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ON SOME APPROXIMATION PROPERTIES OF THE
GAUSS-WEIERSTRASS OPERATORS

BAŞAR YILMAZ

Abstract. In this paper, we present some approximation properties of the
Gauss-Weierstrass operators in exponential weighted spaces including norm
convergence of them and Voronovskaya and quantitative Voronovskaya-type
theorems.

1. Preliminaries

The Gauss-Weierstrass singular integral operator

(Wnf) (x) :=

√
n

π

∞∫
−∞

f (x+ t) e−nt
2

dt, (1)

where x ∈ R, n ∈ N and n → ∞, was examined in [1], [3], [4], [8] for functions
belonging to the space Lp and the classical Hölder spaces.
In this paper we examine the Gauss-Weierstrass operators Wn for functions f

belonging to the exponential weighted spaces Lpq (R) and Lp,rq (R) which definitions
are given bellow. We give some elementary properties, the orders of approximation
and the Voronovskaya type theorem and quantitative Voronovskaya type theorem
for these operators. Also simultaneous approximation property is obtained.
Let q > 0 be a fixed number and let

νq(x) := e−qx
2

, x ∈ R. (2)

For a fixed 1 ≤ p ≤ ∞ and q > 0 we denote by Lpq the set of all real-valued
functions f defined on R for which the p− th power of νqf is Lebesgue-integrable
on R if 1 ≤ p < ∞, and νqf is uniformly continuous and bounded on R if p = ∞.
Let the norm in Lpq be given below by the formula
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‖f‖p,q = ‖f (.)‖p,q :=


(
∞∫
−∞
|νq (x) f (x)|p dx

)1/p
, if 1 ≤ p <∞,

sup
x∈R

νq (x) |f (x)| , if p =∞.
(3)

Also, let r ∈ N0 and Lp,rq ≡ Lp,rq (R) be the class of all r−times differentiable
functions f ∈ Lpq having the derivatives f (k) ∈ Lpq , 1 ≤ k ≤ r. The norm in Lp,rq
is given by (3). The spaces Lpq and L

p,r
q are called exponential weighted spaces(see

[2]).
For f ∈ Lpq we define the modulus of smoothness of the order two (see [5])

ω2
(
f, Lpq ; t

)
:= sup
|h|≤t

∥∥∆2
hf (·)

∥∥
p,q

for t ≥ 0, (4)

where

∆2
hf (x) := f (x+ h)− f (x− h)− 2f (x) , x, h ∈ R (5)

From (3)-(5) for f ∈ Lpq follows

‖f(·+ h)‖p,q ≤ e
qh2 ‖f (·)‖p,q , h ∈ R, (6)

0 = ω2
(
f ;Lqp; 0

)
≤ ω2

(
f, Lqp; t1

)
≤ ω2

(
f, Lqp; t2

)
if 0 ≤ t1 < t2. (7)

Using the identity (see [6])

∆2
nhf (x) =

n∑
k=1

k∆2
hf(x− (n− k)h) +

n∑
k=1

(n− k) ∆2
hf(x+ kh),

x, h ∈ R; n = 2, 3, ..., and by (2) and (6) we can prove that

ω2
(
f, Lqp;λt

)
≤ (1 + λ)

2
eq(tλ)

2

ω2
(
f, Lqp; t

)
for λ, t ≥ 0. (8)

2. AUXILIARY RESULTS

In this part, we shall give some fundamental properties of the Gauss-Weierstrass
integral operators Wn in the spaces Lp,2q (R) .

Lemma 1. The equality
∞∫
0

tre−nt
2

dt =
1

2n
r+1
2

Γ(
r + 1

2
)

holds for every r ∈ N0 and n > 0.
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Lemma 2. Let e0(x) = 1, e1(x) = x and let ϕx(t) = t − x for x, t ∈ R and
k ∈ N.Then,

Wn(ei;x) = ei(x), for x ∈ R, n ∈ N, i = 0, 1 (9)

Wn

(
ϕkx(t);x

)
=

(
(−1)k + 1

)
Γ(k+12 )

2
√
πn

k
2

(10)

Wn

(
|ϕx(t)|k exp(q |ϕx(t)|2 ;x

)
=

√
n

π

Γ
(
k+1
2

)
(n− q) k+12

, n > q + 1 (11)

Lemma 3. Let f ∈ Lp,q (R), with fixed 1 ≤ p ≤ ∞, q > 0. Then for n > 2q+ 1, we
have

‖Wnf‖p,2q ≤
√

n

n− 2q
‖f‖p,q , (12)

Lemma 3 shows thatWn are linear positive operators from Lp,q (R) into Lp,2q (R) .

