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Abstract
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi
quotient ring U and extended centroid C and f(r1, . . . , rn) be a multilinear polynomial over
C, which is not central valued on R. Suppose that F and G are two nonzero generalized
derivations of R such that G ̸= Id (identity map) and

F (f(r)2) = F (f(r))G(f(r)) + G(f(r))F (f(r))
for all r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:

(1) there exist λ ∈ C and µ ∈ C such that F (x) = λx and G(x) = µx for all x ∈ R
with 2µ = 1;

(2) there exist λ ∈ C and p, q ∈ U such that F (x) = λx and G(x) = px + xq for all
x ∈ R with p + q ∈ C, 2(p + q) = 1 and f(x1, . . . , xn)2 is central valued on R;

(3) there exist λ ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = λx for all x ∈ R
with f(x1, . . . , xn)2 is central valued on R;

(4) there exist λ ∈ C and a, b ∈ U such that F (x) = ax + xb and G(x) = λx for all
x ∈ R with a + b ∈ C, 2λ = 1 and f(x1, . . . , xn)2 is central valued on R;

(5) there exist a, p ∈ U such that F (x) = xa and G(x) = px for all x ∈ R, with
(p − 1)a = −ap ∈ C and f(x1, . . . , xn)2 is central valued on R;

(6) there exist a, q ∈ U such that F (x) = ax and G(x) = xq for all x ∈ R with
a(q − 1) = −qa ∈ C and f(x1, . . . , xn)2 is central valued on R.
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1. Introduction
Throughout this paper R always denotes an associative prime ring with extended cen-

troid C and U its Utumi ring of quotients. By a derivation, we mean an additive mapping
d : R → R such that d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. By a generalized
derivation, we mean an additive mapping F : R → R such that F (xy) = F (x)y + xd(y)
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holds for all x, y ∈ R, where d is a derivation of R. Thus any derivation is a generalized
derivation.

A famous result proved by Posner [17, Theorem 2] states that if a prime ring R has
a nonzero derivation d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative.
Brešar [2] studied the case d(x)x−xδ(x) ∈ Z(R) for all x ∈ R, where d and δ are two deriva-
tions of a prime ring R and obtained that either d = δ = 0 or R is commutative. After
that in [13] Lee and Shiue extended the previous result considering multilinear polynomial.
They proved that if d(f(x1, . . . , xn))f(x1, . . . , xn) − f(x1, . . . , xn)δ(f(x1, . . . , xn)) ∈ Z(R)
for all x1, . . . , xn ∈ I, where I is a nonzero ideal of R and f(x1, . . . , xn) is a non-central
multilinear polynomial over C, then either d = 0 = δ or d = −δ and f(x1, . . . , xn)2 is
central valued on RC unless char(R) = 2 and dimCRC = 4.

Recently in [4], De Filippis et al. showed that if d and δ are nonzero derivations of R
and f(x1, . . . , xn) is a multilinear polynomial over C, non-central valued on R, such that
[d(f(x1, . . . , xn)), δ(f(x1, . . . , xn))] ∈ Z(R) for all x1, . . . , xn ∈ R, then {d, δ} are linear
dependent over C unless when char(R) = 2 and dimCRC = 4.

More recently, Fosner and Vukman [7] proved that if R is a prime ring of char(R) ̸= 2,
F1 and F2 are generalized derivations of R such that F1(x)F2(x) + F2(x)F1(x) = 0 for all
x ∈ R then either F1 = 0 or F2 = 0. In [18], Rania and Scudo extended this result to
the case G(f(x1, . . . , xn))d(f(x1, . . . , xn)) + d(f(x1, . . . , xn))G(f(x1, . . . , xn)) = 0 for all
x1, . . . , xn ∈ R, where G is a generalized derivation of R and d is any derivation of R, and
proved that either G = 0 or d = 0, except when d is inner, there exists λ ∈ C such that
G(x) = λx, ∀x ∈ R and f(x1, . . . , xn)2 is central valued on R. Recently, in [19] Yarbil
and De Filippis studied the same situation, when G and d are two skew derivations of R
associated to the same automorphism α and obtained that either G = 0 or d = 0. Here
skew derivation means an additive mapping d : R → R such that d(xy) = d(x)y+α(x)d(y)
for all x, y ∈ R, where α is an automorphism of R.

