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Abstract
In this paper, we define new subclasses of k-uniformly Janowski starlike and k-uniformly
Janowski convex functions associated with t-symmetric points. The integral representa-
tions, convolution properties and coefficient bounds for these classes are studied.
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1. Introduction
Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

n=2
anzn, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Furthermore, S
represents the class of all functions in A which are univalent in U .

Sakaguchi [10], introduced a class S∗
s of functions starlike with respect to symmetric

points, it consists of functions f(z) ∈ S, satisfying the inequality

Re

{
f ′(z)

f(z) − f (−z)

}
> 0, (z ∈ U). (1.2)

Following him, many authors studied this class and its subclasses see [1, 9, 12,14].
Motivated by S∗

s, we can easily obtain the following class Cs of functions convex with
respect to symmetric points. Let Cs denote the class of functions in S, satisfying the
inequality

Re

{
(zf ′(z))′

f ′(z) − f ′(−z)

}
> 0, (z ∈ U).
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In [2], Chand and Singh considered a class St
s of functions starlike with respect to

t-symmetric points, which consists of functions f(z) ∈ S, satisfying the inequality

Re

{
zf ′(z)
ft (z)

}
> 0, (z ∈ U),

where

ft(z) = 1
t

t−1∑
µ=0

ϵ−µf (ϵµz) ,
(
ϵt = 1 : t ∈ N

)
. (1.3)

From (1.1) equation (1.3) we can rewrite as

ft(z) = 1
t

t−1∑
µ=0

ϵ−µf (ϵµz) = 1
t

t−1∑
µ=0

ϵ−µ[ϵµz +
∞∑

n=2
an (ϵµz)n]

= z +
∞∑

n=2
bnanzn, (1.4)

where

bn = 1
t

t−1∑
µ=0

ϵ(n−1)µ =
{

1, n = lt + 1,
0, n ̸= lt + 1,

(1.5)

where l, t ∈ N; n ≥ 2; ϵt = 1.
Notice that

ft (ϵµz) = ϵµft(z), (1.6)

f ′
t (ϵµz) = ft(z) = 1

t

t−1∑
µ=0

f ′ (ϵµz) , (z ∈ U) . (1.7)

Definition 1.1. For f(z) ∈ A, given by (1.1) and g(z) ∈ A of the form

g(z) = z +
∞∑

n=2
cnzn, (z ∈ U) ,

the Hadmard product (or convolution) of f(z) and g(z) is given by

(f ∗ g) (z) = z +
∞∑

n=2
ancnzn = (g ∗ f) (z), (z ∈ U).

For two functions f(z) and g(z) analytic in U , we say that f(z) is subordinate to
g(z), denoted by f ≺ g or f(z) ≺ g(z), if there exists an analytic function w(z) with
|w(z)| < |z| such that f(z) = g (w(z)). If g(z) is univalent in U then f(z) ≺ g(z) if and
only if f (0) = g (0) and f (U) ⊂ g (U). The idea of subordination was widely presented
by Miller and Mocanu [7].

Definition 1.2. A function p(z) is said to be in the class P [A, B], −1 ≤ B < A ≤ 1, if it
is analytic in U with p (0) = 1 and

p(z) ≺ 1 + Az

1 + Bz
, (z ∈ U).

Geometrically, if a function p belongs to P [A, B], then it maps the open unit disc U
onto the disk

Ω [A, B] =
{

w :
∣∣∣∣w − 1 − AB

1 − B2

∣∣∣∣ <
A − B

1 − B2

}
.

The class P [A, B] is connected with the class P of functions with positive real part by
the relation

p(z) ∈ P, if and only if (A + 1) p(z) − (A − 1)
(B + 1) p (z) − (B − 1)

∈ P [A, B] .
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This class P [A, B] was presented by Janowski [3] and explored by a few creators. Kanas
and Wiśniowska [4, 5] presented and examined the class k − ST of k−starlike functions
and the related class k − UCV of k−uniformly convex functions. These classes were
characterized subject to the conic region Ωk, k ≥ 0, as

Ωk =
{

u + iv : u > k
√

(u − 1)2 + v2
}

.

