . Then I(PT ) is the ideal in S(PT ) which is obtained from I by

the substitutions xj 7→ 1 for j ∈ T . Thus the result follows by repeated application

of Theorem 3.1. �

A graded ideal I ⊂ S is called normally torsionfree, if Ass(I) = Ass(Ik) for all

k ≥ 1. Moreover, we call I almost normally torsionfree, if Ass(Ik) ⊆ Ass(I) ∪ {m}
for all k, where m = (x1, x2, . . . , xn) is the graded maximal ideal of S.

Corollary 3.3. Let u = xixn, Then BS(u) is almost normally torsionfree. More-

over, BS(u) is normally torsionfree, if and only if i = 1.

Corollary 3.4. Let u = xi1 · · ·xid−1
xn, and let d ≥ 3. Then the following condi-

tions are equivalent:

(a) BS(u) is normally torsionfree.

(b) BS(u) is almost normally torsionfree.

(c) u = x1x2 · · ·xd−1xn.

In order to prove Corollary 3.3 and Corollary 3.4, we need the following lemmata.

Lemma 3.5. Let I be normally torsion free and let w be a monomial such that

Supp(w) ∩ Supp(u) = ∅ for all u ∈ G(I). Then wI is normally torsion free.

Proof. The assumption imply that

Ass((wI)k) = Ass(Ik) ∪Ass((w)k) = Ass(Ik) ∪Ass((w)). (2)

It follows that Ass((wI)k) = Ass(wI) for all k ≥ 1 if and only if Ass(Ik) = Ass(I)

for all k ≥ 1. �

Lemma 3.6. Let I be a monomial ideal. Then I is almost normally torsionfree if

and only if I(j) is normally torsionfree for all j.

Proof. The proof follows from the fact that, similarly to ordinary localizations,

one has

P ∈ AssS(j)
((I(j))

k) if and only if PS ∈ AssS(Ik) and P ⊂ P{j}, (3)

see [16, Lemma 1.3]. �

Proof of Corollary 3.3. Note BS(u)(j) = BS(j)
(v), where v is a monomial of

degree 1. Therefore, BS(j)
(v) is normally torsionfree. By Lemma 3.6, it follows

that BS(u) is almost normally torsionfree.

If i1 = 1. Then Lemma 3.5 implies that Ass(BS(u)k) = (x1) ∪ (x2, . . . , xn) =

Min(I). Therefore, BS(u) is normaly torsionfree. �
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Proof of Corollary 3.4. (a) ⇒ (b) is trivial. (b) ⇒ (c) We prove the assertion

by induction on d. Let d = 3 and u = xi1xi2xn with i1 < i2 < n. The assumption

implies that BS(u)(1) = BS(1)
(v) is normally torsionfree, see Lemma 3.6. Here

v = xi2xn . Now Corollary 3.3 implies that i2 = 2, and therefore and u = x1x2xn.

Now let d > 3, and let u = xi1xi2 · · ·xid−1xn
with i1 < i2 < . . . < id−1 < n.

Then Theorem 3.1 implies that BS(u)(1) = BS(1)
(v), where v = xi2 · · ·xid−1

xn.

By Lemma 3.6 it follows that BS(1)
(v) is normally torsionfree. Hence by induction

hypothesis, we have v = x2x3 · · ·xd−1xn. Therefore, u = xi1x2 · · ·xd−1xid . This

implies that i1 = 1, and proves (c).

(c) ⇒ (a) Since u = x1x2 · · ·xd−1xn, it follows that BS(u) = w(xd, . . . , xn),

where w = x1x2 · · ·xd−1. Therefore, Lemma 3.5 implies that BS(u) is normally

torsionfree. �

Let u ∈ S be a squarefree monomial. Then BS(u) does not have any embedded

prime ideals, because BS(u) is a squarefree monomial ideal, and hence a radical

ideal. In other words, Ass(BS(u)) = Min(BS(u)). Here, for any ideal I ⊂ S, Min(I)

denotes the set of minimal prime ideals of I.

Let BS(u)∨ denote the Alexander dual of BS(u). Then v = xi1 · · ·xik ∈
G(BS(u)∨), if and only if (xi1 , . . . , xik) ∈ Min(BS(u)), see for example [14, Theo-

rem 1.4.6]. Therefore, the set MinS(BS(u)) is determined, once we know the set

G(BS(u)∨). In [12, Theorem 3.18], G(BS(u)∨) has been computed.

Theorem 3.7 (Francisco, Mermin, Schweig). Let u ∈ S, u = xi1 · · ·xid be a

monomial with i1 < i2 < . . . < id. Then BS(u)∨ is a squarefree strongly stable

ideal with Borel generators xr · · ·xir for r = 1, . . . , d.

This theorem has been generalized to t-spread principal Borel ideals, see [1,

Theorem 1.2].

Let I ⊂ S be any ideal. Recall that

height(I) = min{height(P ) : P ∈ Ass(I)},

and

bigheight(I) = max{height(P ) : P ∈ Ass(I)}.

As an immediate consequence of Theorem 3.7 we obtain

Corollary 3.8. Let u ∈ S, u = xi1 · · ·xid be a monomial with i1 < i2 < . . . < id

and let I = BS(u). Then

(a) height(I) = i1 and bigheight(I) = id − d+ 1.