Recently, Dhara et al. [6] extended the above result by taking generalized derivation F
in the place of derivation d, that is,

F (f(x1, . . . , xn))G(f(x1, . . . , xn)) + G(f(x1, . . . , xn))F (f(x1, . . . , xn)) = 0,

where F, G are two generalized derivations of R. In the present paper, we consider the
case F (f(r)2) = F (f(r))G(f(r)) + G(f(r))F (f(r)) for all r = (r1, . . . , rn) ∈ Rn, where F
and G are two generalized derivations of R. If G = Id (identity map), then F becomes
a derivation of R. So our interest is to study the case when G ̸= Id. More precisely, we
prove the following theorem.

Main Theorem. Let R be a noncommutative prime ring of characteristic different from
2 with Utumi quotient ring U and extended centroid C, and f(r1, . . . , rn) be a multilinear
polynomial over C, which is not central valued on R. Suppose that F and G are two
nonzero generalized derivations of R such that G ̸= Id (identity map) and

F (f(r)2) = F (f(r))G(f(r)) + G(f(r))F (f(r))

for all r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:
(1) there exist λ ∈ C and µ ∈ C such that F (x) = λx and G(x) = µx for all x ∈ R

with 2µ = 1;
(2) there exist λ ∈ C and p, q ∈ U such that F (x) = λx and G(x) = px + xq for all

x ∈ R with p + q ∈ C, 2(p + q) = 1, and f(x1, . . . , xn)2 is central valued on R;
(3) there exist λ ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = λx for all x ∈ R

with f(x1, . . . , xn)2 is central valued on R;
(4) there exist λ ∈ C and a, b ∈ U such that F (x) = ax + xb and G(x) = λx for all

x ∈ R with a + b ∈ C, 2λ = 1 and f(x1, . . . , xn)2 is central valued on R;
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(5) there exist a, p ∈ U such that F (x) = xa and G(x) = px for all x ∈ R, with
(p − 1)a = −ap ∈ C and f(x1, . . . , xn)2 is central valued on R;

(6) there exist a, q ∈ U such that F (x) = ax and G(x) = xq for all x ∈ R with
a(q − 1) = −qa ∈ C and f(x1, . . . , xn)2 is central valued on R.

Following corollaries are straightforward.

Corollary 1.1. Let R be a noncommutative prime ring of characteristic different from
2 with Utumi quotient ring U and extended centroid C, and f(r1, . . . , rn) be a multilin-
ear polynomial over C, which is not central valued on R. Suppose that F is a nonzero
generalized derivation of R and d is a nonzero derivation of R such that

F (f(r)2) = F (f(r))d(f(r) + d(f(r))F (f(r)
for all r = (r1, . . . , rn) ∈ Rn. Then there exist λ ∈ C and p ∈ U such that F (x) = λx and
d(x) = [p, x] for all x ∈ R with f(x1, . . . , xn)2 is central valued on R.

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different from
2 with Utumi quotient ring U and extended centroid C, and f(r1, . . . , rn) be a multilin-
ear polynomial over C, which is not central valued on R. Suppose that G is a nonzero
generalized derivation of R such that

G(f(r))f(r) + f(r)G(f(r)) = f(r)2

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:
(1) there exists µ ∈ C such that G(x) = µx for all x ∈ R with 2µ = 1;
(2) there exist p, q ∈ U such that G(x) = px + xq for all x ∈ R with p + q ∈ C,

2(p + q) = 1 and f(x1, . . . , xn)2 is central valued on R.

2. Main results
Lemma 2.1. [1, Lemma 3] Let R be a noncommutative prime ring with Utumi quotient
ring U and extended centroid C, and f(x1, . . . , xn) be a multilinear polynomial over C,
which is not central valued on R. Suppose that there exist a, b, c, q ∈ U such that (af(r) +
f(r)b)f(r) − f(r)(cf(r) + f(r)q) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the
following holds:

(1) a, q ∈ C and q − a = b − c ∈ C;
(2) f(x1, . . . , xn)2 is central valued on R and q − a = b − c ∈ C;
(3) char(R) = 2 and R satisfies s4.

In particular, from above Lemma, we have the followings:

Lemma 2.2. Let R be a noncommutative prime ring of characteristic different from 2
with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be a multilinear
polynomial over C, which is not central valued on R. Suppose that there exist a, b, q ∈ U
such that af(r)2 + f(r)2q + f(r)bf(r) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the
following holds:

(1) a, q ∈ C and q + a = −b ∈ C;
(2) f(x1, . . . , xn)2 is central valued on R and q + a = −b ∈ C;
(3) char(R) = 2 and R satisfies s4.

