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Abstract

The purpose of this article is to study representations of 4-Bihom-Jordan-Lie algebras. In
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1. Introduction

The notion of Jordan-Lie algebras was introduced in [7], which is closely related to both
Lie and Jordan superalgebras. Engel’s theorem of Jordan-Lie algebras was proved, and
some properties of Cartan subalgebras of Jordan-Lie algebras were given in [8].

Recently, the definition of 6-hom-Jordan-Lie algebras were introduced in [10], and their
representations and 7™-extensions were studied in detail.

A Bihom-algebra is an algebra in such a way that the identities defining the structure
are twisted by two homomorphisms «, 5. This class of algebras was introduced from a
categorical approach in [4] as an extension of the class of Hom-algebras. The origin of
Hom-structures can be found in the physics literature around 1900, appearing in the study
of quasi deformations of Lie algebras of vector fields, in particular g-deformations of Witt
and Virasoro algebras in [5]. Since then, many authors have been interested in the study
of Hom-algebras, mainly motivated by their applications in mathematical physics (see
for instance the recent references [1,6]). The fundamental for getting the basic notions,
motivations, and results on Bihom-algebras is the reference [4].

More applications of the Bihom-Lie algebras, Bihom-algebras, Bihom-Lie superalgebras
and Bihom-Lie admissible superalgebras can be found in [3,9].

The notion of derivations, representations, and T*-extensions of d-Bihom-Jordan Lie
algebras are not so well developed.
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The paper is organized as follows. In Section 2 we give the definition of §-Bihom-
Jordan-Lie algebras, and show that the direct sum of two §-Bihom-Jordan-Lie algebras is
still a 6-Bihom-Jordan-Lie algebra. A linear map between d-Bihom-Jordan-Lie algebras is
a morphism if and only if its graph is a Bihom subalgebra. In Section 3 we study deriva-
tions of multiplicative 6-Bihom-Jordan-Lie algebras. For any nonnegative integers k and [,
we define o B'-derivations of multiplicative §-Bihom-Jordan-Lie algebras. Considering the
direct sum of the space of o* B!-derivations, we prove that it is a Lie algebra. In particular,
any aB'-derivation gives rise to a derivation extension of the multiplicative §-hom-Jordan-
Lie algebra (L, [+, |1, &, ) (Theorem 3.3). In Section 4 we give the definition of representa-
tions of multiplicative §-Bihom-Jordan-Lie algebras. We can obtain the semidirect product
multiplicative 6-Bihom-Jordan-Lie algebra (L& M, [-, -] ,, a4, B+ Bar) associated to any
representation p on M of the multiplicative 6-Bihom-Jordan-Lie algebra (L, [-, ]z, a, B).
In Section 5 we study trivial representations of multiplicative §-Bihom-Jordan-Lie alge-
bras. We show that central extensions of a multiplicative §-Bihom-Jordan-Lie algebra are
controlled by the second cohomology with coefficients in the trivial representation. In
Section 6 we study the adjoint representation of a regular J-Bihom-Jordan-Lie algebra
(L,[,"]r,, 3). For any integers s,t, we define the a®g'-derivations. We show that a 1-
cocycle associated to the o®-derivation is exactly an a*t23t~!-derivation of the regular
0-Bihom-Jordan-Lie algebra (L, [, 1, a, §) in some conditions. We also give the definition
of Bihom-Nijienhuis operators of regular J-Bihom-Jordan-Lie algebras. We show that the
deformation generated by a Bihom-Nijienhuis operator is trivial. In Section 7 we study
T*-extensions of d-Bihom-Jordan-Lie algebras, show that T™*-extensions preserve many
properties such as nilpotency, solvability and decomposition in some sense.

2. Definitions and proprieties of 9-Bihom-Jordan-Lie algebras

Definition 2.1 ([7]). A J-Jordan Lie algebra is a couple (L, [-,-]) consisting of a vector
space L and a bilinear map (bracket) [-,-]r : L x L — L satisfying

[CC,y] = _5[3/717]’ 0= +1,
[3;‘, [y,z]] + [ya [zvx]] + [Zv [x,yﬂ =0, Vz,y,z¢€ L.

Definition 2.2 ([10]). A é-hom-Jordan Lie algebra is a triple (L, [-, -], «) consisting of a
vector space L, a bilinear map (bracket) [-,-]; : L® L — L and a linear map o : L — L
satisfying

[.’B,y} = —5[y,$], § = +1,
[a(2), [y, 2]l + [e(y), [z, 2]] + [a(2), [z, 9]] = 0, Va,y,z € L.

Especially, for § = 1 one has a hom-Lie algebra and for 6 = —1 a hom-Jordan Lie algebra.

Definition 2.3 ([3]). A Bihom-Lie algebra is a 4-tuple (L, [-, |1, «, §) consisting of vector

space L, a bilinear map [-,-] : L x L — L and two homomorphisms «, 8 : L — L such that
for all elements x,y, z € L we have
aof=poa,

[6(x), a(y)] = =[B(y), a(x)];
[82(), [B(y), ()] + [B2(v), [B(2), ()] + [6*(2), [B(), a(y)]] = O

(Bihom-Jacobi equation).

Definition 2.4. A ¢-Bihom-Jordan Lie algebra is a 4-tuple (L, [, |1, @, 3) consisting of
a vector space L, a bilinear map (bracket) [-,:]r : L ® L — L and two linear maps
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a, 8 : L — L satisfying

aofl=foaq, (2.1)

[B(z), a(y)] = =4[B(y), a(x)], 6 = £1, (2:2)

[8%(2), [B(y), a())+[6%(1), [B(2), a(@)]]+[52(2), [B(x), a(y)]| =0, Va,y, z € [(2.3)
Especially, for § = 1 one has a Bihom-Lie algebra and for § = —1 a Bihom-Jordan Lie
algebra.

Definition 2.5. 1) A -Bihom-Jordan Lie algebra (L, [+, ]r, o, §) is multiplicative if
« and S are algebra morphisms, i.e., for any x,y € L, we have

a([z,ylr) = la(e), eyl and B[z, y]r) = [B(z), B(y)]L.

2) A 0-Bihom-Jordan Lie algebra (L, |-, ], q, 3) is regular if o and (§ are algebra
automorphisms.
3) A subvector space n € L is a Bihom subalgebra of (L,[-,|r,, ) if a(n) € n,

B(n) € n and
[z, ylL €n, Vz,yen.
4) A subvector space n € L is a Bihom ideal of (L, [-, ]z, «, 8) if a(n) € n, B(n) € n
and

[z,ylL €n, VYxenyeclLl.

Definition 2.6. A §-Bihom associative algebra is a triple (L, «, 5) consisting of a vector
space L, a bilinear map on L, and two linear commuting maps «, 8 : L. — L satisfying

a(z)(yz) = d(zy)B(z), Vx,y,z € L. (2.4)

Proposition 2.7. Let (L,«, ) be a multiplicative §-Bihom associative algebra. Define a
bilinear map (bracket) [-, ], : L x L — L satisfying

[yl = zy — 6o (B(y)) B~ ((2)), Y,y € L. (2.5)
Then (L, [, |, o, B) is a §-Bihom-Jordan-Lie algebra.

Proof. First we check that the bracket product [+, ] is compatible with the structure maps
« and (. For any x,y € L, we have

[a(z),a(y)] = a(z)aly) - ( “Bla) (B a(x)))
= a(z)a(y) = 0p(y) (oA~ (2))
= o[z, y)).

Similarly, one can prove that 8([z,y]) = [8(z), B(y)].
And

[B(z), a(y)] = Bla)aly) - (o™ Bla(y) (@B~ (=)
= Blx)aly) —68(y)(a(z))
= —0[B(y), af2)].
Now we prove the Bihom-Jacobi condition. For any elements x,y € L, we have
[8%(2), [B(y), a(2)]) =[5%(2), By)e(z) = b ! Bla(2))as ™ (B(y))]
=[6%(x), B(y)a(2)] = 8[6%(x), B(2)(y)]
= (=) (By)a(z)) = 6(a~(B*(1))B(2))a(B(x)) )

~ 3(B () (B(=)0lw)) — bla} (B(2))B(w))alB(x)) ).
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Similarly, we have
81, [8(2). 0(@)]] =(F)(B)alx)) - 6o~ (F(2)B)a(5(y)))
— (P W (B@al2) - 50 (B (@)B()a(Bm))).

[8%(2), [B(2), a(y)] =(ﬁ2(2)(ﬁ(ﬂ:)a(y)) — 3o (B%(2))B(y))a(B(2))

—~

—3(82(2)(By)a(a)) — 5o (B (1) B)a(5(2))).
Note that
B2 (@) (By)a(z)) = 6(a(8%(2))B(y))a(B8(2)),
B2 (y)(B(x)a(z)) = 6(a™ (B%(y)B(x))a(B(2)),
B2(@)(B(2)aly)) = o(a™(8%(2))B(2))a(B(y)),
B2y)(B(z)a(x)) = 6(a™(B(y))B(2)a(B(x)),
B2(2)(B(x)aly)) = 6(a(8%(2))B(2))a(B(y)),
BA(2)(B(y)a(x)) = 6o (8%(2))B(y))a(B(x)).

Then we obtain [6%(x), [B(y), a(2)]] + [8°(y), [B(2), ()] + [8*(2), [B(x), aw)]] = 0. O

Proposition 2.8. Given two 0-Bihom-Jordan-Lie algebras (L, [-, |, a1, 81) and (L', [-, "]/,
ag, f2), there is a 0-Bihom-Jordan-Lie algebra (L & L', [, |per, 01 + ag, B1 + B2), where
the bilinear map [-,-|por : LOL' X L& L' — L@ L' is given by

[ur 4 v1,ug + vo]Lar = [u1, v1]L + [ug, vo]rr, Vur, ug € L,v1,ve € L,
and the two linear maps oy + ao, 1+ B2 : LO L — L @& L' defined by

(1 +az)(ur +v1) = ai(ur) + az(v),
(Br+ B2)(ur +v1) = Pr(ur) + B2(v1).