(b) The following conditions are equivalent:



THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS 231

(i) height(I) = bigheight(I).

(ii) ij = i1 + j − 1 for j = 1, . . . , d.

(iii) S/I is Cohen-Macaulay.

Proof. (i)⇐⇒ (ii) We have

i1 ≤ i2 − 1 ≤ . . . ≤ ij − j + 1 ≤ ij+1 − (j + 1) + 1 ≤ . . . ≤ id − d+ 1.

From (a) it follows that i1 = id − d+ 1. Therefore, ij − j + 1 = ij+1 − (j + 1) + 1

for all j which implies that ij+1 = ij for all j. This yields the desired conclusion.

(iii)⇒ (i) Since S/I is Cohen-Macaulay, the ideal I is unmixed, see for example

[6, Theorem 2.1.6]. Since I is unmixed if and only if height(I) = bigheight(I), the

assertion follows.

(ii) ⇒ (iii) By Theorem 3.7, I∨ = BS(xd · · ·xid) for ideals satisfying condition

(ii). It is known that BS(xd · · ·xid) has a linear resolution, see [1, Proposition 2.4].

Therefore, S/I is Cohen-Macaulay, see for example [14, Theorem 8.1.9]. �

The following results [3, Theorem 2.1 and Corollary 2.3] is also important for

this paper. We denote by m the graded maximal ideal of S = K[x1, . . . , xn]. For a

monomial v 6= 1 we set min(v) = min{j : j ∈ supp(v)} and max(v) = max{j : j ∈
supp(v)}. If v = 1, we set min(v) = max(v) = 0.

Theorem 3.9 (Aslam). Let u ∈ S = K[x1, . . . , xn] be a squarefree monomial of

degree d and let I = BS(u). Then m ∈ Ass(Ik) for some k if and only if min(u) > 1

and max(u) = n. If this is the case, then m ∈ Ass(Ik) for all k ≥ d.

An alternate proof of this fact is given in Proposition 4.6.

By Brodmann ([4] and [5]), for any graded ideal I ⊂ S = K[x1, . . . , xn], there

exists an integer k0 such that Ass(Ik) = Ass(Ik0) for all k ≥ k0. We set Ass∞(I) =

Ass(Ik0).

In our case, I = BS(u) with u = xi1 · · ·xid and i1 < i2 < . . . < id. Therefore, I is

a squarefree monomial ideal, and hence Ass(I) = Min(I). Since Min(I) ⊂ Ass∞(I),

it follows in our case that Ass(I) ⊂ Ass∞(I). In Corollary 3.4, we have seen that

Ass(I) = Ass∞(I) if and only if u = x1x2 · · ·xd−1xid .

Let T ⊂ [n]. By using Theorem 3.1 and induction on |T | it follows that there

exists a (unique) monomial uT ⊂ ST of degree d−|T | such that BS(u)T = BST
(uT ).

For example, if u = x2x5x6x7x9 and T = {3, 5, 9}, then

uT = u359 = (u9)35 = ((x2x5x6x7)5)3 = (x2x6x7)3 = x2x7.

Note that the monomial prime ideal P belongs to Ass∞(I) if and only if mP ∈
AssS(P )(I(P )k), for all k � 0. Here mP = PS(P ) denotes the graded maximal
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ideal of S(P ). By Corollary 3.2 the monomial localization I(P ) of the squarefree

principal monomial I is again a squarefree principal monomial ideal.

A graded ideal I ⊂ S is said to satisfy the persistence property, if AssS(Ik) ⊂
AssS(Ik+1) for all k ≥ 1. Since squarefree principal monomial ideals satisfy the

persistence property (see [1, Corollary 2.6]), we conclude that P belongs to Ass∞(I)

if and only if mP ∈ AssS(P )(I(P )k) for some k. From this observation together with

Theorem 3.9 one obtains [3, Theorem 3.2].

Theorem 3.10 (Aslam). Let T be any subset of [n] and assume that min(u) >

1. Then PT ∈ Ass∞(BS(u)) if and only if min(T c) < min(uT ) and max(uT ) =

max(T c).

For the next result we need

Lemma 3.11. Suppose min(u) > 1. Then min(T c) < min(uT ) if and only if

uT 6= 1.

Proof. It is enough to show that min(T c) < min(uT ) if uT 6= 1. The other

direction is trivial. We use induction on |T |. If |T | = 0, the assertion is trivial,

since min(u) > 1 and T c = [n]. Now let |T | > 0. Note that T 6= [n], because

we assume that uT 6= 1. This means that T is a non-empty proper subset of [n].

Let u = xi1xi2 · · ·xid with i1 < i2 < . . . < id and let T = {j1, j2, . . . , js} with

j1 < j2 < . . . < js. Let r be the biggest number such that ji = i for i = 1, . . . , r−1.

Then min(T c) = r, and

uT = (xir · · ·xid){jr,...,js}

by Theorem 3.1. Therefore, min(uT ) ≥ ir ≥ r + 1. Thus we see that min(T c) =

r < r + 1 ≤ min(uT ), as desired. �

Corollary 3.12. Let u = xi1 · · ·xid be a monomial in S = K[x1, . . . , xn] with

i1 < i2 < . . . < id, and T = {j1, . . . , js} with j1 < j2 < . . . < js. Suppose that

ij = j for j = 1, . . . , r and ir+1 > r + 1. Then

Ass∞(BS(u)) = {(x1), . . . , (xr)} ∪ {PT : [r] ⊆ T, uT 6= 1,max(T c) = max(uT )}.