Lemma 2.3. [6, Corollary 2.14] Let R be a prime ring of characteristic different from 2,
with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be a multilinear
polynomial over C. Suppose that d and δ are two nonzero derivations of R such that

d(f(r))δ(f(r)) + δ(f(r))d(f(r)) = 0
for all r = (r1, . . . , rn) ∈ Rn. Then f(x1, . . . , xn) is central valued on R.



743

Lemma 2.4. [6, Lemma 2.10] Let R be a prime ring of characteristic different from 2,
U its Utumi quotient ring, and C its extended centroid, and f(x1, . . . , xn) a multilinear
polynomial over C which is non-central valued on R. Suppose that a, b, p ∈ U such that

af(r)2b + f(r)pf(r) = 0

for all r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:
(1) a ∈ C and ab = −p ∈ C;
(2) b ∈ C and ab = −p ∈ C;
(3) f(x1, . . . , xn)2 is central valued on R and ab = −p ∈ C.

Lemma 2.5. [5, Lemma 1.5] Let C be an infinite field and m ≥ 2. If A1, . . . , Ak are not
scalar matrices in Mm(C) then there exists some invertible matrix P ∈ Mm(C) such that
any matrices PA1P −1, . . . , PAkP −1 have all nonzero entries.

Proposition 2.6. Let R = Mm(C) be the ring of all m × m matrices over the infinite
field C, f(x1, . . . , xn) a non-central multilinear polynomial over C and a, b, p, q ∈ R. If

(af(r)2 + f(r)2b) = (af(r) + f(r)b)(pf(r) + f(r)q) + (pf(r) + f(r)q)(af(r) + f(r)b)

for all r = (r1, . . . , rn) ∈ Rn, then either a or p and either b or q are scalar matrices.

Proof. By our assumption, R satisfies the generalized polynomial identity

(af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
= (af(r1, . . . , rn) + f(r1, . . . , rn)b)(pf(r1, . . . , rn) + f(r1, . . . , rn)q)
+(pf(r1, . . . , rn) + f(r1, . . . , rn)q)(af(r1, . . . , rn) + f(r1, . . . , rn)b). (2.1)

We assume first that a /∈ Z(R) and p /∈ Z(R). Now we shall show that this case leads to
a contradiction.
Since a /∈ Z(R) and p /∈ Z(R), by Lemma 2.5 there exists a C-automorphism ϕ of Mm(C)
such that a1 = ϕ(a), p1 = ϕ(p) have all nonzero entries. Clearly a1, p1, b1 = ϕ(b) and
q1 = ϕ(q) must satisfy the condition (2.1). Without loss of generality we may replace
a, b, p, q with a1, b1, p1, q1, respectively.
Here ekl denotes the usual matrix unit with 1 in (k, l)-entry and zero elsewhere. Since
f(x1, . . . , xn) is not central, by [14] (see also [15]), there exist u1, . . . , un ∈ Mm(C) and γ ∈
C −{0} such that f(u1, . . . , un) = γekl, with k ̸= l. Moreover, since the set {f(r1, . . . , rn) :
r1, . . . , rn ∈ Mm(C)} is invariant under the action of all C-automorphisms of Mm(C), then
for any i ̸= j there exist r1, . . . , rn ∈ Mm(C) such that f(r1, . . . , rn) = eij . Hence from
(2.1) we have

0 = (aeij + eijb)(peij + eijq) + (peij + eijq)(aeij + eijb) (2.2)

and then left multiplying by eij , it follows eijaeijpeij+eijpeijaeij = 0, which gives 2ajipji =
0, that is a contradiction, since a and p have all nonzero entries. Thus we conclude that
either a or p is central.

Similarly, we can prove that b or q is central.
Therefore we conclude that either a or p and either b or q are scalar matrices. �

Proposition 2.7. Let R = Mm(C) be the ring of all matrices over the field C with
char(R) ̸= 2 and f(x1, . . . , xn) a non-central multilinear polynomial over C and a, b, p, q ∈
R. If

(af(r)2 + f(r)2b) = (af(r) + f(r)b)(pf(r) + f(r)q) + (pf(r) + f(r)q)(af(r) + f(r)b)

for all r = (r1, . . . , rn) ∈ Rn, then either a or p and either b or q are scalar matrices.