Proof. For any uq,us,u3 € L and vy, v9,v3 € L' we have:

[(B1 + B2)(u1 +v1), (1 + a2)(u2 + v2)] g1

= [B1(u1), ar(u2)]y, + [B2(v1), a2(v2)]y = —0[B1(uz), on(wa)] ), — 6[B2(v2), ez (v1)]
= —0([B1(u2), a1 (u1)], + [B2(v2), a2(v1)])

= —0[(B1 + B2)(u2 + v2), (1 + a2)(u1 +v1)| -

(1 + az) o (B1 + B2)(u1 + v1)

= (o1 + a2)(Bi(u1) + B2(v1)) = a1 0 Bi(u1) + az o Ba(v1)

= Broai(ur) + B2 0 aa(vy)

= (B1 + B2) o (a1 + az)(ug +v1).
Then, we have (a1 + az) o (81 + B2) = (81 + B2) o (a1 + az).
By a direct computation, we have
O ur+o1), (us-va),(ug-+vg) [(B1 + B2)? (ur 4 01), [(B1 + Ba) (ug + v2), (a1 + a2)(u3 + v3)|Lor/] LoL
=O(uy-4o1), (us-+0s)(ua—vs) 151 (1) + B3 (v1), [Br(uz), a1 (us)]L + [B2(v2), a2 (v3) /] Ly
=Ouruzsus 187 (1), [Br(uz), 1 (us)] L]+ Ouvyvaws BT (01), [B1(v2), o1 (v3)] 1] 1
— 0,

where O, . denotes summation over the cyclic permutation on x,y, z. ]
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Definition 2.9. Let (L, [, ]r,a1,51) and (L, [-,"]1/, a2, B2) be two §-Bihom-Jordan-Lie
algebras. A linear map ¢ : L — L’ is said to be a morphism of §-Bihom-Jordan-Lie
algebras if

¢[U7U]L = [¢(u)a ¢(U)]L’7vuvv €L, (26)
poay = P09, (2.7)
(;5 O (xg = /82 (¢} ¢ (28)

Denote by 94 € L & L' is the graph of a linear map ¢ : L — L'.
Proposition 2.10. A map ¢ : (L,[-,"]p,a1,61) — (L', [, "]/, a2, B2) is a morphism of
d-Bihom-Jordan-Lie algebras if and only if the graph Sy € L & L' is a Bihom subalgebra
of (L& L[ ]rer, 1 + az, f1 + B2).
Proof. Let ¢ : (L,[-,"|p,01,61) = (L', [, -]/, a2, f2) be a morphism of §-Bihom-Jordan-
Lie algebras, then for any u,v € L, we have
[U + QZS(U), v+ ¢(U)]L69L’ = [u¢ U]L + [Qb(u), ¢(’U)]L’ = [U, U]L + ¢[ua U]L-

Then the graph Gy is closed under the bracket operation [-,-|rgr/. So, we obtain

(a1 +ag)(u+¢(u) = ar(u) + az 0 ¢(u) = ai(u) + ¢ o a(u),
and

(B + Ba)(u+ o(u) = Bi(u) + B2 0 p(u) = Bi1(u) + ¢ o Ba(u),
which implies that (a1 + a2)(S¢) C G¢ and (81 + B2)(G¢) C G¢. Then G, is a Bihom
subalgebra of (L & L', [, |rer/, a1 + a2, B1 + B2).

Now, suppose that the graph G4 C L& L’ is a Bihom subalgebra of (L& L', [, |per, a1+
a9, 1 + B2), then we have
[u+é(u),v+ é(v)lLaor = [u,v]L + [¢(uw), d(v)]L € Ty,
which implies that
[p(u), ¢(v)] 1 = Plu, v]L.

Furthermore, (a1 + a2)(S4) C Gy and (51 + B2)(9¢) C G4 implies
(a1+az)(utd(u) = ar(u)+azod(u) € Gy and (B1+52)(u+¢(u)) = Bi(u)+B200(u) € 9
Which is equivalent to the condition aj o ¢(u) = ¢ o f1(u), and ag o p(u) = ¢ o Ba(u) i.e.

arogp = ¢of
and Qg O (;5 = gb o 52.
Therefore, ¢ is a morphism of §-Bihom-Jordan-Lie algebras. U

Example 2.11. Let (L, [-,-]) be a §-Jordan-Lie algebra and «, 8 : L — L two commuting
linear maps such that a([z,y]) = [a(z), a(y)] and B([z,y]) = [B(x), B(y)], for all z,y €
L. Then (L,[, ], o, ), where [z,y]r = [a(x),B(y)], is a 6-Bihom-Jordan-Lie algebra.
Moreover, suppose that (L', [,-]) is another d-Jordan-Lie algebra and o/, 8" : L’ — L' be
two algebra endomorphisms. If f: L — L’ is a 6-Jordan-Lie algebra homomorphism that

satisfies foa =’ o fand fo 8 = B o f, then [ : (L. [-]p,a, 8) = (L, [, ], e, ) s

also a homomorphism of -Bihom-Jordan-Lie algebras.

Proof. 1t is easy to show that (L, [-, |1, a, B) satisfies [B(x), a(y)]r = [aB(z), Ba(y)]) =
af([z,y]) = aB(=dly, z]) = —d[aB(y), ab(z)]) = =6[B(y), a(x)]L, and
LlL

[8%(2), [B(y), ()]l + [6°(y), [8(2), (@)Ll + [6%(2), [B(2), a(y)]e]e
2), [aB(y), Ba(2)]L + [B%(y), [aB(2), Ba(@)]lL + [ (2), [aB(@), Ba(y)]LlL
af?(x), BlaB(y), Ba(2)]lL + [ (y), BlaB(z), Ba(@)]lL + [af?(2), BlaB(z), Ba(y)]L]L

aB([x, [y, 2] + [y, [z, 2]] + [2, [z, y]])
0.

= [
=
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Then (L, [, |1, @, ) is a J-Bihom-Jordan-Lie algebra.

The second assertion follows from

f(z,y]L) = f(la(z), B)]) = [f(a(z)), F(BW))]) = [e(f(2)), B(f ()] = [f (), F (W)L
Then f: (L, [, ]p,a,8) = (L, [-,"]r, o/, 8',) is also a homomorphism of 4-Bihom-Jordan-
Lie algebras. O

Example 2.12. A three dimensional linear space L has a basis

001 010 00 0
er=1000|,eo=(000],e3=(001].
000 000 000

Then (L, [-,-]) is a 6-Jordan-Lie algebra with respect to the product:

0 a b 0 o v 0 0 acd 0 0 de
00 cl|,l0 0 ¢ =401 0 0 O — 0 0 O
0 0 0 0O 0 O 0O 0 O 0 0 O

If we define two algebra endomorphisms « and S by
aler) = ey, a(e2) = es, afes) = ea,

and
Ble1) = de1, Ble2) = e3, B(es) = e
Then (L,a® B([-,-]1) = [a(.), B(.)], a, B) is a 6-Bihom-Jordan-Lie algebra.

3. Derivations of /-Bihom-Jordan-Lie algebras

In this section, we will study derivations of §-Bihom-Jordan-Lie algebras. Let (L, [-, |, «,
B) be a multiplicative §-Bihom-Jordan-Lie algebra. For any nonnegative integers k, [, de-
note by o the k-times composition of a and ! the [-times composition of 3, i.e.

" =qo-coa, B=Bo--0p.
(k—times) (I—times)
Since the maps «, 5 commute, we denote by
Bl =qo---oaqofo---0p.
(k—times) (I—times)
In particular, a®8° = Id,a'B' = af, a %37 is the inverse of o*p!. If (L,[-, |, a, B) is

a regular 6-Bihom-Jordan-Lie algebra, we denote by ™% the k-times composition of a1,
the inverse of a.

Definition 3.1. For any nonnegative integers k, [, a linear map D : L — L is called an
o¥ pl-derivation of the multiplicative §-Bihom-Jordan-Lie algebra (L, [-, -]z, @, 3), if

[D,a] =0, i.e. Doa=aoD, (3.1)
[D,8] =0, ie. DofB=poD, (3.2)

and
Dlu,v]z, = 6*([D(u), "B ()], + [ B (u), D(v)]L), Yu,v € L. (3.3)

For a regular 6-Bihom-Jordan-Lie algebra, a~*3~!-derivations can be defined similarly.
Note first that if & and § are bijective, the skew-symmetry condition (2.3) implies
[u,v] = —8[a B (v), B  (u)]L, Yu,v € L. (3.4)

Denote by Der,sg (L) is the set of o Bl-derivations of the multiplicative §-Bihom-
Jordan-Lie algebra (L, [-,-|r,a, 8). For any u € L satisfying a(u) = u, and B(u) = wu,
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define Dy j(u) : L — L by

Dy (u)(v) = =d[a* B (v),ulr, 6F =1, Vo€ L.
By Equation (3.4),
Dy(u)(v) = —8[a*B' (v), ulr
= dla" B(u), B~ (@B (v))]2
= 0w, o* LB ()] .

Then Dy (u) is an ofT!glderivation. We call an inner o**+!Bl-derivation. In fact, we
have

Dii(u)(e(v)) = =0[a" 5! (v), u]p = —a(8[a*B'(v), ulL) = a 0 Dy (u)(v).

Dyi(u)(B(v)) = =6[* 84 (v),u]p = —B(8[a* B (v), ulL) = B o Dy(u)(v).
On the other hand, we have

Dyi(u)([v, w]r)

Sl B ([v,w]L), ulL

= —8[[Ba”B (v), ad®B 7 (w)] L, 87 (u)]L

= 0[8%(u), [Ba* B! (v), aa B (w)] L]

= —0([a" B (v), [0* B! (w), a(u)] L]z + [ B (w), [B(w), " T252 (0)]L]L)

= =3[ (), [0F B (w), a(u)] L] — 8] BT (w), [B(u), o282 (0)] L)L
—SF oM Bl (v), 8[a B (w), uln]r — S8 [u, aF B ()], o B (w)]

= "o B (v), Dyy(u) (w)]L + [Dra(u)(v), o6 ()] L.

Therefore, Dy, (u) is an aFt1pl derivation. Denote by Inn,kg (L) the set of inner akpl-
derivations, i.e.