Moreover, uT 6= 1 if and only if s < d or s ≥ d and jl > il for some l.

Proof. By assumption we have u = x1 · · ·xru′, where u′ = xir+1
· · ·xid with ir+1 >

r+1. Therefore, BS(u) = x1 · · ·xrBS′(u′)S, where S′ = K[xr+1, . . . , xn]. Hence (2)

implies that Ass∞(BS(u)) = {(x1), . . . , (xr)} ∪ Ass∞(BS′(u
′))S. Since min(u′) >

r + 1, we may apply Theorem 3.10 to u′ in S′. Therefore, the result follows from

Theorem 3.10 and Lemma 3.11. �
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Corollary 3.13. Let u ∈ S, u = xi1 · · ·xid be a monomial with i1 < i2 < . . . < id

and let I = BS(u). Suppose that ij = j for j = 1, . . . , r and ir+1 > r + 1. Then

bigheight(I l) = id − r for l� 0.

Proof. Since l� 0, it follows that bigheight(I l) = max{heightPT : PT ∈ Ass∞(I)}.
The ideal PT for T = [r] has height id−r, and this the largest possible height among

the ideals PT . Since uT = xir+1 · · ·xid , Corollary 3.12 implies that PT ∈ Ass∞(I).

�

Example 3.14. Let u = x1x3x5 and I = BS(u). Then

{T : [1] ⊆ T, uT 6= 1,max(T c) = max(uT )} = {{1}, {1, 2}, {1, 3}, {1, 4, 5}}.

Hence

Ass∞(I) = {(x1)} ∪ {(x2, x3, x4, x5), (x3, x4, x5), (x2, x4, x5), (x2, x3)}.

4. The socle of S/BS(u)k

In this section we determine the powers of BS(u) and their socle. We first recall

a result of De Negri [7, Proposition 3.4], and present a proof it by using sortability.

This makes the proof substantially shorter.

Theorem 4.1. Let u ∈ S be a squarefree monomial. Then BS(u)k = BkS(uk) for

all k ≥ 1. In particular, BS(u)k is k-strongly stable.

Proof. Let u = xl1 · · ·xld with l1 ≤ l2 ≤ · · · ≤ ld, and suppose that v ∈ BkS(uk),

and let v = xi1 · · ·xikd
with i1 ≤ i2 ≤ · · · ≤ ikd. Since v �k uk it follows that

i(r−1)k+1, . . . , irk ≤ lr for r = 1, . . . , d, see Corollary 2.5.

For j = 1, . . . , k, let vj =
∏d
r=1 xi(r−1)k+j . Then v = v1 · · · vk and vj � u. It

remains that to be shown that each vj is squarefree. Suppose vj is not squarefree.

Then there exists r with 1 ≤ r < d such that xi(r−1)k+j
= xirk+j

. Hence i(r−1)k+j =

i(r−1)k+j+1 = · · · = irk+j . This implies that νi(r−1)k+j(v) > k, a contradiction.

Conversely, let v ∈ BS(u)k. By [1, Proposition 2.4], G(BS(u)) is sortable. There-

fore, v = v1v2 · · · vk with vj ∈ BS(u) and (vi, vj) is sorted for all i, j with 1 ≤ i <

j ≤ k. It follows from [9, (6.3)], that if v1 = xi1 · · ·xid with i1 < i2 < . . . < id,

v2 = xj1 · · ·xjd with j1 < j2 < . . . < jd, . . . , vk = xs1 · · ·xsd with s1 < s2 < . . . <

sd, then i1 ≤ j1 ≤ . . . ≤ s1 ≤ i2 ≤ j2 ≤ . . . ≤ s2 ≤ . . . ≤ ik ≤ jk ≤ . . . ≤ sk.

From this it follows that v ∈ B∞S (uk). Since each vj is squarefree it follows that

v ∈ BkS(uk). �
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For any monomial ideal we denote by Soc(S/I) the (finite) set of monomial v ∈ S
with v 6∈ I and vxj ∈ I for j = 1, . . . , n. Note that depthS/I = 0 if and only if

Soc(S/I) 6= ∅.

Corollary 4.2. Let u ∈ S be a squarefree monomial of degree d, and let I = BS(u).

Suppose that depthS/Ik = 0. Then Soc(S/Ik) is a (k− 1)-stable set of monomials

generated in degree kd− 1.

Proof. By [1, Proposition 2.4] the ideal Ik has kd-linear resolution. Suppose now

that depthS/Ik = 0. Then the graded minimal free resolution of S/Ik is of the

form

0→ Fn → Fn−1 → · · · → F1 → F0 → S/Ik → 0,

with F0 = S and Fi = S(−kd− i+1)βi for i = 1, . . . , n. So Fn = S(−kd−n+1)βn .

This shows that all elements of Soc(S/Ik) have degree (kd+ n− 1)− n = kd− 1.