This domain represents the right half plane, a parabola, a hyperbola and an ellipse for
k = 0, k = 1, 0 < k < 1 and k > 1 respectively. The functions such that pk(U) = Ωk are

pk(z) =



1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√

z

)2
, k = 1,

1 + 2
1−k2 sinh2

{(
2
π arccos k

)
arctanh

√
z
}

, 0 < k < 1,

1 + 2
k2−1 sin

(
π

2R(t)
∫ u(z)√

t

0
dx√

1−x2
√

1−(tx)2

)
+ 1

k2−1 , k > 1,

(1.8)

where

u(z) = z −
√

t

1 −
√

tx
, (z ∈ U) ,

and t ∈ (0, 1) and z is chosen such that k = cosh
(

πR′(t)
4R(t)

)
. Here R(t) is Legendre’s complete

elliptic integral of first kind and R′(t) is the complementary integral of R (t).
Following are the definitions of classes k − ST and k − UCV .

Definition 1.3. A function f(z) ∈ A is said to be in the class k − ST , k ≥ 0, if and only
if,

zf ′(z)
f(z)

≺ pk(z), (z ∈ U).

Definition 1.4. A function f(z) ∈ A is said to be in the class k − UCV , k ≥ 0, if and
only if,

(zf ′(z))′

f ′(z)
≺ pk(z), (z ∈ U).

The classes k − ST and k − UCV were further generalized by Shams et al, [11], to the
KD (k, β) and SD (k, β), respectively, with respect to the conic domain G (k, β), k ≥ 0
and 0 ≤ β < 1 which is

G (k, β) = {w : Rew > k |w − 1| + β} .

Now using the concepts of Janowski functions and the conic regions, we define the
following class of functions.

Definition 1.5. A function p(z) is said to be in the class k − P [A, B], k ≥ 0, −1 ≤ B <
A ≤ 1, if and only if

p(z) ≺ (A + 1) pk(z) − (A − 1)
(B + 1) pk(z) − (B − 1)

, (z ∈ U),

where pk(z) is defined in (1.8).

Geometrically, the function p(z) ∈ k − P [A, B], takes all values from the domain
Ωk[A, B], −1 ≤ B < A ≤ 1, k ≥ 0 which is defined as

Ωk[A, B] =
{

w : Re

((B − 1) w(z) − (A − 1)
(B + 1) w(z) − (A + 1)

)
> k

∣∣∣∣(B − 1) w (z) − (A − 1)
(B + 1) w(z) − (A + 1)

− 1
∣∣∣∣} ,
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or equivalently as

Ωk[A, B] =



u + iv :
[(

B2 − 1
) (

u2 + v2)− 2 (AB − 1) u +
(
A2 − 1

)]2

> k2


(
−2 (B + 1)

(
u2 + v2)+ 2 (A + B + 2) u − 2 (A + 1)

)2
+4 (A − B)2 v2




.

The domain Ωk[A, B] retains the conic domain Ωk inside the circular region defined by
Ω[A, B]. The impact of Ω[A, B], on the conic domain Ωk, changes the original shape of the
conic regions. The ends of hyperbola and parabola gets closer to one another but never
meet anywhere and the ellipse gets the oval shape. When A → 1, B → −1 the radius of
the circular disk define by Ω[A, B] tends to infinity, consequently the arm of the hyperbola
and parabola expand to the oval turns into ellipse. We see that Ωk[1, −1] = Ωk, the conic
domain defined by Kanas and Wiśniowska [4].

Definition 1.6. A function f(z) ∈ A is said to be in the class k − S
(t)
s T [A, B], k ≥

0, −1 ≤ B < A ≤ 1, if and only if

Re

(B − 1) zf ′(z)
ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

 > k

∣∣∣∣∣∣
(B − 1) zf ′(z)

ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

− 1

∣∣∣∣∣∣ , (z ∈ U)

or equivalently
zf ′(z)
ft(z)

∈ k − P [A, B] ,

where ft(z) is defined by (1.3).