Innk g (L) = {=6[a* 1B (), ulu € L, a(u) = u, B(u) = u,6F = 1}. (3.5)
For any D € Der (L) and D' e Dergspt (L), define their commutator [D, D'] as usual:
[D,D|=DoD —D oD. (3.6)

Lemma 3.2. For any D € Deryx (L) and D e Derys gt (L), we have

[D,D'] € Dexgpts give(L).
Proof. For any u,v € L, we have
(D, D')([u,v]) = DOD/([ v]) = D o D([u,v])
= ([()sﬂt()] + [0 B (u), D' (v)]1)
—5’“ ([D() o (v)]L, + [a*B(u), D(v)]L)
= 6°D([D'(u),a*B (v)]1) + 6°D ([ *B'(u), D' (v)]1)
—5k D'([D(u),o*B'(v)]1) — 6" D' ([o*B'(u), D(v)]1)
_ 5k+5([DoD’(u)7ak+slgl+t(v)]L 4 [akﬁl ODI(U),DOaSﬁt(’U)]L
+[D o Bt (u),a*B' o D' (v)]1, + [a*+* o D(u), D o D' (v)]1,
—[D" o D(u), "3 ()] — [a® 0 D(u), D" 0 o (v)]L
—[D" o a*(u),a® o D(v)]1, — [a*+* B (u), D" o D(v)]1).
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Since any two of maps D, D', a, B commute, we have
Doa*=a°ocD D/oak:akoDl,
Dopt=p'oD , Dof=pg0oD".
Therefore, we have
D, D)([uv)s) = (Do D (u) = D' o D(u),a**+*5+(v)]1
a8+ (u), Do D' (u) — D' o D(v)]1)
= (D, D](w), B (0)] 1 + [0 B (w), [D, D)(v),]1)-
Furthermore, it is straightforward to see that
[D,D/]oa = DoDoa—DoD oa
— aqoDoD —aoDoD

ao[D,D,
and
[D,D)of = DoD of—DoD of
= BoDoD —fBoDoD
= Bo[D,D.
Therefore, [D, D] € Der pi+s i+t (L). O

For any integer k, [, denote by Der(L) = @p>01>0Derrp (L). Obviously, Der(L) is a
Lie algebra, in which the Lie bracket is given by equation (3.6).

In the end, we consider the derivation extension of the regular é-Bihom-Jordan-Lie
algebra (L, [+, "], a, B) and give an application of the a’3!-derivation Der 051 (L).

For any linear map D, «,5 : L — L, where o and 3 are inverse, consider the vector
space L @ RD. Define a skew-symmetric bilinear bracket operation [-,|p on L & RD by

[u,v]p = [u,v]L,[D,u]lp = —6[a"B(u),af D]p = D(u),Yu,v € L.
Define two linear maps by ap,8p : L ® RD — L ® RD by
ap(u, D) = (a(u), D), and Bp(u, D) = (B(u), D).

And the linear maps «, 8 involved in the definition of the bracket operation [-,-|p are
required to be multiplicative, that is

ao[D,ulp =[aoD,a(u)]p, Bol[D,ulp=|[BoD,Bu)p.
Then, we have
[u,D]p = —dla"'8D,af (u)]p
= —6a7'B[D,a?87(u)]p
= —da 'BD(a?57%(u))
= —daf ' D(u).
Theorem 3.3. With the above notations, (L & RD, |-, |p,ap,Bp) is a multiplicative -

Bihom-Jordan-Lie algebra if and only if D is an o'B-derivation of the multiplicative
d-Bihom-Jordan-Lie algebra (L, [, ], o, ).

Proof. For any u,v € L,m,n € R, we have

ap o Bp(u,mD) = ap(B(u),mD) = (ao B(u), mD),
and
Bp o ap(u,mD) = Bp(a(u),mD) = (5o a(u),mD).
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Hence, we have
apofip=pBpoap <= aoff=foa.

On the other hand,

ap[(u,mD), (v,nD)]p = ap([u,v]r + [u,nD]p + [mD,v]|p)
= ap([u,v]r — nD o af™(u) + mD(v))
= a([u,v]r) — éna oD oaf~(u) + mao D(v)),

[ap(u,mD), ap(v,nD)]p [(a(u), mD), (a(v),nD)]p
)L + [a(u),nD]p + [mD, a(v)]p

(
,a(v)]z = dnD o af™(a(u)) + mD(a(v)).

Il
E/\
S

Since a([u, v]1) = [a(u), a(v)]L,
ap|(u,mD), (v,nD)]p = lap(u,mD),ap(v,nD)]p
if and only if
Doa=aoD, Dof=fB0D.
Similarly
Bpl(u,mD), (v,nD)]p = [Bp(u, mD), Bp(v,nD)]p
if and only if
Doa=aoD, Dofi=fB0D.

Next, we have

[Bp(v,nD),ap(u,mD)]p

[(B(v), nD), (a(u),mD)]p

[6(v), a(w)lz + [6(v), mD]p + [nD, a(u)lp

B(v), a(u)]y —dmas™t o Do (B(v)) + nD(a(u))
—8([B8(w), a(v)]z +maB™" o Do (B(v)) — dnD(a(u))),

v),x\u

v),x\u

[6p(u, mD), ap(v,nD)]p = [(5(u), mD), (a(v),nD)]p
= [B(w), a(v)]z + [B(w),nD]p + [mD, a(v)]p
= [B(w),a(v)]r — dnaf™ o D o (B(u)) +mD(a(v)),

thus
[Bp(v,nD),ap(u,mD)]p = —0[fp(u,mD),ap(v,nD)|p
if and only if
Doa=aoD, Dof=poD.
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On the other hand, we have
(8% (u,mD), [Bp(v,nD),a(w,1D)]p]p + [87(v,nD), [Bp(w, D), ap(u, mD)]p]p
+ [8p (w, D), [Bp(u, mD), ap(v,nD)]p]p
= [(8%(u), mD), [(B(v),nD), (a(w),ID)]p]p+[(8*(v),nD), [(B(w),ID), (a(u), mD)]p]p
+[(8%(w), 1D), [(B(w), mD), (a(v), nD)]p]p
= [(8%(u), mD), ([B(v), a(w)] = dlavo D(v) +nD o a(w))]p
, ([B(w), a(u)] — dna o D(w) +mD o a(u))|p
B( | = dma o D(u) +mD o a(v))|p
) o a(w)]

+
=

[N}
S/\/
3
@

u), (v
= 8[6%(u), levo D(v)] + [6%(u),nD

+ [mD, [B(v),oz(w) | —d[mD,laco D(v)] + [mD,nD o a(w)]
+[82(v), [B(w), a(w)]] = 8[8%(v), ma o D(w)] + [6%(v), 1D o a(u)]
+ [nD, [B(w), a(u)]] — d[nD,ma o D(w)] + [nD,ID o a(u)]
+[82(w), [B(u), a(v)]] = 8[8*(w), na o D(u)] + [5*(w), mD o a(v)]
+[ID, [B(u),a(w)]] = 0[ID,nc o D(u)] 4+ [ID,mD o a(v)]

= [3*(u), [B(v), a(w)]] = 8[mD, la 0 D(v)] + [5*(u), nD 0 a(w)]

[ | — dmla o D?(v) + mnD? o a(w)

[ (w)]] = 8[6%(v), mar o D(w)] + [*(v), 1D o a(u)]
[nD, [B(w), a(v)]] — émna o D*(w) 4+ nlD? o a(w)]

(52 (w), [B(u), Oé(v)]] —3[B%(w ) nao D(u)] + [6%(w), mD o a(v)]
[

If D is an o’ '-derivation of the multiplicative 6-Bihom-Jordan-Lie algebra (L, |-, -], o, B),
then

[mD, [8(v), «(w)]]p = mD[B(v), a(w)]

= d[mD o f(v), a8 (a(w))] + [a"B%(v), mD o a(w)]
— —5[a®B%(w),mD o a(v)] + [a”8*(v), mD o a(w)]
= —0[3%(w),mD o a(v)] + [6*(v),mD o a(w)].

Similarly

(0D, [B(w), a(u)]]p = —8[8%(u), nD o a(w)] + [6%(w), nao D(u)].
And
1D, [B(u), a(v)]]p = —6[5%(v), 1D o a(w)] + [*(w), la o D(w)].
Therefore, the 6-Bihom-Jacobi identity is satisfied if and only if D is an a”3'-derivation

of (L,[,"]r,, ). Thus (L& RD,|[-,"|p,ap,Sp) is a multiplicative §-Bihom-Jordan-Lie
algebra if and only if D is an a®B!-derivation of (L, [-,]1, a, B). O

4. Representations of §-Bihom-Jordan-Lie algebras

In this section we study representations of §-Bihom-Jordan-Lie algebras and give the
corresponding coboundary operators. We can also construct the semidirect product of 6-
Bihom-Jordan-Lie algebras. Let A € End(V) be an arbitrary linear transformation from
Vto V.
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Definition 4.1. Let (L, [-, |1, @, 5) be a multiplicative d-Bihom-Jordan-Lie algebra. A
representation of L is a 4-tuple (M, p, ar, Bar), where M is a linear space, apy, By : M —
M are two commuting linear maps and p : L — End(M) is a linear map such that, for all
u,v € L, we have

pla(u)) o ay = an o p(u), (4.1)
p(B(w)) o Bar = Bur o p(u), (4.2)
p([B(u),v]L) o Bar = plaf(u)) o p(v) — dp(B(v)) o pla(u)). (4.3)

Let (L, [, ]r, @, B) be a regular 6-Bihom-Jordan-Lie algebra. The set of k-cochains on L
with values in M, which we denote by C*(L; M), is the set of k-linear maps from L x---x L
(k-times) to M:

CM(L;M) 2 {f:Lx---x L(k — times) — M is a linear map}.

A k-Bihom-cochain on L with values in M is defined to be a k-cochain f € C*(L; M)

such that it is compatible with «, § and ajs, B in the sense that apr o f = foa,

Byof=fop,ie.
ap(f(ury...,ug)) = fla(ur),...,a(u)),
Bu(flur, .. ur)) = f(B(wr),. .., Bur)).
Denote by C’(a o )(L, M) the set of k-Bihom-cochains:

(8,8m)
Clivan) (L M) 2 {f € CH(L, M)|ar o f = foa.fa o f = fo ).
(B,8m)
Define the linear map d’; : Cé“a aM)(L, M) — C*U(L, M)(k = 1,2) as follows: we set

(8,8n)
dp f (ur,ug) = p(e(ur)) f(ug) — 6pa(uz)) f(ur) — f ([a " Bur), ug]L),

A2 f(ui,ug,us) = p(aB(ur))f(ug, us) — dp(aB(uz)) f(u1, us) + p(B(us)) f(u, uz)
—f(la B(ur), u2)r, Bluz)) + 0 (o™t B(ur), us) L, Blus))
—f(le ' B(uz), us] L, Blur)).

Lemma 4.2. With the above notations, for any f € C¥ (L, M), we have

(cv,anr)

(B,8m)

(dyofloa = amodyf,

(diof)oB = PBuodf.
Thus we obtain a well-defined map

k k+1
d C(a o )(L,M) — C((LQIW)(L,M)
(B.8m) (B.Bm)

with k =1,2.