Indeed, Fn/mFn and the Koszul homology Hn(x1, . . . , xn;S/Ik) are isomorphic as

the gradedK-vector spaces. The generators ofHn(x1, . . . , xn;S/Ik) are ve1∧. . .∧en
with v ∈ Soc(S/Ik). This gives us the above formula for the degree of the socle

elements.

By [15, Corollary 1.2], νi(v) ≤ k−1 for all v ∈ Soc(S/Ik) and i = 1, . . . , n. Thus

it remains to be shown that if v ∈ Soc(S/Ik), xj |v, i < j and νi(xiv) ≤ k− 1, then

v0 := xi(v/xj) ∈ Soc(S/Ik), that is, xlv0 ∈ Ik for l = 1, . . . , n. Indeed, if l = j,

then xlv0 = xiv ∈ Ik. If l 6= j, then xlv0 = xi(xlv)/xj ∈ Ik because xlv ∈ Ik and

Ik is k-stable, see Theorem 4.1. �

Let 1 < d < n be integers and for k ≥ 2 let ck, rk be integers such that

kd− 1 = ck(k − 1) + rk with 0 ≤ rk < k − 1. (4)

Then we define the monomial wk = xk−11 · · ·xk−1ck
xrck+1. Note wk ∈ S if and only if

ck ≤ n when r = 0, and ck + 1 ≤ n if r 6= 0.

Corollary 4.3. Let u ∈ S be a squarefree monomial of degree d, and let I = BS(u).

Then depthS/Ik = 0 if and only if wkxn � uk.

Proof. If depthS/Ik = 0, then Soc(S/Ik) is a non-empty (k − 1)-stable set. Let

v ∈ Soc(S/Ik). Then {w : w �k−1 v} ⊆ Soc(S/Ik). Since wk �k−1 v it follows that

wk ∈ Soc(S/Ik). Therefore, wkxn ∈ Ik = BkS(uk). This implies that wkxn �k uk,

and hence wkxn � uk, see Remark 2.3.

Conversely, suppose that wkxn � uk. Therefore, xiwk = xi(wkxn)/xn � uk.

Since the exponents of wk are bounded by k−1, the exponents of xiwk are bounded



THE DEPTH OF POWERS OF SQUAREFREE PRINCIPAL BOREL IDEALS 235

by k. Therefore, by Remark 2.3, xiwk �k uk for all i. This means that xiwk ∈ Ik

for all i. Hence wk ∈ Soc(S/Ik), and so depthS/Ik = 0. �

Note that wkxn � uk only if wk ∈ S.

Remark 4.4. Let d < n, fd(k) = d(kd− 1)/(k− 1)e and wk = xk−11 · · ·xk−1ck
xrck+1.

Then

(a) fd(k) = ck if r = 0 and fd(k) = ck + 1 if r 6= 0. Therefore, wk ∈ S if and

only if fd(k) ≤ n.

(b) The function fd(k) is a non-increasing function with fd(k) ≤ n for k ≥ d.

(c) Let k0 = min{k : fd(k) ≤ n}. Then k0 ≤ d.

Proof. (a) follows from the definition of ck, see (4).

(b) It is obvious that fd(k) is a non-increasing function. Since fd(d) = d+1 ≤ n,

we also have fd(k) ≤ n for k ≥ d.

(c) follows from (b). �

Corollary 4.5. Let k0 be defined as in Remark 4.5. Then min{k : depthS/Ik =

0} ≥ k0. In particular, this lower bound for min{k : depthS/Ik = 0} depends only

on d and n.

In general the inequality min{k : depthS/Ik = 0} ≥ k0 may be strict, as the

following example shows: Let u = x2x3x4x5x6 ∈ S = K[x1, . . . , x6]. Then d = 5

and n = 6. Then f5(2) = 9, f5(3) = 7 and f5(4) = 6. Therefore, k0 = 4, but on

the other hand 5 is the smallest number k for which depthS/Ik = 0.

We use this characterization of the socle elements to show

Proposition 4.6. Let I = BS(xi1xi2 · · ·xid) ⊂ S = K[x1, . . . , xn] with 1 < i1 <

i2 < . . . < id = n. Then m ∈ Ass(Ik) for k ≥ d.

Proof. It is enough to show that m ∈ Ass(Id), since I satisfies the persistence

property, see [1, Proposition 2.4].

Note that wd = xd−11 · · ·xd−1d+1. We show that wdxn ∈ Id. From Corollary 4.5

it then follows that depth(S/Id) = 0 which implies that dstab(I) ≤ d. To see

that wdxn ∈ Id, we must show that wdxn ≺d ud, where u = xi1 · · ·xid with

1 < i1 < i2 < . . . id = n. Since v = x2 · · ·xdxn ≺1 u it follows vd ≺d ud. Therefore,

it suffices to show that wdxn ≺d vd.
We write wdxn = xk1 . . . xkd2 with k1 ≤ k2 ≤ . . . ≤ kd2 and vd = xl1 · · ·xld2 with

l1 ≤ l2 ≤ . . . ≤ ld2 . Since νr(wdxn), νr(v
d) ≤ d for all r, we must show that kr ≤ lr
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for r = 1, . . . , d2, see Corollary 2.5. Let r be an integer with 1 ≤ r ≤ d2. We may

assume that r ≤ (d− 1)d, because lr = n, for (d− 1)d < r ≤ d2. Let

r− 1 = qd+ t1 with 0 ≤ t1 ≤ d− 1, and r− 1 = q′(d− 1) + t2 with 0 ≤ t2 ≤ d− 2.