Proof. If one assumes that C is infinite, then the conclusions follow by Proposition 2.6.
Now let C be finite and K be an infinite field which is an extension of the field C. Let
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R = Mm(K) ∼= R ⊗C K. Notice that the multilinear polynomial f(r1, . . . , rn) is central
valued on R if and only if it is central valued on R. Consider the generalized polynomial

P (r1, . . . , rn) = (af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
−(af(r1, . . . , rn) + f(r1, . . . , rn)b)(pf(r1, . . . , rn) + f(r1, . . . , rn)q)
−(pf(r1, . . . , rn) + f(r1, . . . , rn)q)(af(r1, . . . , rn) + f(r1, . . . , rn)b) (2.3)

which is a generalized polynomial identity for R.
Moreover, it is a multi-homogeneous of multi-degree (2, . . . , 2) in r1, . . . , rn.
Hence the complete linearization of P (r1, . . . , rn) is a multilinear generalized polynomial
Θ(r1, . . . , rn, y1, . . . , yn) in 2n indeterminates, moreover

Θ(r1, . . . , rn, r1, . . . , rn) = 2nP (r1, . . . , rn).

Clearly the multilinear polynomial Θ(r1, . . . , rn, y1, . . . , yn) is a generalized polynomial
identity for R and R too. Since char(C) ̸= 2 we obtain P (r1, . . . , rn) = 0 for all r1, . . . , rn ∈
R and then conclusion follows from Proposition 2.6. �

In the above Proposition, replacing bp = b′ and qa = q′, it is straightforward to prove
the following:

Corollary 2.8. Let R = Mm(C) be the ring of all matrices over the field C with char(R) ̸=
2 and f(x1, . . . , xn) a non-central multilinear polynomial over C and a, b, p, q, b′, q′ ∈ R. If

(af(r)2 + f(r)2b) = af(r)(pf(r) + f(r)q) + f(r)b′f(r) + f(r)bf(r)q

+pf(r)(af(r) + f(r)b) + f(r)q′f(r) + f(r)qf(r)b
for all r = (r1, . . . , rn) ∈ Rn, then either a or p and either b or q are scalar matrices.

Lemma 2.9. Let R be a noncommutative prime ring of characteristic different from 2
with Utumi quotient ring U and extended centroid C, and f(r1, . . . , rn) be a multilinear
polynomial over C, which is not central valued on R. Suppose that F and G ( ̸= Id, identity
map) are two nonzero inner generalized derivations of R such that

F (f(r)2) = F (f(r))G(f(r)) + G(f(r))F (f(r))

for all r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:
(1) there exist λ ∈ C and µ ∈ C such that F (x) = λx and G(x) = µx for all x ∈ R

with 2µ = 1;
(2) there exist λ ∈ C and p, q ∈ U such that F (x) = λx and G(x) = px + xq for all

x ∈ R with p + q ∈ C, 2(p + q) = 1 and f(x1, . . . , xn)2 is central valued on R;
(3) there exist λ ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = λx for all x ∈ R

with f(x1, . . . , xn)2 is central valued on R;
(4) there exist λ ∈ C and a, b ∈ U such that F (x) = ax + xb and G(x) = λx for all

x ∈ R with a + b ∈ C, 2λ = 1 and f(x1, . . . , xn)2 is central valued on R;
(5) there exist a, p ∈ U such that F (x) = xa and G(x) = px for all x ∈ R, with

(p − 1)a = −ap ∈ C and f(x1, . . . , xn)2 is central valued on R;
(6) there exist a, p ∈ U such that F (x) = ax and G(x) = xq for all x ∈ R with

a(q − 1) = −qa ∈ C and f(x1, . . . , xn)2 is central valued on R.

Proof. Since F and G are inner generalized derivations of R, there exist a, b, p, q ∈ U
such that F (x) = ax + xb and G(x) = px + xq for all x ∈ R. Then by hypothesis, we have

h(r1, . . . , rn) = (af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
−(af(r1, . . . , rn) + f(r1, . . . , rn)b)(pf(r1, . . . , rn) + f(r1, . . . , rn)q)