In some special cases we have the well known classes presented and studied earlier:
(i) k − S

(1)
s T [A, B] = k − ST [A, B], [8].

(ii) 0 − S
(t)
s T [A, B] = S

(t)
s [A, B], [6].

(iii) k − S
(1)
s T [1, −1] = k − ST , [5].

(iv) k − S
(1)
s T [1 − 2β, −1] = SD (k, β), [11].

(v) 0 − S
(1)
s T [A, B] = S∗ [A, B], [3]

Definition 1.7. A function f(z) ∈ A is said to be in the class k − UC
(t)
s V [A, B], k ≥

0, −1 ≤ B < A ≤ 1, if and only if

Re


(B − 1) (zf ′(z))′

f ′
t(z) − (A − 1)

(B + 1) (zf ′(z))′

f ′
t(z) − (A + 1)

 > k

∣∣∣∣∣∣∣
(B − 1) (zf ′(z))′

f ′
t(z) − (A − 1)

(B + 1) (zf ′(z))′

f ′
t(z) − (A + 1)

− 1

∣∣∣∣∣∣∣ , (z ∈ U)

or equivalently
(zf ′(z))′

f ′
t (z)

∈ k − P [A, B] , (1.9)

where ft(z) is defined by (1.3).

In some special cases we have the well known classes presented and studied earlier:
(i) k − UC

(1)
s V [A, B] = k − UCV [A, B], [8].

(ii) k − UC
(1)
s V [1, −1] = k − UCV , [4].

(iii) k − UC
(1)
s V [A, B] = KD (k, β) , [11].

(iv) 0 − UC
(1)
s V [A, B] = C [A, B] , [3].

It is easy to see that

f(z) ∈ k − UC(t)
s V [A, B] ⇐⇒ zf ′(z) ∈ k − S(t)

s T [A, B] .
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2. Main results
2.1. Integral representation

First we give two meaningful conclusions about the classes k − S
(t)
s T [A, B] and k −

UC
(t)
s V [A, B].

Theorem 2.1. Let f(z) ∈ k − S
(t)
s T [A, B]. Then ft(z) ∈ k − S(1)T [A, B] ∈ S.

Proof. For f(z) ∈ k − S
(t)
s T [A, B], we can obtain

zf ′(z)
ft(z)

≺ (A + 1) pk(z) − (A − 1)
(B + 1) pk(z) − (B − 1)

, (z ∈ U). (2.1)

Substituting z by ϵµz respectively (µ = 0, 1, 2, 3, . . . , t − 1), we have

ϵµzf ′ (ϵµz)
ft (ϵµz)

≺ (A + 1) pk(ϵµz) − (A − 1)
(B + 1) pk(ϵµz) − (B − 1)

≺ (A + 1) pk(z) − (A − 1)
(B + 1) pk(z) − (B − 1)

, (z ∈ U) . (2.2)

By definition of ft(z) and ϵ = exp
(

2πi
t

)
, we know ϵ−µft (ϵµz) = ft(z). Then equation

(2.2) becomes
zf ′ (ϵµz)

ft(z)
≺ (A + 1) pk(z) − (A − 1)

(B + 1) pk(z) − (B − 1)
, (z ∈ U) . (2.3)

Let (µ = 0, 1, 2, 3, . . . , t − 1) in (2.3), respectively. Making the convex combination of
them, we can get

zf ′
t(z)

ft(z)
= 1

t

t−1∑
µ=0

zf ′ (ϵµz)
ft(z)

≺ (A + 1) pk(z) − (A − 1)
(B + 1) pk(z) − (B − 1)

, (z ∈ U) ,

because the function on right-hand site of (2.3) is convex univalent. That is, ft(z) ∈
k − S

(1)
s T [A, B] = k − ST [A, B] ⊂ S, [8] . �

Putting k = 0 in Theorem 2.1, we can obtain Corollary 2.2, below which is comparable
to the result obtained by Kwon and Sim [6] .