Then lr = q + 2 and kr = q′ + 1. Now kr ≤ lr if and only if q′ − q ≤ 1. Indeed,

we have qd + t1 = q′(d − 1) + t2. This implies that d(q′ − q) = t1 − t2 + q′ < 2d.

Therefore, q′ − q < 2, as desired. �

5. Comparison of astab(BS(u)) with dstab(BS(u))

As mentioned in Section 3, for any graded ideal I ⊂ S = K[x1, . . . , xn] there

exists an integer k1 such that AssS(Ik) = AssS(Ik1) for all k ≥ k1. The smallest

integer k1 with this property is denoted by astab(I). Similarly there exists an

integer k2 such that depthS/Ik = depthS/Ik2 for all k ≥ k2. The smallest integer

k2 with this property is denoted by dstab(I). The purpose of the section is to

compute dstab(I) and astab(I) when I is a squarefree principal Borel ideal.

Let I = BS(xi1xi2 · · ·xid) ⊂ S = K[x1, . . . , xn] with i1 < i2 < . . . < id. Assume

that id = m ≤ n, and let S′ = K[x1, . . . , xm] and J = BS′(xi1xi2 · · ·xid). Then,

we obviously one gets

Lemma 5.1. With the assumptions and notation introduced, we have

depthS/Ik = depthS′/Jk + n−m for all k,

and

AssS(Ik) = {PS : P ∈ AssS′(J
k)} for all k.

In particular, dstab(I) = dstab(J) and astab(I) = astab(J).

Therefore, for the rest of this section, if not otherwise stated, we may assume

that id = n.

Next we show

Lemma 5.2. Let I = BS(u) ⊂ S = K[x1, . . . , xn], where u = xi1xi2 · · ·xid with

1 = i1 < i2 < . . . < id = n. Let J = BS′(u
′) ⊂ S′ = K[x2, . . . , xn−1], where

u′ = u/x1. Then for all k,

AssS(Ik) = {PS : P ∈ AssS′(J
k)} ∪ (x1) and depthS/Ik = depthS′/Jk + 1.

In particular, dstab(I) = dstab(J) and astab(I) = astab(J).
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Proof. We observe that Ik = xk1 J̃
k for all k, where J̃ = JS. Therefore, the

statement about AssS(Ik) follows from (2). Since (xk1) ∩ J̃k = xk1 J̃
k we get the

short exact sequence

0→ S/Ik → S/(xk1)⊕ S/J̃k → S/(xk1 , J̃
k)→ 0.

By the depth lemma (see [8, Corollary 18.6]) we have

depthS/Ik ≥ min{depth(S/(xk1)⊕ S/J̃k),depthS/(xk1 , J̃
k) + 1}

= min{depthS/(xk1),depthS/J̃k,depthS/(xk1 , J̃
k) + 1}.

Since xk1 is regular on S/J̃k, it follows that depthS/(xk1 , J̃
k) = depthS/J̃k − 1.

Therefore, depthS/Ik ≥ depthS/J̃k.

By using again the depth lemma we also get

depthS/J̃k − 1 = depthS/(xk1 , J̃
k) ≥ min{depthS/(xk1),depthS/J̃k,depthS/Ik − 1}.

This implies that depthS/J̃k ≥ depthS/Ik, and hence depthS/Ik = depthS/J̃k.

Since J̃ = JS, it follows that depthS/J̃ = depthS′/J . This yields the desired

conclusion. �

Because of Lemma 5.2 we may also assume for the rest of the section that i1 > 1.

Combining Lemma 5.2 with Corollary 4.5 we obtain

Proposition 5.3. Let I = BS(u) ⊂ S = K[x1, . . . , xn] with u = xi1xi2 · · ·xid and

1 < i1 < i2 < . . . < id = n. Then we have:

(a) dstab(I) = min{k : depthS/Ik = 0}.
(b) Let k0 be defined as in Corollary 4.5. Then

dstab(I) = min{k ≥ k0 : wkxn ∈ Ik}.

(c) k0 ≤ dstab(I) ≤ astab(I) ≤ d.

The following result tells us how dstab behaves under monomial localization.

Theorem 5.4. Let I = BS(u) ⊂ S = K[x1, . . . , xn] with u = xi1xi2 · · ·xid and

1 < i1 < i2 < . . . < id = n. Then

dstab(I(a)) ≤ dstab(I) for a = 1, . . . , n.