Proof. Arguing analogously to the proof of Lemma 2 in [7] we can obtain the above
lemma. �

Lemma 4. Let f ∈ Lp,q (R) with fixed 1 ≤ p ≤ ∞ and q > 0 and let n ∈ N. Let
f ∈ Lr∞,q (R) with a fixed r ∈ N. Then Wnf ∈ Lr∞,q (R) and for derivatives of Wnf
there holds

∥∥∥(Wnf)
(k)
∥∥∥
∞,2q

=
∥∥∥Wnf

(r)
∥∥∥
∞,2q

≤
√

n

n− 2q

∥∥∥f (k)∥∥∥
∞,q

.

Proof. For details see [9]. �

3. APPROXIMATION RESULTS

Theorem 5. Let f ∈ Lp,q (R) with fixed 1 ≤ p ≤ ∞ , q > 0 and n > q + 1. Then
we have

‖Wn(f)− f‖p,2q ≤ ω2
(
f, Lqp;

1√
n

)[
1

2

√
n

n− q +
2n√

π (n− q) +
n
3
2

4 (n− q)
3
2

]
.

Proof. From (1) and (5) we get

Wn(f ;x)− f(x) =

√
n

π

∞∫
0

∆2
tf(x)e−nt

2

dt

for x ∈ R and n > q + 1. By (4) and (8), we get

‖Wn(f)− f‖p,2q ≤
√
n

π

∞∫
0

∥∥∆2
tf(x)

∥∥
p,q
e−nt

2

dt
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≤
√
n

π
ω2

(
f, Lqp;

1√
n

) ∞∫
0

(
1 +
√
nt
)2
e−t

2(n−q)dt.

Using Lemma 1, we obtain

‖Wn(f)− f‖p,2q = ω2

(
f, Lqp;

1√
n

)[
1

2

√
n

n− q +
2n√

π (n− q) +
n
3
2

4 (n− q)
3
2

]
.

Thus the theorem is completed.

Corollary 6. Let f ∈ Lp,q (R) with fixed 1 ≤ p ≤ ∞ , q > 0 and n > q + 1. Then

lim
n→∞

‖Wn(f)− f‖p,2q = 0. (13)

�
Applying Corollary 1, we shall prove the Voronovskaya-type theorem for Wn.

Theorem 7. Let f ∈ L∞,2q (R) has second derivate at a point x ∈ R and with a
fixed q > 0.Then we have

lim
n→∞

n [Wn(f ;x)− f(x)] =
f
′′
(x)

4
.

Proof. For f ∈ L∞,2q and x ∈ R. Then we can use Taylor formula in the form

f(t) = f(x) + f
′
(x)(t− x) +

1

2
f
′′
(x)(t− x)2 + µ(t;x)(t− x)2 for t ∈ R,

where µ(t) = µ(t;x) is a function belonging to L∞q and

lim
t→x

µ(t;x) = µ(x) = 0.

Using the operator Wn, (9) and (10), we get

Wn(f(t);x) = f(x) + f
′
(x)Wn(t− x;x)

+
1

2
f
′′
(x)Wn((t− x)2;x) +Wn

(
µ(t)ϕ2x(t);x

)
= f(x) +

1

4n
f
′′
(x) +Wn

(
µ(t)ϕ2x(t);x

)
(14)

and by the Hölder inequality and (10), we have

∣∣Wn

(
µ(t)ϕ2x(t);x

)∣∣ ≤ (Wn(µ2(t);x)
1
2Wn(ϕ4(t);x)

1
2

= n−1
(

3

4
Wn(µ2(t);x)

) 1
2

.