Corollary 2.2. Let f(z) ∈ S
(t)
s T [A, B]. Then ft(z) ∈ S∗ [A, B] ⊂ S.

Theorem 2.3. Let f(z) ∈ k − UC
(t)
s V [A, B]. Then ft(z) ∈ UCV [A, B] ⊂ S.

Proof. The proof of Theorem 2.3 is similar to that of Theorem 2.1 so the details are
omitted. �

Now we give the integral representations of the functions belonging to the classes k −
S

(t)
s T [A, B] and k − UC

(t)
s V [A, B].

Theorem 2.4. Let f(z) ∈ k − S
(t)
s T [A, B]. Then

ft(z) = z ·

exp (A − B) 1
t

t−1∑
µ=0

∫ ϵµz

0

(pk(w(ς)) − 1)
t (B + 1) pk(w(ς)) − (B − 1)

dς

 , (2.4)

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Proof. For f(z) ∈ k − S
(t)
s T [A, B], from definition of the subordination we can have

zf ′(z)
ft(z)

= (A + 1) pk(w(z)) − (A − 1)
(B + 1) pk(w(z)) − (B − 1)

, (z ∈ U) , (2.5)
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where w(z) analytic in U , with w(0) = 0 and |w(z)| < 1. Substituting z by ϵµz respectively
(µ = 0, 1, 2, 3, . . . , t − 1), we have

zf ′ (ϵµz)
ϵ−µft (ϵµz)

= (A + 1) pk(w(ϵµz)) − (A − 1)
(B + 1) pk(w(ϵµz)) − (B − 1)

. (2.6)

For (µ = 0, 1, 2, 3, . . . , t − 1) and z ∈ U . Using the equalities (1.6) and (1.7) we have

zf ′
t(z)

ft(z)
= 1

t

t−1∑
µ=0

(A + 1) pk(w(ϵµz)) − (A − 1)
(B + 1) pk(w(ϵµz)) − (B − 1)

, (2.7)

or equivalently,

f ′
t(z)

ft(z)
− 1

z
= 1

t

t−1∑
µ=0

(A − B) (pk(w(ϵµz)) − 1)
z ((B + 1) pk(w(ϵµz)) − (B − 1))

. (2.8)

Integrating equality (2.8) , we have

log ft(z)
z

= (A − B) 1
t

t−1∑
µ=0

∫ z

0

(pk(w(ϵµς)) − 1)
ζ ((B + 1) pk(w(ϵµς)) − (B − 1))

dς

= (A − B) 1
t

t−1∑
µ=0

∫ ϵµz

0

(pk(w(ς)) − 1)
t (B + 1) pk(w(ς)) − (B − 1)

dς. (2.9)

Therefore arranging equality (2.9) for ft(z), we can obtain

ft(z) = z ·

exp (A − B) 1
t

t−1∑
µ=0

∫ ϵµz

0

(pk(w(ς)) − 1)
t (B + 1) pk(w(ς)) − (B − 1)

dς

 ,

and so the proof of Theorem 2.4 is complete. �

Putting t = 1, in Theorem 2.4, we can obtain Corollary 2.5.

Corollary 2.5. Let f(z) ∈ k − ST [A, B]. Then

f(z) = z ·
{

exp (A − B)
∫ z

0

(pk(w(ς)) − 1)
t (B + 1) pk(w(ς)) − (B − 1)

dς

}
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Putting k = 0, in Theorem 2.4, we can obtain Corollary 2.6, below which is comparable
to the result obtained by Kwon and Sim [6].

Corollary 2.6. Let f(z) ∈ k − S
(t)
s [A, B]. Then

ft(z) = z ·

exp (A − B) 1
t

t−1∑
µ=0

∫ z

0

w(ς)
t (1 + Bw (ς))

dς

 ,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Putting t = 1, A = 1 and B = −1 in Theorem 2.4, we can obtain Corollary 2.7.