Proof. We first consider the case that a ≤ id−1. Then I(a) = BS(u)(a) = BS(a)(ua)

and min(ua) > min(T c) and max(ua) = max(T c) = n. Then Proposition 4.6 im-

plies that depthS/Ik = 0 for some k and depthS(a)/I
l
(a) = 0 for some l. Let k and l

be the smallest numbers with this property. Then k = dstab(I) and l = dstab(I(a)),

and we want to show that l ≤ k. For this it is enough to show that depthS(a)/I
k
(a) =
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0. Since depthS/Ik = 0, Corollary 4.5 implies that wkxn ∈ Ik. By Theorem 4.1,

Ik = BkS(uk). Therefore, wkxn �k uk. Let wkxn = xt1(k)xt2(k) . . . xtkd(k) with

t1(k) ≤ . . . ≤ tkd(k) and uk = xl1(k)xl2(k) · · ·xlkd(k) with l1(k) ≤ · · · ≤ lkd(k). By

Corollary 2.5, wkxn � uk if and only if ts(k) ≤ ls(k) for s = 1, . . . , kd. The numbers

ls(k) and ts(k) can be computed.

With the notation introduced we have

ls(k) = ij , where j = ds/ke,

and

ts(k) =


ds/(k − 1)e, if s ≤ (k − 1)c;

c+ 1, if (k − 1)c < s < kd;

n, if s = kd.

Let b be the unique number with ib−1 < a ≤ ib. Then ua = u/ib ∈ S(a) is of degree

d− 1, see Theorem 3.1. Let w′k ∈ S(a) be the socle test element for Ik(a) in S(a). We

have depthS(a)/I
k
(a) = 0, once we have shown that w′kxm �k uka.

Let

w′kxn = xt′1(k)xt′2k) . . . xt′k(d−1)
(k) with t′1(k) ≤ . . . ≤ t′k(d−1)(k),

and

uka = xl′1(k)xl′2(k) · · ·xl′k(d−1)
(k) with l′1(k) ≤ · · · ≤ l′k(d−1)(k).

It remains to be shown that t′s(k) ≤ l′s(k) for s = 1, . . . , k(d− 1).

Note that

l′s(k) =

{
ls(k), if s ≤ k(b− 1);

ls+k(k), if k(b− 1) < s ≤ k(d− 1),

and

t′s(k) =

{
ts(k), if s ≤ (k − 1)(a− 1);

ts+k−1(k), if (k − 1)(a− 1) < s ≤ k(d− 1).

Note that b ≤ a, because b− 1 ≤ ib−1 < a. We consider different cases.

Case 1: s ≤ (k − 1)(a− 1): Then, since b ≤ a, we have

t′s(k) = ts(k) ≤ ls(k) =

{
l′s(k), if s ≤ k(b− 1);

l′s−k(k), if k(b− 1) < s ≤ k(d− 1),

≤ l′s(k),

because l′s(k) is a non-decreasing function.

Case 2: s > (k − 1)(a− 1): Then

t′s(k) = ts+k−1(k) ≤ ls+k−1(k) =

{
l′s+k−1(k), if s ≤ k(b− 1);

l′s−1(k), if k(b− 1) < s ≤ k(d− 1),

Therefore, if s > k(b− 1), then t′s(k) ≤ l′s(k).
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Suppose now that (k − 1)(a − 1) < s < k(b − 1). Then ts(b) = ds/(k − 1)e ≥ a

and ls(k) = ij , where j = ds/ke. Therefore, ls(k) = ic with c ≤ b− 1. Hence,

a ≤ ts(k) ≤ ls(k) = ic ≤ ib−1,

a contradiction. So this case cannot happen.

It remains to treat the case that a > id−1. Then ua = xi1 · · ·xid−1
, and I(a) =

BS(a)
(ua). Let J = BS′(ua), where S′ = k[x1, . . . , xid−1

]. Then, by Lemma 5.1,

dstab(J) = dstab(I(a)), and furthermore by Proposition 5.3 we have dstab(J) =

min{k : depthS′/Jk = 0}. Therefore, we must show that depthS′/Jk = 0

if depthS/Ik = 0. Since depthS/Ik = 0 it follows wkxn �k uk. Let wk =∏kd−1
s=1 xts(k). Then the socle test element for Jk is w′k =

∏k(d−1)−1
s=1 xts(k). Then it

is clear that w′kxid−1
�k uka. This shows that depthS′/Jk = 0, as desired. �

As the main result of the section we show

Theorem 5.5. Let S = K[x1, . . . , xn] be the polynomial ring in n variables, let

u ∈ S be a squarefree monomial ideal and let I = BS(u). Then astab(I) = dstab(I).

Proof. Let u = xi1 · · ·xid with i1 < i2 < · · · < id. By the discussion at the

beginning of this section and by Lemma 5.2 we may assume that 1 < i1 and id = n.

Let k = dstab(I). By Proposition 5.3, we have m ∈ AssS(Ik). Now let P ∈ Ass∞S (I)

with P 6= m. Then there exists j and P ′ ∈ Ass∞S(j)
(I(j)) with P = P ′S. By

induction we may assume that astab(I(j)) = dstab(I(j)). Thus, if k′ = dstab(I(j)),

then P ′ ∈ AssS(j)
(Ik
′

(j)). Therefore, P ∈ AssS(Ik
′
), by (3). Theorem 5.4 implies that

k′ ≤ k. Since squarefree principal monomial ideals satisfy the persistence property,

we conclude that P ∈ AssS(Ik), as desired. This shows that astab(I) ≤ dstab(I).