−(pf(r1, . . . , rn) + f(r1, . . . , rn)q)(af(r1, . . . , rn) + f(r1, . . . , rn)b) = 0 (2.4)
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for all r1, . . . , rn ∈ R. Since R and U satisfy the same generalized polynomial identities
(GPI) (see [3]), U satisfies h(r1, . . . , rn) = 0 that is

h(r1, . . . , rn) = (af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
−(af(r1, . . . , rn) + f(r1, . . . , rn)b)(pf(r1, . . . , rn) + f(r1, . . . , rn)q)

−(pf(r1, . . . , rn) + f(r1, . . . , rn)q)(af(r1, . . . , rn) + f(r1, . . . , rn)b) = 0 (2.5)

for all r1, . . . , rn ∈ U . Suppose that h(r1, . . . , rn) is a trivial GPI for U and C{r1, . . . , rn},
the free C-algebra in noncommuting indeterminates r1, . . . , rn. Then, h(r1, . . . , rn) is zero
element in T = U ∗C C{r1, . . . , rn}. This implies that {a, p, 1} is linearly independent over
C. Let αp + βa + γ = 0, where α, β, γ ∈ C. If α = 0, then β ̸= 0 and hence a ∈ C. If
α ̸= 0, then p = λa + µ for some λ, µ ∈ C. In this case our identity reduces to

(af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
−(af(r1, . . . , rn) + f(r1, . . . , rn)b)((λa + µ)f(r1, . . . , rn) + f(r1, . . . , rn)q)

−((λa + µ)f(r1, . . . , rn) + f(r1, . . . , rn)q)(af(r1, . . . , rn)
+f(r1, . . . , rn)b) = 0 (2.6)

in T . If a is not in C, then from above we have

af(r1, . . . , rn)((f(r1, . . . , rn) − 2λaf(r1, . . . , rn) − µf(r1, . . . , rn)
−f(r1, . . . , rn)q − λf(r1, . . . , rn)b) = 0 (2.7)

in T , that is

af(r1, . . . , rn)(2λaf(r1, . . . , rn) + f(r1, . . . , rn)(µ + q + λb − 1)) = 0. (2.8)

This implies that λa ∈ C and hence p = (λa + µ) ∈ C. Thus we conclude that either
a ∈ C or p ∈ C. Similarly, we can prove that either b ∈ C or q ∈ C.

Next suppose that h(r1, . . . , rn) is a non-trivial GPI for U . In case C is infinite, we have
h(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U ⊗C C, where C is the algebraic closure of C. Since
both U and U ⊗C C are prime and centrally closed [8, Theorems 2.5 and 3.5], we may
replace R by U or U ⊗C C according to C finite or infinite. Then R is centrally closed over
C and h(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R. By Martindale’s theorem [16], R is then a
primitive ring with nonzero socle soc(R) and with C as its associated division ring. Then,
by Jacobson’s theorem [10, p.75], R is isomorphic to a dense ring of linear transformations
of a vector space V over C. Assume first that V is finite dimensional over C, that is,
dimCV = m. By density of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is not central
valued on R, R must be noncommutative and so m ≥ 2. In this case, by Proposition 2.7,
we get that either a or p and either b or q are in C. If V is infinite dimensional over C,
then for any e2 = e ∈ soc(R) we have eRe ∼= Mt(C) with t =dimCV e. In this case we
prove that either a or p are in C. To prove this, assume that a /∈ C and p /∈ C. Then
there exist h1, h2 ∈ soc(R) such that [a, h1] ̸= 0 and [p, h2] ̸= 0. By Litoff’s Theorem [9],
there exists idempotent e ∈ soc(R) such that ah1, h1a, ph2, h2p, h1, h2 ∈ eRe. We have
eRe ∼= Mk(C) with k =dimCV e. Since R satisfies generalized identity

e{af(er1e, . . . , erne)2 + f(er1e, . . . , erne)2b}e

= e{(af(er1e, . . . , erne) + f(er1e, . . . , erne)b) (2.9)
.(pf(er1e, . . . , erne) + f(er1e, . . . , erne)q)
+(pf(er1e, . . . , erne) + f(er1e, . . . , erne)q)
.(af(er1e, . . . , erne) + f(er1e, . . . , erne)b)}e, (2.10)
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the subring eRe satisfies
eaef(r1, . . . , rn)2 + f(r1, . . . , rn)2ebe

= eaef(r1, . . . , rn)(epef(r1, . . . , rn) + f(r1, . . . , rn)eqe)
+f(r1, . . . , rn)ebpef(r1, . . . , rn) + f(r1, . . . , rn)ebef(r1, . . . , rn)eqe

+epef(r1, . . . , rn)(eaef(r1, . . . , rn) + f(r1, . . . , rn)ebe)
+f(r1, . . . , rn)eqaef(r1, . . . , rn) + f(r1, . . . , rn)eqef(r1, . . . , rn)ebe. (2.11)

Then by Corollary 2.8, either eae or epe are central elements of eRe. Thus either
ah1 = (eae)h1 = h1eae = h1a or ph2 = (epe)h2 = h2(epe) = h2p, a contradiction. Hence
either a or p are in C.

