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Original Article

Abstract − The reformulated Zagreb coindex of G is specified the degrees di
and dj . This paper includes some inequalities for the reformulated Zagreb index
and reformulated Zagreb coindex. Also, some bounds are reported consepting the
eigenvalues and complement of eigenvalues.
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1. Introduction

Let G be a simple connected graph on the vertex set V (G) and the edge set E(G). Also, let the degree
of vi denoted by di. The Reformulated Zagreb matrix of G is described with [RZ(G)] = [rz]ij where
[rz]ij = (di + dj − 2)2 if the vertices i is adjacent to j and [rz]ij = 0 if otherwise.

The Reformulated Zagreb index RZ(G) of G [7] is a general sum-connectivity index where

RZ(G) =
∑

i,j∈E(G)

(dG(i) + dG(j)− 2)2. (1)

The Zagreb coindex of G is described in [3],

Z̄1(G) =
∑

vi,vj /∈E(G)

(dG(i) + dG(j)). (2)

In this study, different bounds are set using the degrees, the edges and the vertices. Also, some relations
deal with the complement of eigenvalues of [RZ]ij are obtained. In Section 2, the reformulated Zagreb
coindex is defined and different inequalities for this index are found.

2. Preliminaries

In this section, some back-ground material that is needed for later sections will be given.

Lemma 2.1. [4] Let λ1(M) be the spectral radius and M = (mij) be an nxn irreducible nonnegative
matrix. Let Ri(M) =

∑m
j=1mij . [8] Then,

(minRi(M) : 1 ≤ i ≤ n) ≤ λ1(M) ≤ (maxRi(M) : 1 ≤ i ≤ n) (3)
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Lemma 2.2. [2] Let V be the vertex set, vi ∈ V , mi be the average degree of the vertices adjacent
to vi. Then [2]

λ1(G) ≤ max(
√
mimj : 1 ≤ i, j ≤ n, vi, vj ∈ E) (4)

Lemma 2.3. [6] If G is a regular graph then,

Z1(G) ≥ 4m2

n
.

Lemma 2.4. [5] If G is a regular graph then,

Z̄1(G) ≤ −4m2

n
+ 2m(n− 1).

See [1] and [8] for details.

3.MAIN SERULTS

3.1.On eigenvalues

Some inequalities deal with the first eigenvalue of [RZ(G)] are given in this subsection. In addition,
a bound for the complement of this eigenvalue is outlined.

Theorem 3.1. If G is a simple, connected graph then

λRZ
1 (G) ≤

√
(F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

where λRZ
1 (G) is the first eigenvalue of [RZ(G)], F1 = (nd2i + 4m2) and F2 = ((nd2j + 4m2).

Proof. Let D(G)−1RZ(G)D(G) = F+(G) and X = (x1, x2, ..., xn)
T be an eigenvector of RZ+(G).

Also, xi = 1 and 0 < xk ≤ 1 for every k. Let xj = maxk(xk : vivk ∈ E) where i is adjacent to k. Let
RZ+(G)X = λRZ

1 (G)X. If i− th equation from above equation is get, then

λRZ
1 (G)xi =

∑
k

(di + dk − 2)2xk

≤ (nd2i + 4di(m− n) + 4n− 8m+ 4m2)xk.

Using Lemma 2.1, it is known that

λRZ
1 (G)xi ≤ (nd2i + 4di(m− n) + 4n− 8m+ 4m2)xk.

The j − th equation of the same equation,

λRZ
1 (G)xj ≤ (nd2j + 4dj(m− n) + 4n− 8m+ 4m2)xk.

From Lemma 2.2, the inequality holds that

λRZ
1 (G) ≤

√
(F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

Corollary 3.2. Let G be a graph on n vertices and m edges. Then,

λ̄1
RZ

(G) ≤
√
K − (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

where K = (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m) + (F̄1 + 2(n2 − 3n− 2m)(n−
1− di) + 8(n−m)− 4n2)(F̄2 + 2(n2 − 3n− 2m)(n− 1− dj) + 8(n−m)− 4n2).
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Proof. Cauchy-Schwarz inequality and Theorem 3.1 gives that

(λRZ
1 (G) + λ̄1

RZ
(G))2 ≤ (λF

1 (G))2 + (λ̄1
F
(G))2

≤ (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m)

+(F̄1 + 2(n2 − 3n− 2m)(n− 1− di) + 8(n−m)− 4n2)

(F̄2 + 2(n2 − 3n− 2m)(n− 1− dj) + 8(n−m)− 4n2).

Since m̄+m =
n2 − n

2
then F̄1 = n(n− 1−di)

2+2(n(n− 1)− 2m) and F̄2 = n(n− 1−dj)
2+2(n(n−

1)− 2m). It is implies that

λ̄1
RZ

(G) ≤
√
K − (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

3.2. Reformulated Zagreb Coindex

In this subsection, the reformulated Zagreb coindex is concerned with. Thus, some bounds concepting
this indices are obtained.

Definition 3.3. The Reformulated Zagreb coindex R̄Z(G) defined as

R̄Z(G) =
∑

vi,vj /∈E(G)

(dG(i) + dG(j)− 2)2. (5)

Theorem 3.4. Let G be a graph on n vertices and m edges. Then,

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)Z1(Ḡ) + (Z1(Ḡ))2.