The other inequality is shown in Proposition 5.3. �

6. On the depth of S/BS(u)k

We provide some partial results regarding depthS/Ik for I = BS(u). Since all

powers have a linear resolution it follows that depthS/Ik+1 ≤ depthS/Ik for all

k ≥ 1, as mentioned in the proof of Proposition 5.3. Actually all powers of I have

linear quotients for a suitable order, as shown in [1, Proposition 2.4]. Here we show

Proposition 6.1. Let I = BS(u). Then for all k, the ideal Ik has linear quotients

with respect to the lexicographic order induced by x1 > x2 > · · · > xn.

Proof. Let v, w ∈ Ik with w > v with respect to the lexicographic order. Let

v = xj1xj2 · · ·xjkd
with j1 ≤ j2 ≤ . . . ≤ jkd, and w = xl1xl2 · · ·xlkd

with l1 ≤ l2 ≤
. . . ≤ lkd. Since w > v there exists an integer r such that ls = js for s = 1, . . . , r−1
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and jr > lr. Then xlr divides w/gcd(w, v). Let w′ = xlrv/xjr . Since lr < jr it

follows that w′ > v and w′/ gcd(w′, v) = xlr which divides w/gcd(w, v). It remains

to be shown that w′ ∈ Ik. To see that we use Theorem 4.1 which says Ik = BkS(uk).

Since v ∈ BkS(uk) it follows that v ≺k uk. We now show that w′ ≺k v. Then it

follows w′ ≺k uk, and hence belongs to Ik. Indeed, since xjr in v is replaced by

xlr with lr < jr to obtain w′ it follows that w′ ≺ v. Let w′ = xf1xf2 · · ·xfkd
with

f1 ≤ f2 ≤ . . . ≤ fkd. Then fs = js for s 6= r and fr = lr. To have w′ ≺k v we must

show that there is no t such that ft = ft+1 = · · · = ft+k, or equivalently there is

no t such that ft = ft+k. If t + k < r or t > r we have ft = jt and ft+k = jt+k.

Therefore, ft 6= ft+k because the exponents of the monomial v are bounded by k.

Now let t ≤ r ≤ t + k. Suppose first that r < t + k. Then r + 1 ≤ t + k, and

fr+1 = jr+1 ≥ jr > lr = fr. So not all fs are the same for s with t ≤ s ≤ t + k.

Finally, assume that r = t+ k and fr−k = · · · = fr. For s < r we have fs = js = ls

and fr = lr. Thus our assumption implies that lr−k = · · · = lr, a contradiction

because w ∈ BkS(uk). �

In all examples considered, the depth function f(k) = depthS/Ik is strictly

decreasing until it becomes stable. In some special case we show that this is indeed

the case.

We first observe

Proposition 6.2. Let I = BS(u) with u = xi1xi2 · · ·xid and i1 < i2 < · · · < id = n.

Then depthS/I = d− 1.

Proof. We have to show that proj dim I = n − d. Let τ be the inverse of the

spreading operator σ. By definition, if v = xk1xk2 · · ·xkd with k1 < k2 < · · · <
kd, then τ(v) =

∏d
j=1 xkj−(j−1), and when I is a squarefree monomial ideal with

G(I) = {v1, . . . , vm}, one sets Iτ to be the ideal with G(Iτ ) = {τ(v1), . . . , τ(vm)}.
By [10, Proposition 2.1] we have BS(u)τ = B∞S (τ(u)), where B∞S (τ(u)) is the

principal Borel ideal with Borel generator τ(u). It follows from [10, Theorem 1.11]

that proj dimBS(u) = proj dimB∞S (τ(u)). Note that all generators of B∞S (τ(u))

belong to T = K[x1, . . . , xn−d+1]. Let J = G(B∞S (τ(u)))T . Then B∞S (τ(u)) = JS.

It follows that

depthS/I = depthS/B∞S (τ(u)) = depthT/J + d− 1.

It remains to be shown that depthT/J = 0. It is well-known and easy to prove

that

J =

d∏
j=1

(x1, . . . , xij−(j−1)).
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Since id = n it follows that J = J0n, where J0 =
∏d−1
j=1(x1, . . . , xij−(j−1)) and n

is the maximal ideal of T . This shows that any minimal generator of J0 defines a

socle element of T/J . In particular, depthT/J = 0. �

The next result tells us when depthS/I2 = 0 for I = BS(u).

Proposition 6.3. Let u = xi1xi2 · · ·xid ⊂ S be a monomial with 1 < i1 < i2 <

. . . < id = n, and let I = BS(u). The following conditions are equivalent:

(a) depthS/I2 = 0.

(b) x1 · · ·x2d−1 ∈ Soc(S/I2).

(c) ij ≥ 2j for j = 1, . . . , d− 1.

Proof. (a)⇐⇒ (b) follows from Corollary 4.3.

(b) ⇐⇒ (c) w2 = x1 · · ·x2d−1 ∈ Soc(S/I2), if and only if x1 · · ·x2d−1xn ∈ I2 =

BS(u2), and this is the case if and only if

x1 · · ·x2d−1xn ≺ u2 = xi1xi1xi2xi2 · · ·xid−1
xid−1

xnxn.

By Corollary 2.5 this is the case if and only if ij ≥ 2j for j = 1, . . . , d − 1, as

desired. �

Corollary 6.4. Let I = BS(xixn). Then depthS/I = 1, and for k ≥ 2 we have

depthS/Ik =

{
1, if i = 1,

0, if i > 1.