Similarly, we can prove that either b or q are in C.
Thus we have the following cases:

Case 1: Let a, b ∈ C.
In this case, by (2.5) U satisfies

(a + b)f(r1, . . . , rn)2 − (a + b)(f(r1, . . . , rn)(pf(r1, . . . , rn) + f(r1, . . . , rn)q) −
(pf(r1, . . . , rn) + f(r1, . . . , rn)q)(a + b)f(r1, . . . , rn) = 0. (2.12)

Since F ̸= 0, a + b ̸= 0. Hence from above
f(r1, . . . , rn)2 − (f(r1, . . . , rn)pf(r1, . . . , rn) + f(r1, . . . , rn)2q))
−(pf(r1, . . . , rn)2 + f(r1, . . . , rn)qf(r1, . . . , rn)) = 0. (2.13)

This implies
pf(r1, . . . , rn)2 + f(r1, . . . , rn)2(q − 1) + f(r1, . . . , rn)(p + q)f(r1, . . . , rn) = 0,

for all r1, . . . , rn ∈ U. Then by Lemma 2.2, one of the following holds:
(1) p, q − 1 ∈ C and p + q − 1 = −(p + q) ∈ C. In this case we have F (x) = ax + xb =

(a + b)x and G(x) = px + xq = (p + q)x for all x ∈ R, with 2(p + q) = 1 which is
our conclusion (1).

(2) f(x1, . . . , xn)2 is central valued on R and p+q −1 = −(p+q) ∈ C. In this case, we
have F (x) = ax + xb = (a + b)x and G(x) = px + xq for all x ∈ R with p + q ∈ C
and 2(p + q) = 1, which is our conclusion (2).

Case 2: Let p ∈ C and q ∈ C.
Then by (2.5), U satisfies

(af(r1, . . . , rn)2 + f(r1, . . . , rn)2b)
−(af(r1, . . . , rn) + f(r1, . . . , rn)b)(p + q)f(r1, . . . , rn)

−(p + q)f(r1, . . . , rn)(af(r1, . . . , rn) + f(r1, . . . , rn)b) = 0. (2.14)
This can be written as

a(1 − p − q)f(r1, . . . , rn)2 + f(r1, . . . , rn)2b(1 − p − q)
−(f(r1, . . . , rn)(a + b)(p + q)f(r1, . . . , rn) = 0 (2.15)

for all r1, . . . , rn ∈ U . Then by Lemma 2.2, one of the following holds:
(1) a(1 − p − q), b(1 − p − q) ∈ C and a(1 − p − q) + b(1 − p − q) = (a + b)(p + q) ∈ C.

Since G ̸= Id, p + q ̸= 1 and hence a, b ∈ C. Then conclusion follows by Case 1.

(2) f(x1, . . . , xn)2 is central valued on R and a(1−p−q)+b(1−p−q) = (a+b)(p+q) ∈ C.
This implies 2(p+q)(a+b) = a+b. Since G ̸= 0, 0 ̸= p+q ∈ C. Hence (a+b)(p+q) ∈
C yields a+b ∈ C. Thus 2(p+q)(a+b) = a+b gives (2(p+q)−1)(a+b) = 0. This
implies either a + b = 0 or 2(p + q) = 1. When a + b = 0, F (x) = ax + xb = [a, x]
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for all x ∈ R, G(x) = px + xq = (p + q)x for all x ∈ R, which is conclusion (3).
On the other hand when 2(p + q) = 1, then F (x) = ax + xb for all x ∈ R with
a + b ∈ C and G(x) = px + xq = (p + q)x for all x ∈ R with 2(p + q) = 1, which is
our conclusion (4).