Proof. It is known that, RZ(Ḡ) =
∑

vi,vj∈E(Ḡ)(dḠ(i) + dḠ(j)− 2)2. Since dḠ(i) = (n− 1− di) and

dḠ(j) = (n− 1− dj) then,

RZ(Ḡ) =
∑

vi,vj∈E(Ḡ)

((n− 1− di) + (n− 1− dj)− 2)2

=
∑

vi,vj∈E(Ḡ)

4(n2 − 2n+ 1)− (4n− 4)
∑

vi,vj∈E(Ḡ)

(di + dj + 2) +
∑

vi,vj∈E(Ḡ)

(di + dj + 2)2

Since G has
(
n
2

)
−m =

n2 − n− 2m

2
edges, then

RZ(Ḡ) = 4(n2 − 2n+ 1)(
n2 − n− 2m

2
)− 4(n− 1)(Z1(Ḡ) + 2(

n2 − n− 2m

2
))

+
∑

vi,vj∈E(Ḡ)

(di + dj)
2 + 4Z1(Ḡ) + 4(

n2 − n− 2m

2
)

≥ 2(n2 − n− 2m)(n− 2)2 + 4(n− 2)Z1(Ḡ) + (Z1(Ḡ))2.

Corollary 3.5. If G is a regular graph on n vertices and m edges. Then,

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)(
−4m2

n
+ 2m(n− 1))

+(
−4m2

n
+ 2m(n− 1))2.
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Proof. Since Z1(Ḡ) = Z̄1(G) then

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)Z̄1(G) + (Z̄1(G))2

Using Lemma 2.4, it is concluded that

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)(
−4m2

n
+ 2m(n− 1))

+(
−4m2

n
+ 2m(n− 1))2.

Theorem 3.6. Let G be a graph on n vertices and m edges. Then,

RZ(G) + R̄Z(G) = (n− 2)Z1(G) + 2m(2m− 4n+ 5)− 2n.

Proof.

RZ(G) + R̄Z(G) =
∑

vi,vj∈E(G)

(di + dj − 2)2 +
∑

vi,vj /∈E(G)

(di + dj − 2)2

=
1

2
(

∑
vi∈V (G)

∑
vj∈V (G)

(di + dj − 2)2 −
∑

vj∈V (G)

(dj + dj − 2)2)

=
1

2
(

∑
vi∈V (G)

∑
j∈V (G)

(d2i + d2j + 2didj − 4di − 4dj + 4)− 4
∑

vj∈V (G)

(d2j − 2dj + 1)

=
1

2
(n

∑
vi∈V (G)

d2i +
∑

vj∈V (G)

d2j + 2
∑

vi∈V (G)

di
∑

vj∈V (G)

dj − 4n
∑

vi∈V (G)

di

−4n
∑

vj∈V (G)

dj +
∑

vi∈V (G)

∑
vj∈V (G)

4− 4
∑

vj∈V (G)

d2j + 8
∑

vj∈V (G)

dj −
∑

vj∈V (G)

4)

=
1

2
[nZ1(G) + nZ1(G) + 2(2m)(2m)− 4n.2m− 4n.2m+ 4m− 4Z1(G) + 16m− 4n]

=(n− 2)Z1(G) + 2m(2m− 4n+ 5)− 2n.

Corollary 3.7. If G is a regular graph on n vertices and m edges. Then,

R̄Z(G) ≥ 2m(
4m(n− 1)

n
− 4n+ 5)− 2n−RZ(G).

Proof. By Lemma 2.3, it is seen that

RZ(G) + R̄Z(G) ≥ (n− 2)(
4m2

n
) + 2m(2m− 4n+ 5)− 2n

=8m2n− 1

n
− 8mn+ 10m− 2n.

Hence,

R̄Z(G) ≥ 2m(
4m(n− 1)

n
− 4n+ 5)− 2n−RZ(G).

Corollary 3.8. Let G be a regular graph on n vertices and m edges. Then,

R̄Z(Ḡ) ≤ (n2 − n− 2m)(−n2 + 3n− 2m− 3)− 2n

+(5n− 10)(
−4m2

n
+ 2m(n− 1))− (

−4m2

n
+ 2m(n− 1))2.
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Proof. By Theorem 3.7,

R̄Z(Ḡ) = (n− 2)Z1(Ḡ) + 2m̄(2m̄− 4n+ 5)− 2n−RZ(Ḡ).

Since m̄ =
n2 − n− 2m

2
then,

R̄Z(Ḡ) = (n− 2)Z1(Ḡ) + (n2 − n− 2m)(n2 − 5n− 2m+ 5)− 2n−RZ(Ḡ).

By Lemma 2.4 and Corollary 2.3,

R̄Z(Ḡ) ≤ (n2 − n− 2m)(−n2 + 3n− 2m− 3)− 2n

+(5n− 10)(
−4m2

n
+ 2m(n− 1))− (

−4m2

n
+ 2m(n− 1))2.

4. Conclusion

In this paper, Reformulated Zagreb index which is one of the topological indices in graph theory is
studied. New inequalities are formed for this index in terms of the degrees, edges and vertices. Indeed,
Reformulated Zagreb coindex is defined and some bounds are obtained by the help of other Zagreb
indices.
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