Proposition 4.3. With the above notations, we have df, o d}) =0.
Proof. By straightforward computations, we have
d> o dyf(uy,uz,us3)
= p(af(ur))d) f (uz, us) — dp(aB(uz))dy f(u1, us) + p(aB(us))d, f(ur,usz)
—dy f(la™ Bur), uz]r, B(uz)) + dd, f(la™" B(ur), us]r, Bluz))
—dyf(la™ ' Bluz), us]L, B(u ))
= plap(u))(p(a(uz)) f (uz) — dpalus)) f(uz) — 5f (™" B(uz), us]L))
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— dp(ap(u2))(pla(ur)) fuz) — Spalus)) f(ur) — 6 f ([o ' B(ur), us]L))
+ p(aB(uz))(p(e(ur)) f (uz) — dpa(uz) f(ur) — 6 f([a" Bur), u2)L))
— ple([a " Bur), w2l L)) f (B(usz)) + dpa(B(usz)) f(ur)
+ 6 f(Jo B[ B(ur), uz]L), Blus)]L)
—dp(a([a 1ﬁ(U1) us|r)) f(B(u2)) + pa(B(uz)) f(u1)
+ ([ B(la" Blwr), uslL), B(u2)]L)
+5P(Oé([04 B(uz), us]r)) f(B(ur)) — pa(B(ur)) f(u2)
— f(fe™' B[ B(u2), us]L), Bur)]L)
= plaB(ur))p(afuz)) f(us) — dp(aB(ur))palus)) f (ug) — dp(af(ur)) f ([ B(ug), us]L)
— dp(aB(ug))p(a(ur)) f(us) + plaB(uz))paus)) f(u1) + plaf(uz)) f(la™ B(ur), uslL)
+ p(aB(uz))p(e(ur)) f (uz) —p(aB(uz)) per(ug) f (u1) = 5p(aB(uz)) f ([ ! B(wr), ua]L))
= p([B(w), a(uz)]L) f ( (u3)) + dp(a(B(us))) f(ur)
+0f([([o 282 (ur), o' Blu2)]L), Blus)]L)
—5/)( (u1), (us)]r)) f(B(u2)) + p(a(B(u2))) f(u1)
+ f([([a 28 (ua), ' B(uz)]L), Blu2)]L)
+0p([B(u2), aus)l) f(B(u1)) — p(a(B(ur))) f(u2)
— f([([a?B%(u2), o' Buz)]L), B(u1)]L)

Q

u1

A/\

[B(u1), a(us
(
[
(

=0.
Then dzod})f(ul,ug,ug) =0. O

Associated to the representation p, we obtain the complex (Cé“a au

(BuBM)
the set of closed k-Bihom-cochains by Zﬁvﬁ(L; p) and the set of exact k-Bihom-cochains

by Bzﬁ(L,p), k=1,2.
Denote the corresponding cohomology by

HE 5(L,p) = Z& 5(L; p)/ BE 4(L, p),

)(L, M),d,). Denote

where

Z (L p)_{fGCOzOtM)( ’M) | d];f:()}’
(B.8m)
BEo(Lop) = {dbg | geCll (L)),
(B:8m)
In the case of Lie algebras, we can form semidirect products when given representations.
Similarly, we have

Proposition 4.4. Let (L,[-,"|r,a, B) be a multiplicative 0-Bihom-Jordan-Lie algebra and
(M, p,anr, Bar) a representation of L. Assume that the maps apr and By are bijective.
Then L x M = (L @ M,[-,+],,a @ anr, f @ Bur) is a 0-Bihom-Jordan-Lie algebra, where
a®ap, BBy LM — Ld M are defined by (a ® apy)(u+ x) = a(u) + ap(z) and
(B@Bm)(u+x) = B(u)+Lm(x), for allu,v € L and x,y € M, the bracket [-, ], is defined
by

[w+ 2,0+ ylp = [u 0]+ 6p(u)(y) — pla™' B))(amBy/ (2)). (4.4)
We call L x M the semidirect product of the multiplicative 0-Bihom-Jordan-Lie algebra
(L,[-,"]p,, B) and M.
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Proof. First we show that [-, -], satisfies antisymmetry,

[(B @ Bar) (v + ), (@ ® anr)(u+x)l,

= [B(v) + Bum(y), a(uw) + an ()],
= [B(v), a(u)]z + 6p(B(v))(an(x)) — pla™ Bla(w)))(am By} (Bar(v)))
= [B(v), a(u)]L + dp(B(v))(an(z)) — p(B(u))(anr(v))

= =0([B(w), a(v)]L + op(B6(w))(an (y) = p(B(v))(anr(w)))
= —0[(B® Bm)(u+ ), (@ ® an) (v +y)lp-

Next we show that (a® aps) and (5@ Byy) are algebra morphisms. On the one hand, we
have

(a@am)u+z,v+y],
= ((a ® anr)([u, vl + dp(u)(y) — pla™" B(v))(am By (2)))
= a([u,v]1) + dans o p(u)(y) — anr o pla™" B(v)) (am By (2)))
(w), a(v)] L + dp(a(u))(an(y)) — plala™ B(v)))(am o (ambBy (2))))
)

= [a (
= [a(u), a(v)]L + dp(a(w)(arm(y) — p(B(v)) (a3 By (x))
= [(a®anm)(u+ z), (0 ® am)(v+y)],.

Similarly, we obtain

(8 ® Bu)[u+z,v+yl, =80 Bu)(u+),(BDBar)(v+y),

Furthermore

[(B® Bar)*(u+2), (BB )(v+y),(a@aM)(w 2)plo

= [B2(u) + B3 (), [B(v) + Bus (), al(w) + anr (2)],],
= [8%(u) + B (@), [B(v), a(w)]L + 6p(B(v))(an(2)) — pla”" Bla(w)))(an B (Bar(v)))]p
= [B2(u) + B3r(2), [B(v), a(w)]z + 6p(B(v))(anr (2)) = p(B(w))(anr (y))],
= [8%(u), [B(v), a(w)]L]L + 6*p(5%(u)) p(B(v)) (et (2)) = 8p(B () p(B(w)) (et (y))
— pla™'B([B(v), a(w)]) (anrBay (BRr(x))))
= [8%(u), [B(v), a(w)]z] + p(5*(w)) p(B(v))(@nr(2)) = 6p(B () p(B(w))(anr(y))

]
= p([a™'B%(v), B(w)]
Similarly,

(anrBar (2))-

[(B @ Ba)* (v + ), [(B @ Bar)(w + 2), (@ ® an) (u+ )],
= [6%(v), [B(w), a(u)]L]r + p(8%(0)) p(B(w)) (e (x)) — 5p(B% () p(B(w)) (are(2))
= p(la™ !B (w), B(w))) (anrBur (y)).
And

[(B @ Bar)*(w + 2), (B ® Bar) (u+ ), (@ ® anr) (v +y)l,l,
= [8%(w), [B(u), a(v)]L]r + p(82(w))p(B(w))(art(y)) — 6p(B (w))p(B(v)) (an ()
= p([0™8%(w), B(v)]) (arr Bar (2)).-

By (4.3), the §-Bihom-Jacobi identity is satisfied. Thus, (L & M, [-,-|,, o ® anr, B ® Bmr)
is a multiplicative 4-Bihom-Jordan-Lie algebra. g
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5. The trivial representation of §-Bihom-Jordan-Lie algebras

In this section, we study the trivial representation of multiplicative d-hom-Jordan-Lie
algebras. As an application, we show that the central extension of a multiplicative §-
Bihom-Jordan-Lie algebra (L,[-,]r,a, 3) is controlled by the second cohomology of L
with coefficients in the trivial representation.

Now let M = R, Then we have End(M) = R. Any ayr, Sy € End(M) is exactly two
real numbers, which we denote by r1, rg respectively. Let p : L — End(M) = R be the zero
map. Obviously, p is a representation of the multiplicative é-Bihom-Jordan-Lie algebra
(L, [, |1, @, B) with respect to any 1,72 € R. We will always assume that r; = ry = 1. We
call this representation the trivial representation of the multiplicative d-Bihom-Jordan-Lie
algebra (L, [, |1, a, B).

Associated to the trivial representation, the set of k-cochains on L, which we denote by
Ck(V) = AFL*, is the set of skew-symmetric k-linear maps from V x --- x V to R.

The set of k-Bihom-cochains is given by

Cap(D)={f€CHL)Ifoa=[fof =}
The corresponding coboundary operator dr : CQ,B(L) — Ck? (L)(k =1,2) is given by

«,

dpf(u1,ug) = =6 f([a™ ' B(ur), uz]1), (5.1)

7 f(ur,ug,uz) = —f([a Blwr), ualr, Bus)) + 0f ([a™" B(ur), us]r, Buz))
—f(lo7 " B(ug), us]L, B(u1)).
Denote ZiB(L) and BQ’B(L)(kz = 1,2) similarly.

In the following we consider central extensions of the multiplicative 6-Bihom-Jordan-Lie
algebra (L, [, ], o, §). Obviously, (R, 0,1, 1) is an abelian multiplicative ¢-Bihom-Jordan-
Lie algebra with the trivial bracket and the identity morphism. Let 6 € 027 (L), we have
foa =60,00p5 =0 and O(u,v) = —d0(v,u),Yu,v € L. We consider the direct sum
g = L & R with the following bracket

[u+s,v+tlg = [u,v]r + 0B (u),v), VYu,v € L,stcR. (5.2)

Define ay, By : g — g by ag(u+s) = a(u) + s, and Sg(u+s) = S(u) + s.

Theorem 5.1. With the above notations, the 4-tuple (g, [-, g, 0tg, Bg) s a multiplicative
0-Bihom-Jordan-Lie algebra if and only if 0 € C’gﬂ(L) is a 2-cocycle associated to the
trivial representation, i.e.

drf = 0.

We call the multiplicative §-Bihom-Jordan-Lie algebra (g, [-, ], g, Bg) the central ex-
tension of (L, [, ], o, B) by the abelian §-Bihom-Jordan-Lie algebra (R,0,1,1).

Proof. Obviously, since ao 8 = o a, we have ag o By = 4 0 ag. Then we show that ay
is an algebra morphism with the respect to the bracket [-,-]g. On one hand, we have

ag([u+s,v+tlp = ag([u, o] +0(af™" (u),v))
= a([u,v]r) +0(af™ (u),v)).
On the other hand, we have
[ag(u+s),aq(v+1t)]g = [a(u) + s, a(v) + t]g
= [a(u), a(v)]r, + 8(af™ (a(u)), a(v)).