Corollary 2.7. Let f(z) ∈ k − US. Then

f(z) = z ·
{

exp
∫ z

0
(pk(w(ς)) − 1) dς

}
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.
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Theorem 2.8. Let f(z) ∈ k − UC
(t)
s V [A, B]. Then

ft(z) =
∫ z

0
exp

(A − B) 1
t

t−1∑
µ=0

∫ ϵµς

0

(pk(w(τ)) − 1)
t (B + 1) pk(w(τ)) − (B − 1)

dτ

 dς,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Proof. The proof of Theorem 2.8 is similar to that of Theorem 2.4 so the details are
omitted. �
Theorem 2.9. Let f(z) ∈ k − S

(t)
s T [A, B]. Then

f(z) =
∫ z

0
exp

(A − B) 1
t

t−1∑
µ=0

∫ ϵµζ

0

(pk(w(τ)) − 1)
t (B + 1) pk(w(τ)) − (B − 1)

dτ


×
( (A + 1) pk(w(ς)) − (A − 1)

(B + 1) pk(w(ς)) − (B − 1)

)
dς,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Proof. Let f(z) ∈ k − S
(t)
s T [A, B], then from equalities (2.4) and (2.5) we have

f ′(z) = ft(z)
z

( (A + 1) pk(w(z)) − (A − 1)
(B + 1) pk(w(z)) − (B − 1)

)

= exp (A − B) 1
t

t−1∑
µ=0

∫ ϵµz

0

(pk(w(τ)) − 1)
t (B + 1) pk(w(τ)) − (B − 1)

dτ

×
( (A + 1) pk(w(z)) − (A − 1)

(B + 1) pk(w(z)) − (B − 1)

)
. (2.10)

Integrating the equality (2.10) , we have

f(z) =
∫ z

0
exp

(A − B) 1
t

t−1∑
µ=0

∫ ϵµς

0

(pk(w(τ)) − 1)
t (B + 1) pk(w(τ)) − (B − 1)

dτ


×
( (A + 1) pk(w(ς)) − (A − 1)

(B + 1) pk(w(ς)) − (B − 1)

)
dς.

and so the proof of Theorem 2.9 is complete. �
Putting k = 0, in Theorem 2.9, we can obtain Corollary 2.10, below which is comparable

to the result obtained by Kwon and Sim [6].

Corollary 2.10. Let f(z) ∈ S
(t)
s T [A, B]. Then

f(z) =
∫ z

0
exp

(A − B) 1
t

t−1∑
µ=0

∫ ϵµζ

0

w(τ)
τ (1 + Bw(τ))

dτ

(1 + Aw(ς)
1 + Bw(ς)

)
dς.

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

By applying similar method as in Theorem 2.9, we have

Theorem 2.11. Let f(z) ∈ k − UC
(t)
s V [A, B]. Then

f(z) =
∫ z

0

1
ξ

∫ ξ

0
exp

(A − B) 1
t

t−1∑
µ=0

∫ ϵµς

0

(pk(w(τ)) − 1)
t (B + 1) pk(w(τ)) − (B − 1)

dτ


×
( (A + 1) pk(w(ς)) − (A − 1)

(B + 1) pk(w(ς)) − (B − 1)

)
dςdξ,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.
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2.2. Convolution conditions
In this sections, we provide the convolutions conditions for the classes k − S

(t)
s T [A, B]

and k − UC
(t)
s V [A, B].

Theorem 2.12. A function f(z) ∈ k − S
(t)
s T [A, B], if and only if

1
z

{
f(z) ∗

(
z

(1 − z)2

(
(B + 1)pk(eiθ) − (B − 1)

)
−
(
(A + 1)pk(eiθ) − (A − 1)

)
h(z)

)}
̸= 0, (2.11)

for all z ∈ U and 0 ≤ θ < 2π. The coefficients of h(z) = z + b2z2 + · · · are given by (1.5).
The function pk(z) is defined in (1.8).