Proof. The fact depth(S/I) = 1 follows from Proposition 6.2. In order to com-

pute depth(S/Ik), we first suppose that i = 1. Then Lemma 5.2 implies that

depthS/Ik = depthS′/BS′(xn−1)k + 1. Since BS′(xn−1) = (x1, . . . , xn−1), it fol-

lows that depthS/Ik = 1 for all k. Finally, for i > 1 and k > 1, the result follows

from Proposition 6.3. �

Next we consider the case d = 3.

Proposition 6.5. Let I = BS(xixjxn) with i < j < n.

(a) If i = 1, then depthS/I = 2, and for k ≥ 2 we have

depthS/Ik =

{
2, if j = 2,

1, if j > 2.

(b) If i > 1, then depthS/I = 2, and depthS/Ik = 0 for k ≥ 3. Moreover,

depthS/I2 =

{
1, if j = 3,

0, if j > 3.
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Proof. (a) follows from Lemma 5.2 and Proposition 6.4.

(b) Proposition 6.2 shows that depthS/I = 2. Moreover, depthS/Ik = 0 for

k ≥ 3, see Proposition 5.3. Thus it remains to consider the case k = 2. If j > 3,

then depthS/I2 = 0. Finally assume that j = 3. Then xixjxn = x2x3xn. Then

depthS/I2 > 0, by Proposition 6.3. On the other hand, depthS/I2 < depthS/I =

2, by the next Theorem 6.6. Therefore, depthS/I2 = 1, as desired. �

The following result supports what we expect, namely that depthS/Ik < depthS/Ik−1

if k ≤ astab(I).

Theorem 6.6. Let I = BS(u). Then the following conditions are equivalent:

(a) u = x1x2 · · ·xd−1xn.

(b) depthS/I = depthS/Ik for all k.

(c) depthS/I = depthS/Ik for some k ≥ 2.

(d) depthS/I = depthS/I2.

Moreover, if one of these equivalent conditions fails, then depthS/I2 < depthS/I.

For the proof of Theorem 6.6 we use

Lemma 6.7. Let I = BS(u), where u = xi1 · · ·xid with 1 < i1 < i2 < . . . < id = n.

Let v ∈ I2 and let J = (w ∈ G(I2) : v <lex w). Assume that xn divides v. Then

{xi : i < n and x2i - v} ⊆ J : v.

Proof. Let i be such that i < n and x2i - v, and let w = vxi/xn. Then νj(w) ≤ 2

for all j and w ≺ v. Therefore, w ∈ I2. Since v <lex w, it follows that w ∈ J .

Moreover, vxi = wxn, and hence xi ∈ J : v. �

Proof of Theorem 6.6. (a)⇒ (b) Note that I = x1 · · ·xd−1(xd, . . . , xn). There-

fore, Ik ∼= (xd, . . . , xn)k, and hence depthS/Ik = depth Ik−1 = depth(xd, . . . , xn)k−
1 = depthS/(xd, . . . , xn)k. Since depthK[xd, . . . , xn]/(xd, . . . , xn)k = 0, it follows

that

depthS/Ik = depthS/(xd, . . . , xn)k = d− 1 = depthS/I.

(b)⇒ (c) is trivial.

(c) ⇒ (d) Since depthS/I ≥ depthS/I2 ≥ depthS/Ik, it is obvious that (c)

implies (d).

(d) ⇒ (a) We show that if u 6= x1 · · ·xd−1xn, then depthS/I2 < depthS/I.

Since u 6= x1 · · ·xd−1xn it follows that u = x1x2 · · ·xiv with i < d − 1 and v =

xj1xj2 · · ·xn with j1 < j2 < · · · < n and j1 > i + 1 ≥ 1. Then I = BS(u) =

x1 · · ·xiJ , where J = BS(v). From this it follows that depthS/I2 < depthS/I if
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and only if depthS/J2 < depthS/J . Therefore, we may assume that u = xi1 · · ·xid
with 1 < i1 < i2 < · · · < id = n.

We claim that there exits v ∈ G(I2) such that xn divides v and such that

|S| ≥ n − d + 1, where S = {xi : i < n and x2i - v}|. By Lemma 6.7, the claim

implies that proj dim I2 ≥ n− d+ 1, and hence depthS/I2 ≤ d− 2 < depthS/I.

We write u2 = xl1 · · ·xl2d with l1 ≤ l2 ≤ · · · ≤ l2d, and let v = xt1xt2 · · ·xt2d
with t1 ≤ t2 ≤ . . . ≤ t2d.

For the proof of the claim we consider two cases.

Case 1: ij = i1 + j − 1 for j = 1, . . . , d. Then we let tj = j for j = 1, . . . , i1 and

tj = lj for j = i1 + 1, . . . , 2d. Then |S| ≥ i1 = n− d+ 1, because n = i1 + d− 1.

Case 2: There exists k such that ik+1 > ik + 1. Then for all j we let tj = lj − 1

if j is odd, and let tj = lj if j is even. Then v is divided by as many squares as

we have integers j with ij+1 = ij + 1. Therefore, v has at most d − 1 squares as

factors. This implies that |S| ≥ n− d+ 1, as desired. �
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