Since a is an algebra morphism and 6(a8~ ! (a(u)), a(v)) = foa(af™(u),v) = O(aB ™ (u),v).
Then ay is an algebra morphism.
Similarly, we have 4 is also an algebra morphism.



662 A. Ben Hassine, L. Chen, J. Li

Furthermore, we have

[By(u + 5), ag(v +1)]p =

and

[Bg(v+ 1), ag(u+8)lo =

<
+
~
S
L
[i=1
g
_|_
Vo)
=
>

Then [By(u + s), ag(v + t)]g = —0[B4(
By direct computations, we have

(83 (u + 5), [Ba (v + 1), ag(w + 7)ol + 155 (v + 1), [By (w + 1), ag(u+ 5)]olo
+ By (w + 1), [By(u + 5), g (v + 1))y
= [6%(u) + 5, [B(v) + t, a(w) + rlglo + [ (v) + 1, [B(w) + 7, a(u) + 5]l
+[B%(w) + 7, [B(w) + 5, a(v) + t]glg
= [8%(u) + s, [Bv)a(w)]L + (e~ (B(v
+[B2(v) + t, [Bw)a(uw)] +(af™
+[B2(w) + 1, [Bw)a(v)] +0(as™!
= [B%(u), [B(v)a(w)]L]z + (S~ (B*(u
+[8%(v), [B(w)a(u)]lL]z + 0(aB™(
+[8%(w), [Bu)a(v)lLle + 0(aB™ (52 (w))), [B(
= [8%(w), [B(v)a(w)]L]L + O(aB(u), [B(v), a(w)]z
+18%(v), [Bw)a(u)] L]l + 0(aB(v), [B(w), a(u
+[B%(w), [Bu)a(v)] L] + 0(aB(w), [B(u), alv
Thus by the Bihom-Jacobi identity of L, [-, -]y satisfies the d-Bihom-Jacobi identity if and
only if
0(ap(u)), [B(v), a(w)]L + 0(aB(v)), [B(w), a(w)]L + O(af(w)), [B(u), a(v)]L = 0.
Namely,
0(B(u), [a~ ' B(v),wlL) + 0(B(v), [a™" B(w), ulL) + O(B(w), [a~ ' B(u),v]L) = 0.
On the other hand,
dr6(u, v, w)
— 5 (—60([0~ B, vl B(w)) + ([~ Blw), uli, B(v)) — 6(la B(v), wlp. Bw))
= —(0([a~ B(u), o)1, B(w)) + 6(la~ Bw), ul1, B®)) + 6(la"L8(v), w]L, Aw))

= 6([B3 (u+ s), [By(v + 1), ag(w +7)]glo + [B5 (v + 1), [Bg(w + 1), g (u + 5)]ga)
= 0.

alu
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Then the 4-tuple (g, [+, -], g, B) is a multiplicative §-Bihom-Jordan-Lie algebra if and
only if 6 € C’g’ﬂ(L) satisfies dpf = 0. O

Proposition 5.2. For 01,05 € Z2(V), if 6(01 — 02) is exact, the corresponding two central
extensions (g, [+, 6., g, Bg) and (g, [+, ]9, g, Bg) are isomorphic.
Proof. Assume that 61 — 0y = ddrf, [ € C;’B(L). Thus we have
01(B (), v) — Ba(u, v) = b f(af~ (u), v) = (o~ o B~ (w),]) = — f([u,v]).
Define ¢4 : g — g by
pgu+s)=u+s+ f(u).
Obviously, ¢4 is an isomorphism of vector spaces. The fact that ¢4 is a morphism of the

0-Bihom-Jordan-Lie algebra follows from the fact 6 o« = 6,60 o § = 6. More precisely, we
have

g 0 og(u+ 5) = pg(a(u) + s) = a(u) + s+ fa(u) = a(u) + s+ f(u).
On the other hand, we have
agopg(u+s) =og(u+s+ f(u) = alu) + s+ f(u).
Thus, we obtain that ¢g 0 ag = g 0 g. Similarly
Pg 0 Py = Py 0 g

We also have

glu+ 5,0+ tlo, = @y([u, vl + 02(af ™" (u), v))

= [u, o] + 61 (a7 (), v) + f([u,]L) = ([u, 0], b2(af ™ (u), v)

= [pg(u +5), pg(v +1)]o,-

Therefore, ¢4 is also an isomorphism of multiplicative 6-Bihom-Jordan-Lie algebras. [

6. The adjoint representation of §-Bihom-Jordan-Lie algebras

Let (L, [, ], o, ) be a regular 6-Bihom-Jordan-Lie algebra. We consider that L rep-
resents on itself via the bracket with respect to the morphisms «, 5. A very interesting
phenomenon is that the adjoint representation of a J-Bihom-Jordan-Lie algebra is not
unique as one will see in sequel.

Definition 6.1. For any integer s,t, the a®B'-adjoint representation of the regular 6-
Bihom-Jordan-Lie algebra (L, [-, |, o, ), which we denote by ads, is defined by

ads ¢ (u)(v) = §[a® B (u),v]L, Yu,v € L.

Lemma 6.2. With the above notations, we have

ads¢(a(u)) o v = a o adgt(u);

ads 1 (B(u)) o B = B oads(u);

ads¢([B(u),v]r) o B = ads (aB(u)) o ads(v) — dads(a(v)) o ads(B(u)).
Thus the definition of o Bt-adjoint representation is well defined.
Proof. For any u,v,w € L, first we show that ads;(a(u)) o a = aoads(u)
ads(a(u))(a(v)) = ola" B (u), a(v)]r
= a(0[a®B(u),v]L) = o ads(u)(v).

Similarly, we have

adst(B(u)) o f = foadst(u).
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Note that the skew-symmetry condition implies
ads(u)(v) = 8[a’S (u), vl1
= 0[B(a”B " (w)), ala™ (v))]r
= —8’la'B(v), "B (W)L
= —[a"1B(w), * B ()], Yu, v € L.
On one hand, we have
ads¢([6(u), v]L) o B(w) = ads([6(u), v]L)(B(w))
—[a71B(B(w)), e B H([B(w), v]L)]L
—[a7' B (w), [T B (u), @* T B (V)] L] L
On the other hand, we have
ads ¢ (B (u)) o ads ¢ (v)(w) — dads(a(v)) o ads(B(u))(w)
= adg(af(u))(~[a™ B(w), a* B (v)]L)
— dad 4 (a(0))(=[a™ B(w), @25 (u)] 1)
= [a™ B(la" B(w), " BT ()] L), @B (@B(w))] L)
—d[a™'B([a™" B(w), a2 (w)]L), @ BT (B(v))]1)
= [B([a7?8 ( ), a8 v)]L), @2 (u)] L
—8[B([a"2B(w), S“Bt Hw)lr), @ ()]L)
= —0[B(a’ B (u), ala™?B(w), o* B (v)]L]L
+[B(a’B'(v)), afa _26( ), a3 )] 1] )
= 0[BT (w)), [ LB(w), B ()]
+[a®8(v), [ B(w), a* 2B ()] L)L)
= [ 5 (W), [0 B (v), w]L]L
+[a* 8 (v), [0 B(w), @* 2B (w)] L)L)
= [8%(a**15 7 (w), [B(a®B 7 (v)), ala™ (w))]L]L
+ 82”87 (), [Bla™ (w)), al@* 87 ()] L)1)
= —[*(a" (w)), [B(a* 15 (w)), ala® B (v))]L]L
—[a7 1B (w), [t B (u), T B (V)] 1] 1

Thus, the definition of a* 3t-adjoint representation is well defined. The proof is completed.
O

The set of k-Bihom-cochains on L with coefficients in L, which we denote by C¥ s(Li L),
is given by

CE4(L;L) = {f € C*(L; L)|ao f = foa,Bo f= fofp}.

In particular, the set of 0-Bihom-cochains is given by:
Cgﬁ(L;L) ={u € Lla(u) = u, B(u) = u}.
Associated to the a®Bf-adjoint representation, the corresponding operator
ds : Ch g(Li L) = CREHL L) (k = 1,2)
is given by

ds o f(ur,u2) = 8[a' B (ur), f(uz)] = [@'°8" (ua), f(ur)] = 0f([a™" Blur), ual);  (6.1)
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dsif(u1,ug, u3) = S[a T B (uy), f(ug, uz)] —

+0[al 5 (ug), fur,ug)] = f(la™! Bur), ug], B(uz))
+6f([a ' Blur), ug), Bluz)) — f(la™" Bluz), us), Blur)).
For the a®B'-adjoint representation ads;, we obtain the o®3'-adjoint complex
(CF 5(L; L), dsy).-
We have known that a 1-cocycle associated to the adjoint representation is a derivation
for Lie algebras and Hom-Lie algebras. Similarly, we have

Proposition 6.3. Associated to the ofB'-adjoint representations ads; of the reqular -
Bihom-Jordan-Lie algebra (L,[-,-]r,, ), it satisfies 6°t1 = 1, D € C'éﬁ(L,L) s a
1-cocycle if and only if D is an o287 -derivation, i.e. D € Ders+2p:-1(L).