Proof. Assume that f(z) ∈ k − S
(t)
s T [A, B], then we have

zf ′(z)
ft(z)

≺ (A + 1) pk(z) − (A − 1)
(B + 1) pk(z) − (B − 1)

, (z ∈ U)

if and only if
zf ′(z)
ft(z)

̸= (A + 1) pk(eiθ) − (A − 1)
(B + 1) pk(eiθ) − (B − 1)

, (2.12)

for all z ∈ U , and 0 ≤ θ < 2π. The condition (2.12), can be written as
1
z

{
zf ′(z)

[
(B + 1) pk(eiθ) − (B − 1)

]
− ft(z)

[(
(A + 1) pk(eiθ) − (A − 1)

)]}
̸= 0. (2.13)

On the other hand it is well known that

zf ′(z) = f(z) ∗ z

(1 − z)2 . (2.14)

And from (1.4), we have

ft(z) = z +
∞∑

n=2
anbnzn = (f ∗ h) (z), (2.15)

where

h(z) = z +
∞∑

n=2
bnzn, (2.16)

and where bn is given by (1.5). Substituting (2.14) and (2.15) in (2.13), we can get (2.11).
This completes the proof of the Theorem 2.12. �

Putting t = 1, in Theorem 2.12, we can obtain Corollary 2.13.

Corollary 2.13. A function f(z) ∈ k − ST [A, B], if and only if

1
z

{
f(z) ∗

(
z

(1 − z)2

(
1 + B

(
eiθ
))

− z

(1 − z)

(
1 + A

(
eiθ
)))}

̸= 0,

for all z ∈ U .

Putting k = 0, in Theorem 2.12, we can obtain Corollary 2.14.

Corollary 2.14. A function f(z) ∈ S
(t)
s [A, B], if and only if

1
z

{
f(z) ∗

(
z

(1 − z)2

(
1 + B

(
eiθ
))

− h(z)
(
1 + A

(
eiθ
)))}

̸= 0,

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (2.16).
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Theorem 2.15. For k ≥ 0, −1 ≤ B < A ≤ 1. A function f(z) ∈ k − UC
(t)
s V [A, B], if

and only if

1
z

{
f(z) ∗

(
z (B + 1) pk(eiθ) − (B − 1)

(1 − z)2 −
(
(A + 1) pk(eiθ) − (A − 1)

)
h(z)

)′}
̸= 0,

where z ∈ U , 0 ≤ θ < 2π.

Proof. The proof of Theorem 2.15 , is similar to that of Theorem 2.12 , so the detail are
omitted. �

2.3. Coefficient inequalities
Finally, we provide some coefficient inequalities which are sufficient for a function to be

in the class k − S
(t)
s T [A, B] or to be in the class k − UC

(t)
s V [A, B].

Theorem 2.16. Assume that t is a positive integer, −1 ≤ B < A ≤ 1 and k ≥ 0. If a
function f(z) ∈ A of the form (1.1) satisfies the condition

∞∑
n=1

2 (k + 1) tn + |(tn (B + 1) + (B − A))| |atn+1|

+
∞∑

n=2,n ̸=lt+1
2 (k + 1) n + |(n (B + 1))| |an| < |B − A| , (2.17)

then f(z) is in the class k − S
(t)
s T [A, B].

Proof. Assume that (2.17) holds, then it suffices to show that

k

∣∣∣∣∣∣
(B − 1) zf ′(z)

ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

− 1

∣∣∣∣∣∣− Re

(B − 1) zf ′(z)
ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

− 1

 < 1.