From properties of µ and (13) there result that

lim
n→∞

Wn(µ2(t);x) = µ2(x) = 0.
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Thus we have
lim
n→∞

nWn

(
µ(t)ϕ2x(t);x

)
= 0

frıom (14) we have desired result. �
Theorem 8. Let f ∈ L∞,2q (R) with a fixed q > 0.Then

∥∥∥4n [Wn(f)− f ]− f
′′
∥∥∥
∞,2q

≤ ω1
(
f
′′
;L∞q ;

1√
n

)[
1

4

(
n

n− q

) 3
2

+
1

2
√
π

(
n

n− q

)2]
.

(15)

Proof. For f ∈ L∞,2q and x, t ∈ R there holds the Taylor-type formula

f(t) = f(x) + f
′
(x)(t− x) +

1

2
f
′′
(x)(t− x)2 + (t− x)2I(t, x),

where

I(t, x) :=

1∫
0

(1− u)
[
f
′′
(x+ u(t− x))− f

′′
(x)
]
du. (16)

Using operator Wn, and (9)-(11), we get

Wn(f(t);x) = f(x) +
1

4n
f
′′
(x) +Wn

(
ϕ2x(t)I(t, x);x

)
,

which implies that

4n [Wn(f ;x)− f(x)]− f
′′
(x) = nWn

(
ϕ2x(t) |I(t, x)| ;x

)
for x ∈ R. Now, applying (4), (7) and (8), we get

|I(t, x)| ≤
1∫
0

(1− u)ω1

(
f
′′
;L∞q ;u |t− x|

)
eqx

2

du

≤ 1

2
ω1

(
f
′′
;L∞q ; |t− x|

)
eqx

2

≤ 1

2
ω1

(
f
′′
;L∞q ;

1√
n

)
(1 +

√
n |t− x|)eqx

2+q|t−x|2

and next by (2) and (11), we can write for x ∈ R and n > q + 1,

nνq(x)Wn(ϕ2x(t)I(t, x);x) ≤ n

2
ω1

(
f
′′
;L∞q ;

1√
n

)
×
{
Wn((t− x)2eq|t−x|

2

;x) +
√
nWn(|t− x|3 eq|t−x|

2

;x
}

= ω1

(
f
′′
;L∞q ;

1√
n

)[
1

4

(
n

n− q

) 3
2

+
1

2
√
π

(
n

n− q

)2]
.

Now the estimate (15) is obtained by (16), the last inequality and (3). �
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Theorem 9. Let f ∈ L∞,rq ,with fixed q > 0 and r ∈ N. Then∥∥∥W (r)
n (f)− f (r)

∥∥∥
∞,2q

≤ ω2

(
f
(k)

;L∞q ;
1√
n

)
×
(√

n

n− 2q
+

n

(n− 2q)
√
π

+
1

4

(
n

n− 2q

) 3
2

)
(17)

for n > 2q + 1.

Proof. If f ∈ L∞,rq , then for r-th derivative of Wn(f) we have by Lemma 4, (9) and
(10):

W (r)
n (f ;x)− f (r)(x) =

√
n

π

∞∫
−∞

[
f (r)(x+ t)− f (r)(x)

]
e−nt

2

dt

=

√
n

π

∞∫
0

[
∆2
tf
(r)(x− t)

]
e−nt

2

dt.

from this and by (4),(8) and Lemma 1 we deduce that∥∥∥W (r)r(f ;x)− f (r)(x)
∥∥∥
∞,2q

≤
√
n

π

∞∫
0

ω2

(
f (r);L∞q ; t

)
e−(n−q)t

2

dt

≤ ω2
(
f (r);L∞q ;

1√
n

)√
n

π

∞∫
0

(1 +
√
nt)2e−t

2(n−2q)dt

= ω2

(
f (r);L∞q ;

1√
n

)

×
√
n

π

 ∞∫
0

e−t
2(n−2q)dt+ 2

√
n

∞∫
0

te−t
2(n−2q)dt+ n

∞∫
0

t2e−t
2(n−2q)dt


= ω2

(
f (r);L∞q ;

1√
n

)
×
(√

n

n− 2q
+

n

(n− 2q)
√
π

+
1

4

(
n

n− 2q

) 3
2

)
,

for n > 2q + 1, which yields the estimate (17). �
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