Proof. The conclusion follows directly from the definition of the operator ds;. D is closed
if and only if

ds+(D)(u,v) = Sl Bt (w), D(v)]L — [0 B (v), D(u)]r, — dD[atB(u),v]L = 0.
D is an a*t2pt~-derivation if and only if
Dla™'B(u),vl, = —b[e*"?8 ta™ B(v), D(w)], + [@**25" o™ B(u), D(v)]1
= 0TH([D(u), a* B ()]L + [ 5! (), D(v)]1).
Then, D € C'(iﬂ(L, L) is a 1-cocycle if and only if D is an a*T23!"!-derivation, i.e. D €
Der,s+2p:-1(L). O

Let ¢ € C’iﬁ(L;L) be a bilinear operator commuting with « and f, also ¢(u,v) =
—01(v,u). Consider a t-parameterized family of bilinear operations
[u,v]; = [u,v]r, + t(u,v). (6.2)

Since 1 commutes with «, 8, then «, 8 are morphisms with respect to the bracket [-,-];
for every t. If all the brackets [-,-]; endow (L, [-, -]+, o, B) with regular 6-Bihom-Jordan-Lie
algebra structures, we say that 1 generates a deformation of the regular d-Bihom-Jordan-
Lie algebra (L, [,-|r, @, 3). The anti-symmetry of [-,-]; means that

[B(v),a(u)le = [B(v),a(u)lL +tp(B(v), a(u))
and [B(u),a(v)]e = [B(u),av)]L +t(B(u),a(v)).
Then [B(v), a(u)]s = —d[B(u), a(v)]; if and only if
B(B(0), a(w) = —5B(A(w), av)). (6.3)
By computing the Bihom-Jacobi identity of [-, ]
[8%(w), [B(v), aw)]e]e + [B2(v), [B(w), a(w)]e)e + [ (w), [B(w), a(v)]ee
= [6%(u), [B(v), a(w)]r + t(B(v), a(w))]:
); [B(w), a(w)]r + (B (
(V)] + t(
(v), a(w)]r]e + [ “(
(w), a(w)]L]s
()]z]e
)]L]

[a1+sﬁ
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+18%(v), t (B(w), a(w))]z + t (B (v), t(B(w), a(u)))
+ 182 (w), [B(u), a(v)]L]z + t (8% (w), [B(u), a(v)]L)
+ 82 (w), t(B(u), av)]z + 1 (6 (w), t (B(u), a(v))).

This is equivalent to the conditions

D(B% (), Y (B(v), a(w))) + (6% (v), ¥(B(w), a(w))) + (6% (w), ¥ (B(u),a(v))) = 0, (6.4)

D(B%(w), [B(v), a(w)]L) + [B2(u), ¥ (B(v), aw))]r
+(52(v), [B(w), a(u)]z) + [6%(v), p(B(w), a(u))]L
(82 (w), [B(u), a(v)]L) + [6%(w), ¥ (B(u), a(v))]z = 0. (6.5)

Obviously, (6.4) and (6.3) means that 1) must itself define a J-Bihom-Jordan-Lie algebra
structure on L. Furthermore, (6.5) means that 1 is closed with respect to the o~ 3-adjoint
representation ad_q 1, i.e. d_1 19 = 0.

d—119(u,v,w)
= 0[B%(w), (v, w)] L, — [B2(v), ¥ (u, )] + O[5 (w), ¥ (u, v)]1

—p([a™ Bu), o)L, B(w)) + 6([a™ Bu), w]r, B(v)) — ([ B(v), w]L, Bu))
= 0[8% (), (v, w)] L + 3[B%(v), ¥

(), ¥(w, )]z + 8[6%(w), ¢ (u, v)]L
+80(B(w), [a™"B(u), v]L) + 89 (B(v), [a™" B(w), u]L) + 6v(B(w), [a™" B(v), w]L)
=0.

A deformation is said to be trivial if there is a linear operator N € C(; 5(L; L) such that
for T; = id 4+ t N, there holds

Tt[“? v]t - [Tt<u)7Tt(v)}L (6'6)

Definition 6.4. A linear operator N € COIQ 5(L, L) is called a Bihom-Nijienhuis operator
if we have

[Nu, Nv|f, = N[u,v]n, (6.7)
where the bracket [-, | x is defined by
[u,v]n £ [Nu,v]r + [u, Nv|p — N[u,v]r. (6.8)

Theorem 6.5. Let N € CL(L,L) be a Bihom-Nijienhuis operator. Then a deformation
of the regular §-Bihom-Jordan-Lie algebra (L, |-, |1, o, B) can be obtained by putting

P(u,v) = 0d_1 1N (u,v) = [u, v]N.
Furthermore, this deformation is trivial.

Proof. Since ) = dd_11N, d—11% = 0 is valid. To see that 1) generates a deformation,
we need to check the Bihom-Jacobi identity for ¢. Using the explicit expression of 1, and
we denote Oy . the summation over the cyclic permutation on u,v,w. We have

Ouaw Y5 (w), ¥ (B(v), a(w))

=Ouw Y(8% (1), [NB(v), a(w)] + [B(v), Na(u)] = N[B(v), a(w)))

=Ouw Y(6% (1), [NB(v), a(w)]) + (6% (w), [B(v), Na(u)]) — (8(u), N[B(v), a(w)])
v), a(w)]] + [NB?(v), [B(w), NB(w)]] + [ (w), N[B(w), a(v)]x]

=Ouw [NB*(w), [NB(v), a(w) )
+ Ouww N[B*(v), N[B(w), a(uw)] = [NB*(v), N[B(w), a(u)]
Ouw —NIB (W), [NB(v), a(w)]] + N[B*(w), [B(u), Na(v)]
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Since N commutes with o and g, by the Bihom-Jacobi identity of L, we have
[NG2(u), [NB(v), a(w)] + [NF?(v), [B(w), Na(u)] = [NB(u), Na(v)], 5*(w)].
Since N is a Bihom-Nijenhuis operator, the last equation becomes
Ouaw [NB (1), [NB(v), a(w)]] + [N52(v), [B(w), Na(w)] + [6*(w), N[B(u), a(v)]n] = 0.
Furthermore, also by the fact that N is a Bihom-Nijenhuis operator and we take in
(6.7) and (6.8), u = B%(v) and v = [B(w),a(u)], we have N|[%(v), N[B(w),a(u)]] —
[NB?(v), N[B(w), a(u)]] = =N[NB*(v), [B(w), a(w)]] + N?[5*(v), [B(w), a(w)]].
By the Bihom-Jacobi identity of L, we have
Ouaw N[B(v), N[B(w), a(w)]] — [NF*(v), N[B(w), a(u)]]
=Ou,v,w N[Nﬁz(v), [B(w), a(u)]].

Then,
Oupsw Y (B2 (1), (B (v), a(w))
= —N[NB*(v), [B(w), a(w)] = N[B(u), [NB(v), a(w)] + [8*(w), [B(u), NS (v)]
= —N[3*(Nv), [B(w), a(w)] + [*(u), [NB(v), a(w)]] + [6*(w), [B(u), NB(v)]]
=0.

Thus 1 generates a deformation of the §-Bihom-Jordan-Lie algebra (L, [-, ‘|1, a, ().
Let T; = id 4+ tN, then we have

Ti[u, vy = (id + tN)([u, v] + t(u,v))
= (id + tN)([u, v] L + t[u, v]N)
[u, ], + t([u,v]n + Nu,v]r) + t*Nu, v] .

On the other hand, we have
[Ti(u), Ty(v)]r = [u+ tNu,v + tNv]L
= [u,v] + t([Nu,v]r, + [u, Nv]p) + t*[Nu, Nv]L.
By the equations (6.7) and (6.8), we have
Ti[u, v)e = [Ty(u), Ti(v)]z,

which implies that the deformation is trivial. (|

7. T*-extensions of §-Bihom-Jordan-Lie algebras

The last part deals with T*-extension. We provide in this section, for §-Bihom-Jordan-
Lie algebras, characterizations of T*-extensions and observations about T*-extensions of
nilpotent and solvable d-Bihom-Jordan-Lie algebras. This method was introduced by
Martin Bordemann in [2].

Definition 7.1. Let (L, [, ]r,a, 8) be a 6-Bihom-Jordan-Lie algebra. A bilinear form f
on L is said to be nondegenerate if

Lt ={zeL|f(z,y) =0,Vy € L} = 0;
af-invariant if
F((B(x), ay)], alz)) = fla(x), [B(y), a(2)]),Vz,y, 2 € L;

symmetric if

flz.y) = f(y,2).
A subspace I of L is called isotropic if T C I+.
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Definition 7.2. Let (L, [, |1, @, 8) be a 6-Bihom-Jordan-Lie algebra over a field K. If
L admits a nondegenerate invariant symmetric bilinear form f, then we call (L, f, a, )
a quadratic 6-Bihom-Jordan-Lie algebra. In particular, a quadratic vector space V is a
vector space admitting a nondegenerate symmetric bilinear form.

Let (L', [-,-]}, a1, B1) be another §-Bihom-Jordan-Lie algebra. Two quadratic §-Bihom-
Jordan-Lie algebras (L, f,a, 8) and (L', f’, o, B1) are said to be isometric if there exists
a 6-Bihom-Jordan-Lie algebra isomorphism ¢ : L — L' such that

f(x,y) = f(o(x),d(y)), Yo,y € L.

Lemma 7.3. Let ad be the adjoint representation of a §-Bihom-Jordan-Lie algebra
(L,[-,"]L,, B). Let us consider L* the dual space of L, &, 3 : L* — L* two homomorphisms
defined by

a(f)=foa,B(f)=foB,VfeL"

Then the linear map m: L — End(L*) defined by, m(x)(f)(y) = —df cad(x)(y),Vz,y € L,
is a representation of L on (L*,&, ) if and only if

aoada(r) =adz o o (7.1)
Boadf(z) =adzx o f; (7.2)
ad(a(z)) 0 adf(y) — dady o ad(af(x)) = f o ad[B(z), ylz. (73)

We call the representation m the coadjoint representation of L.

Proof. Firstly, we have
(m(a(z)) o @)(f) = —da(f) cada(zr) = —d0f o o ada(x),

and
a(m(x))(f) = —da(f oadr) = —d0f o adw o a.
Similarly,
(7(B(x)) 0 B)(£) = —05(f) 0 adB(x) = =6 o B 0 ad(x),
and
B(r(x))(f) = —0B(f oadz) = =6 f cadx o 3.
Therefore,

(m([B(x).y]) 0 B)(f) = —6f o Boad[B(x),y);

(m(af(z)) o m(y) — om(B(y)) o m(a(x)))(f)

= —om(aB(x))(f o ady) + 7(B(y))(f o ada(z))
= foadyoadaf(z) —f oada(x) oadB(y)

= —df o (ada(x) o adfB(y) — dady o adaS(x)).

Then we have

rla@)od = a(r(x))
r(B@)of = Ar()
~(B@)y) o B = w(aB(z)) o nly) - on(B(y)) o wla(z).

Then 7 is a representation of L on (L*, &, 5) O
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Lemma 7.4. Under the above notations, let (L,[-,|r,, ) be a §-Bihom-Jordan-Lie al-
gebra, and w : L x L — L* be a bilinear map. Assume that the coadjoint representation
exists. The space L @ L*, provided with the following bracket and a linear map defined
respectively by

[z + f.y+ glLer = [2,y]r +w(z,y) + om(z)g — m(a ' By)as ™" (f), (7.4)
o @+ f)=al@)+ foa, (7.5)
B(x+f)=p)+fop. (7.6)

Then (L & L*,[-, |ror+, o, 8') is a 6-Bihom-Jordan-Lie algebra if and only if w is a 2-
cocycle: L x L — L*, d.e. w € Z*(L,L*).