We have

k

∣∣∣∣∣∣
(B − 1) zf ′(z)

ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

− 1

∣∣∣∣∣∣− Re

(B − 1) zf ′(z)
ft(z) − (A − 1)

(B + 1) zf ′(z)
ft(z) − (A + 1)

− 1


≤ (k + 1)

∣∣∣∣ (B − 1)zf ′(z) − (A − 1)ft(z)
(B + 1)zf ′(z) − (A + 1)ft (z)

− 1
∣∣∣∣

= 2 (k + 1)
∣∣∣∣ ft(z) − zf ′(z)
(B + 1)zf ′(z) − (A + 1)ft(z)

∣∣∣∣
≤ 2 (k + 1)

∑∞
n=2 |bn − n| |an|

|B − A| −
∑∞

n=2 |n (B + 1) − (A + 1) bn| |an|
.

The last expression is bounded by 1, if
∞∑

n=2
(2 (k + 1) (n − bn) + |n (B + 1) − (A + 1) bn|) |an| < |B − A| . (2.18)

Using (1.5) in (2.18) we have
∞∑

n=1
2 (k + 1) tn + |(tn (B + 1) + (B − A))| |atn+1|

+
∞∑

n=2,n̸=lt+1
2 (k + 1) n + |(n (B + 1))| |an| < |B − A| ,

and this completes the proof of Theorem 2.16. �
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Putting t = 1, in Theorem 2.16, we can obtain the following Corollary 2.17, which is
comparable to a result obtained by Noor and Malik in [8].

Corollary 2.17. A function f(z) ∈ A of the form (1.1) is in the class k − ST [A, B], if it
satisfies the condition

∞∑
n=2

{2 (k + 1) (n − 1) + |(n (B + 1) + (A + 1))|} |an| < |B − A| ,

where k ≥ 0, −1 ≤ B < A ≤ 1.

Putting k = 0, in Theorem 2.16, we can obtain the following Corollary 2.18, which is
comparable to a result obtained by Kwon and Sim in [6].

Corollary 2.18. A function f(z) ∈ A of the form (1.1) is in the class S
(t)
s T [A, B], if it

satisfies the condition
∞∑

n=1
(tn + (A − B) (tn + 1)) |atn+1| +

∞∑
n=2,n ̸=lt+1

(1 + |B|) n |an| < |B − A| ,

where −1 ≤ B < A ≤ 1.

Putting t = 1, A = 1 and B = −1 in Theorem 2.16, we can obtain Corollary 2.19, which
is comparable to a result obtained by Kanas and Wiśniowska in [4].

Corollary 2.19. A function f(z) ∈ A of the form (1.1) is in the class k−ST , if it satisfies
the condition ∞∑

n=2
{n + k (n − 1)} |an| < 1, k > 0.

Putting t = 1, A = 1 − 2α, B = −1 with 0 ≤ β < 1 in Theorem 2.16, we can obtain
Corollary 2.20, which is comparable to a result obtained by Shams et al. in [11].

Corollary 2.20. A function f(z) ∈ A of the form (1.1) is in the class SD (k, β), if it
satisfies the condition

∞∑
n=2

{n (k + 1) − (k + β)} |an| < 1 − β,

where 0 ≤ β < 1. then k ≥ 0.

Putting t = 1, A = 1 − 2β, B = −1 with 0 ≤ β < 1 and k = 0 in Theorem 2.16, we
can obtain Corollary 2.21, below which is comparable to the known result obtained by
Silverman in [13].

Corollary 2.21. A function f(z) ∈ A of the form (1.1) is in the class S∗ (β), if it satisfies
the conditions ∞∑

n=2
{n − β} |an| < 1 − β,

where 0 ≤ β < 1.

Theorem 2.22. A function f(z) ∈ A and of the form (1.1), is in the class k−UC
(t)
s V [A, B],

if it satisfies the condition
∞∑

n=2
[2 (k + 1) tn + |nt (B + 1) + (B − A)|] (tn + 1) |atn+1|

+
∞∑

n=2,n ̸=lt+1
(2 (k + 1) n + n (B + 1)) |nan| < |B − A| ,

where −1 ≤ B < A ≤ 1 and k ≥ 0.
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Proof. The proof of Theorem 2.22, is similar to that of Theorem 2.16, so the detail are
omitted. �
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