Proof. For any elements z + f,y 4+ g,z + h € L & L*. We have
18'(z + f), 0 (y+ g)]
=[B(z)+ fopB,a(y) +goqa
= [B(x), a(y)] + w(B(z), a(y)) + om(B(x))(g 0 @) — w(a™ Ba(y)))as ™' (f o )
= [B(@), a(y)lL + w(B(x), a(y)) + o (B(x))(g o ) = w(B(y))(f o ).
Similarly, we have
1B'(y+9),0 (x4 )] = [By), a@)]L + w(B(y), a(z)) + m(By))(f o @) — 7(B(x))(g 0 ).
Then, we have [8'(z + f),a (y + g)] = =8]8 (y + 9), & (z + f)] if and only if
w(B(z), aly)) = —dw(B(y), a(x)).

(z

(z

Therefore,

87 @+ ), 18y +9), 0 (z+ )]
— [8(x) + f o 8%, [B(y) + g 0 B,a(z) + h
= [B2(@) + f o 8% [B(y), a(z e+ w(5(5).02)
+37(B(y)) (h o @) — m(a™ Bla(2))) (@B (g 0 B))
— [B%(x) + f 0 8% [B(y), a(2)]1 + w(B(y), a(2)) + 57(B(y)) (h o @) — 7(B(2))(g 0 )]
= [8(2), [By), a(=)]1]z + w(B(@), [B(y), (2)]r)
+ 8m(B8%(2)w(B(y), al=2)) + m(82(2))m(B(y))(h o a)
— 5n(BX(@)m(B(2))(g 0 @) — m(a BIBY), a(2)])(f 0 Boa)).

°af]

And
B +9) 18 (= + h),a ( + D)
= [6%(1), [B(2), a(@)] L] +w(B%(y), [B(2), a(2)]L)
+0m(52(y))w(B(2), a(x)) + 7 (B2 ()7 (B(2))(f o @)
— m(B(y))m(B(x))(h o @) — m(a™ B[B(2), alx)])(g 0 B o ),

1872+ h),[8 (@ + ), (y + 9)]]
= [82(2), [B(x), a(y)] L] + w(B(2). [B(x), a(y)]1)
+0m(B%(2))w(B(z), aly)) + 7(B(z >> (B(x))(g 0 )
— om(B2(2))m(B(w))(f 0 @) — w(a ' B[B(x), ay)])(ho B o a).

Since 7 is the coadjoint representation of L, we have

m(a™BB(z), a(y)lL)ho foa
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= (876, Bwlz) Bk
= m(af(a”'B(2)))m(B(y)(ho a) — o (B(B(y))m(ala™ B(x)))(hoa)
= 7 (BA@)n(B() (ho ) — 5n(B(y)))m(B)) (ho a).
Similarly,
m(a ™ BIB(y), a(2)]1)f o Boa=m(B(y))m(B(2))(f o @) — 6n(5*(2)))m(B(y))(f o @),
and
(o™ BIB(2), a(z)]L)g o B o a = m(B*(2))m(B(x))(g 0 a) — om(B*(2)))w(B(2))(g 0 ).
Consequently, [8”(z+f), [8 (y+9), o' (z+ )|+ (8" (y+9), [8 (z+ ), ' @+ )] +[8” (z+
h),[8 (z+ f),a (y+g)]] = 0 if and only if
0 = w(B(2),[B(y), a(2)]L) + n(6*(2))w(B(y), a(2))
+w(B%(y), [B(2), alx)]L) — om(B*(y)w(B(2), alz))
+ow(B2(2), [B(x), a(y)]z) + on(52(2))w(B(), aly))
= [B*(2), w(B(y), a(2))] = 8[6%(y), w(B(2), a())] + 8[8°(2), w(B(x), a(y))]
—6w([B(y), ()], B*(2)) +w(B(y), [B(x), ay)]r) — dw([B(2), a(y)]L. 5(2))
= dd_1 w(x,y,2).

That is w € Z2 5(L, L*). Then confirmation holds if and only if w € Z*(L,L*). Conse-
quently, we prove the lemma. ]

8

Clearly, L* is an abelian Bihom-ideal of (L & L*,[-, ~],a', B') and L is isomorphic to
the factor 0-Bihom-Jordan-Lie algebra (L & L*)/L*. Moreover, consider the following
symmetric bilinear form ¢, on L & L* for all x + f,y + g € L & L*,

q(z + f,y+9) = fy) + g(@).
Then we have the following lemma.
Lemma 7.5. Let L, L*, w and qr be as above. Then the 4-tuple (L & L*,qL,O/,B/) 18

a quadratic §-Bihom-Jordan-Lie algebra if and only if w is Jordancyclic in the following
sense:

w(B(x), a(y))(a(2)) = w(B(y), a(2))(e(x)) for all z,y,z € L.

Proof. If x+ f is orthogonal to all elements of L & L*, then f(y) = 0 and g(x) = 0, which
implies that x = 0 and f = 0. So the symmetric bilinear form ¢, is nondegenerate.
Now suppose that x + f,y + g,z +h € L & L*, then

ar (8 (z + ), 0 (y + 9)lzor-,a (z + h))

=qr([B(@) + foB,a(y) + goarars, a(z) + hoa)

= qr([B(x), a(y)]L +w(B(z), a(y)) + 6 (B(x))g 0 o — w(a ™ Baly))as ™ (f o B), a(z)
+hoa)

= qr([B(@), a(y)lL +

= w(B(z), a(y))
+ hoa([f(x),

= w(B(z), a(y))(a

= w(B(z), a(y))

On the other hand,

ar (o (@ + ), [8'(y + 9),0 (2 + W)]pere)

=qr(a(@)+ foa,[B(y) +goB,a(z) +hoa|rer)

(B(z), a(y)) + 67 (B(x))g 0 v = w(B(y))(f 0 @), (2) + ho )

dg 0 a([f(x),a(2)|L) + f o a([B(y), (2)]L) + h o a([B(2), a(y)]L)
) = dhoa([B(y), a(z)]L).
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= qr(a(@) + f o, [B(y), al2)]L + w(B(y), a(2)) + dm(B(y))hoa

—m(a” Ba(2))aB™ (g 0 B))
= qr(a(z) + f o a, [B( ) a(2)]L +w(B(y), a(2)) + om(B(y))h o o = 7(5(2))(g © @)
= foa([B(y), a(2)lL) +w(B(y), a(2))((z)) + 67 (B(y))h o ala(z))

—7(B(2))(g° a))(a(m))
=w(B(y), a(2))(a(@)) + g 0 a([B(2), a(2)]L) + [ o a([B(y).2)]1) — Sh o a([B(y), a(z)]1)-
Hence the lemma follows. O

Now, for a Jordancyclic 2-cocycle w we shall call the quadratic d-Bihom-Jordan-Lie
algebra (L & L*,qr, o, 3') the T*-extension of L (by w) and denote the §-Bihom-Jordan-
Lie algebra (L @ L*,[-,-],a’,3") by T*L.

Definition 7.6. Let L be a §-Bihom-Jordan-Lie algebra over a field K. We inductively
define a derived series
(L("))n>0 L0 =, Lt = [L(n)’L(n)]’
and a central descending series
(L™)pso : L° = L, L™ = [L", L].

L is called solvable and nilpotent(of length k) if and only if there is a (smallest) integer

k such that L) = 0 and L*F = 0, respectively.

In the following theorem we discuss some properties of 7,5 L.

Theorem 7.7. Let (L, [, ]r,, 8) be a 0-Bihom-Jordan-Lie algebra over a field K.

(1) If L is solvable (nilpotent) of length k, then the T*-extension TS L is solvable (nilpo-
tent) of length v, where k <r <k+1 (k<r <2k -1).

(2) If L is decomposed into a direct sum of two Bihom-ideals of L, so is the trivial
T*-extension Ty L.

Proof. (1) Firstly we suppose that L is solvable of length k. Since (T*L)™/L* = L™
and L) = 0, we have (T*L)®) C L*, which implies (T*L)*+1) = 0 because L* is abelian,
and it follows that 7175 L is solvable of length k or k + 1.

Suppose now that L is nilpotent of length k. Since (TL)*/L* = L™ and L* =
we have (TL)¥ C L*. Let g € (TXL)* C L*,b € L, 21 + f1,--- ,op_1 + fe_1 € TXL,
1<i<k-—1, we have

[ lg,21 + fileors, - lLors, -1 + fr—1]Ler (D)

= 6" 1gad(z1)ad(8  a(x2)) - - - ad(zp_1) B~ F Dok~ (b)

= g([z1, [ alw2), [+, [B~F D2 (@), B7F Vo 0] - 1L]L]L)
€ g(Lk) =0.

This proves that (T*L)2*~! = 0. Hence T3 L is nilpotent of length at least k and at most
2k — 1.

(2) Suppose that 0 # L = I @ J, where I and J are two nonzero Bihom-ideals of
(L[,-]r,, B). Let I* (resp. J*) denote the subspace of all linear forms in L* vanishing
on J (resp. I). Clearly, I* (resp. J*) can canonically be identified with the dual space of
I (resp. J)and L* = I* & J*.

Since [I*, L] por+(J) = I*([L, B~ a(J)]L) C I*([L, J]r) C I*(J) = 0and [I, L*] gL (J) =
L*([I,J]r) C L*(INJ) =0, we have [I*, L|pgr+ C I* and [I, L*] g+ C I*. Then

[T51, Ty Lt = &I, L& L*] oL
= [I,L]L + [I,L*]L@L* + [I*,L}L@L* + [I*,L*]L@L* Clal*= TJI.
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151 is a Bihom-ideal of L and so is 75 J in the same way. Hence T{y L can be decomposed
into the direct sum 71 @ TjJ of two nonzero Bihom-ideals of T(j L. U

In the proof of a criterion for recognizing T*-extensions of a J-Bihom-Jordan-Lie algebra,
we will need the following result.

Lemma 7.8. Let (L,qr,«, ) be a quadratic 6-Bihom-Jordan-Lie algebra of even dimen-
sion n over a field K and I be an isotropic n/2-dimensional subspace of L. If I is a
Bihom-ideal of (L, [, L, , B), then [B(I),a(I)] = 0.

Proof. Since dim/+dimI*+ = n/2 + dimI* = n and I C I', we have I = I+, If
I is aideal of (L,[-, ], a, ), then qr(a(L),[B(I),a(IM)]) = qr([B(L), (I)],Oé 1)
gL([ﬁ(L),I],a(IL)) C qr(I,I*) = 0, which implies [3(I), a(I)] = [ (I),e(IH)] € (L) -

Theorem 7.9. Let (L, qr, a, 3) be a quadratic reqular 0-Bihom-Jordan-Lie algebra of even
dimension n over a field K of characteristic not equal to two. Then (L, qr, o, B) is isometric
to a T*-extension (T3 B, qp, O/,B/) if and only if n is even and (L, |-, ‘|1, o, B) contains an
isotropic Bihom-ideal I of dimension n/2. In particular, B = L/I, with B* satisfying
a(B*) C B*and 5(B*) C B*.

Proof. (=) Since dimB=dimB*, dimT;B is even. Moreover, it is clear that B* is a
Bihom-ideal of half the dimension of 7;} B and by the definition of ¢z, we have gg(B*, B*) =
0, i.e., B* C (B*)* and so B* is isotropic.

(«<=) Suppose that I is an n/2-dimensional isotropic Bihom-ideal of L. By Lemma
7.8, [B(I),a(I)] = 0. Let B = L/I and p : L — B be the canonical projection. Since
chK # 2, we can choose an isotropic complement subspace By to I in L, i.e., L = By + I
and By C By. Then Bi = By since dimBy = n/2.

Denote by po (resp. pi) the projection L — By (resp. L — I) and let ¢} denote the
homogeneous linear map I — B* : i — ¢j (i), where ¢ (i)(p(x)) := qr(i,z), Vo € L. We
claim that ¢} is a linear isomorphism. In fact, if p(z) = p(y), then = —y € I, hence
qr(i,z —y) € q.(L,I) = 0 and so qr,(i,z) = qr.(7,y), which implies ¢} is well-defined and
it is easily seen that ¢ is linear. If ¢} (i) = ¢ (j), then ¢; (2)(p(x)) = ¢;.(4)(p(z)),Vz € L,
i.e., qr(i,z) = qr(j,x), which implies i — j € L+ = 0, hence ¢} is injective. Note that
dim/ = dimB*, then g7 is surjective.

In addition, ¢ has the following property:

qr.([B(x), a(@)]) (p(a(y)))

= qr([8(x), (D), aly)) = =0qL([B(0), ()] L, (y))

= —0qr(a(@), [B(x), a(y)lL ):—5qL(a(Z))p([ﬁ($),a(y)] )

= —0qz.(a()[p(B(x)), pla(y))lL = —qr(a(i)(adp(5(z))(p(a(y))))
= 6(m(p(B(x)))qr (a (i) (p(aly ))) [p(B(2)), q1.(e(@)] oL (P((v))),

where x,y € L, 1 € I. A similar computation shows that

qz([B(z), a(d)]) = [p(B(2)), ¢r(a(i)] oL+,  qr([B(8), a(x)]) = laz(B(9)), p(B(2))]LoL--

Define a homogeneous bilinear map
w: B x B — B
(p(bo), p(b0)) > aL(pa([bo, b)),

where bg, b, € By. Then w is well-defined since the restriction of the projection p to By is
a linear isomorphism.

Let ¢ be the linear map L — B @ B* defined by ¢(bo + i) = p(bo) + q7.(i),Vbo + i €
By + I = L. Since the restriction of p to By and ¢} are linear isomorphisms, ¢ is also a
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linear isomorphism. Note that

([B(bo + 1), a(bp + )] L)

= ([B(bo), (bp)]z + [B(bo), a(i)] + [B(7), a(bp)]L)
= (po(B(bo), a(by)]) + p1([B(bo), (bp)]r) + [B(bo), ()] 1 + [B(7), b)) 1)
= p(po([B(bo), a(by)]2)) + q7.(p1([B(bo), (bp)]r) + [B(bo), ()] L, + [B(i), (bpy)] 1)
= [p(B(bo)), p((bp))] L + w(p(B(bo)), p((bp))) + [p(B(bo)), af, ()]
+ [q7.(8(2)), p(a(bp))]L
(

= [p(B(bo)), p(e(b))] + w(p(B(bo)), p(ex(by))) + 07 (p(B(bo)) (aL (ax(i')))
— m(p(B(bo)) (g7 (a(4)))

= [p(B(bo)) + q1.(B(0)), p(a(bp)) + ¢L.((i"))| e

= [pB((bo + 1)), pa((by + 1)) LaLe-

Then ¢ is an isomorphism of algebras, and so (B®B*, [, |pep*, @, /) is a 6-Bihom-Jordan-
Lie algebra. Furthermore, we have

qB(p(bo +1), by +1')) = qB(p(bo) + ¢7 (), p(by) + ¢1.())
i)(p(bg)) + a1,(¢') (p(bo))

q

qr(
ZQL(Z7b)+QL( ', bo)

qr(

then ¢ is isometric. The relation

/ ’

a5([8 (p((2)),a (p(a(y))], @ (p((2))))
= qB([p(B(2)), p(a(y))]; v(a(2))) = qa(L([B(x), a(y)]), p(a(2))) = qr([B(x), a(y)], a(2))
= qr(a(@), [B(y), a(2)]) = g(p(a(z)), [e(B(y)), p(a(2))])

) ]

(y
= g5(c (p(2)), [8'((¥)), @ ((2))])

which implies that gp is a nondegenerate invariant symmetric bilinear form, and so
(B @ B*,qB,o/,ﬂ/) is a quadratic J-Bihom-Jordan-Lie algebra. In this way, we get a
T*-extension T*B of B and consequently, (L, qr, o, 8) and (T*B, qp, o/, ') are isometric
as required. O

Let(L, [, ], , B) be a 6-Bihom-Jordan-Lie algebra over a field K, and let wy : L X L —
L* and wy : L x L — L* be two different Jordancyclic 2-cocycles. The T*-extensions T7; L
and Ty, L of L are said to be equivalent if there exists an isomorphism of §-Bihom-Jordan-
Lie algebras ¢ : T} L — T L which is the identity on the Bihom-ideal L* and which
induces the identity on the factor 6-Bihom-Jordan-Lie algebra T35 L/L* = L = T} L/L*.
The two T™-extensions T L and T}, L are said to be isometrically equivalent if they are
equivalent and ¢ is an isometry.

Proposition 7.10. Let L be a §-Bihom-Jordan-Lie algebra over a field K of characteristic
not equal to 2, and w1, we be two Jordan cyclic 2-cocycles L x L — L*. Then we have

(i) T3, L is equivalent to T}, L if and only if there is z € CY(L,L*) such that

wi(z,y) —wa(w,y) = om(2)2(y) — n(a ' Bly)aB " =(x) — 2([z,ylo). Yo,y € L. (7.7)

If this is the case, then the symmetric part zs of z, defined by zs(z)(y) =
2(z(2)(y) + 2(y)(x)), for all x,y € L, induces a symmetric invariant bilinear form
on L
ii 1s 1sometrically equivalent to if and only if there is z € , suc
5 L Il l T3, L if and only if th C\(L,L* h
that (29) holds for all x,y € L and the symmetric part zs of z vanishes.
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Proof. (i) T}, L is equivalent to 775, L if and only if there is an isomorphism of J-Bihom-
Jordan-Lie algebras ® : T L — T} L satisfying ®|;~ = 1+ and z — ®(z) € L*,Vx € L.
Suppose that ® : T75 L — T L is an isomorphism of J-hom-Jordan-Lie algebra and
define a linear map z : L — L* by z(z) := ®(z) — z, then z € CY(L,L*) and for all
r+ f,y+g €T, L, we have
[z + f,y + gla)
= (2, y]1, + w1 (2,) + 67(2)g — 7 (0 B)EF ()
= o)1 + 2(5,5]1) + w1 (3, 9) + 6n(2)g — w(a~ 1 By)aB(f).
On the other hand,
[+ ), Dy + )
= [z +2(z) + fy+2(y) + 9]
= [z, 4] + wa(2,y) + o (2)g + on(2)2(y) — w(a~ ' By)as " 2(x) — w(a ' Bly)as~ " (f).

Since ® is an isomorphism, (7.7) holds.

Conversely, if there exists z € C1(L, L*) satisfying (7.7), then we can define ® : Tj; L —
T5,L by ®(x + f) := o+ 2(x) + f. It is easy to prove that ® is an isomorphism of -
Bihom-Jordan-Lie algebras such that ®|p« =id« and v — ®(L) € L*,Vx € L, ie. T} L is
equivalent to 77 L.

Consider the symmetric bilinear form ¢z, : L X L — K, (z,y) — 2s(z)(y) induced by zs.
Note that

wi(B(z), a(y))(a(m)) — w2 (B(x), a(y))(e(m))

= om(B())z(a(y)) (alm)) — (o™ Bla(y)))aB ™" 2(B(x))(a(m)) — 2([B(x), a(y)]) (a(m)
= om(B(z))z(a(y))(a(m)) — m(a(y))z((z))((m)) — 2([6(x), a(y)]L)(a(m))

= —0z(a)([B(x), a(m)]L) + 2(a(@))([B(y), a(m)]L) — )

and

ﬁ’\
=
—~
8
~
L
—~

w1 (B(y), a(m))(a(z)) —
= om(B(y))z(a(m))(a(z

= —0z(a(m))([6(y), a(z
= z(a(m))([B(x), ay)]L )—52(a(y))(

Since both w; and ws are Jordancyclic, the right hand sides of above two equations are
equal. Hence

— 0z(a(y))([B(x), a(m)]L) + z(a(2))([B(y),

= z(a(m))([8(z), a(y)]L) — 02(a(y))([B(2),
That is

(m)lz) — 2([B(x), a(y)]L) (a(m))
(m)lz) — 2([8(y), a(m)]L)(a(x)).

Q

Q

2(a(@))([8(y), alm)]r) + 2([6(y), a(m)]L) ((z))
= z([B(x), a(y)]p)(a(m)) + z(a(m))([B(x), a(y)]L)-
]

)
Since chK # 2, qr(a(z), [B(y), a(m)]) = qr([5(x), a(y)], a(m)), which proves the invari-
ance of the symmetric bilinear form ¢z, induced by zs.
(ii) Let the isomorphism ® be defined as in (i). Then for all z + f,y+g € L ® L*, we
have

8

(
);

() + fry+2(y) +9)
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=2z4(x)(y) + gz + f,y + 9).

Thus, ® is an isometry if and only if z; = 0. g
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