Case 3: Let a ∈ C and q ∈ C.
Then by (2.5), we have

f(r1, . . . , rn)2(a + b)
= f(r1, . . . , rn)(a + b)(p + q)f(r1, . . . , rn) + (p + q)f(r1, . . . , rn)2(a + b),

for all r1, . . . , rn ∈ U .
This can be written as

(p + q − 1)f(r1, . . . , rn)2(a + b) + f(r1, . . . , rn)(a + b)(p + q)f(r1, . . . , rn) = 0.

Then by Lemma 2.4, one of the following holds:
(1) p + q − 1, (a + b)(p + q) ∈ C and (p + q − 1)(a + b) + (a + b)(p + q) = 0. This

implies p + q ∈ C. Since G ̸= 0, p + q ̸= 0 and hence 0 ̸= a + b ∈ C. Hence
(p + q − 1)(a + b) + (a + b)(p + q) = 0 yields 2(p + q) = 1. Thus in this case we
have F (x) = ax + xb = x(a + b) = (a + b)x and G(x) = px + xq = (p + q)x for all
x ∈ R with 2(p + q) = 1, which is our conclusion (1).

(2) a + b, (a + b)(p + q) ∈ C and (p + q − 1)(a + b) + (a + b)(p + q) = 0. Since a ∈ C,
a + b ∈ C yields b ∈ C. Since F ̸= 0, a + b ̸= 0 and thus (a + b)(p + q) ∈ C implies
p+q ∈ C. Hence, (p+q−1)(a+b)+(a+b)(p+q) = 0 yields 2(p+q) = 1. Thus in this
case we have F (x) = ax + xb = x(a + b) = (a + b)x and G(x) = px + xq = (p + q)x
for all x ∈ R with 2(p + q) = 1, which is our conclusion (1).

(3) f(x1, . . . , xn)2 is central valued on R and (p + q − 1)(a + b) = −(a + b)(p + q) ∈ C.
Thus in this case we have F (x) = ax + xb = x(a + b) for all x ∈ R and G(x) =
px + xq = (p + q)x for all x ∈ R, which is our conclusion (5).

Case 4: Let b ∈ C and p ∈ C.
Then by (2.5), we have

(a + b)f(r1, . . . , rn)2

= (a + b)f(r1, . . . , rn)2(p + q) + f(r1, . . . , rn)(p + q)(a + b)f(r1, . . . , rn),

for all r1, . . . , rn ∈ U . This can be written as

(a + b)f(r1, . . . , rn)2(p + q − 1) + f(r1, . . . , rn)(p + q)(a + b)f(r1, . . . , rn) = 0

for all r1, . . . , rn ∈ U . Then by Lemma 2.4, one of the following holds:
(1) a + b, (p + q)(a + b) ∈ C and (a + b)(p + q − 1) + (p + q)(a + b) = 0. Since b ∈ C,

a + b ∈ C yields a ∈ C. Since F ̸= 0, a + b ̸= 0 and thus (p + q)(a + b) ∈ C implies
p + q ∈ C. Hence, (a + b)(p + q − 1) + (p + q)(a + b) = 0 yields 2(p + q) = 1.
Thus in this case we have F (x) = (a + b)x and G(x) = (p + q)x for all x ∈ R with
2(p + q) = 1, which is our conclusion (1).

(2) p + q − 1, (p + q)(a + b) ∈ C and (a + b)(p + q − 1) + (p + q)(a + b) = 0. Since p ∈ C,
p + q − 1 ∈ C yields q ∈ C. Since G ̸= 0, p + q ̸= 0 and thus (p + q)(a + b) ∈ C
implies a + b ∈ C. Hence, (a + b)(p + q − 1) + (p + q)(a + b) = 0 yields 2(p + q) = 1.
Thus in this case we have F (x) = (a + b)x and G(x) = (p + q)x for all x ∈ R with
2(p + q) = 1, which is our conclusion (1).

(3) f(x1, . . . , xn)2 is central valued on R and (a + b)(p + q − 1) = −(p + q)(a + b) ∈ C.
Thus in this case we have F (x) = ax + xb = (a + b)x for all x ∈ R and G(x) =
px + xq = x(p + q) for all x ∈ R, which is our conclusion (6).

�
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Proof of the Main Theorem. In [12, Theorem 3], Lee proved that every generalized
derivation g on a dense right ideal of R can be uniquely extended to a generalized derivation
of U and thus can be assumed to be defined on the whole U with the form g(x) =
ax + d(x) for some a ∈ U and d is a derivation of U . In the light of this, we may
assume that there exist a, b ∈ U and derivations d, δ of U such that F (x) = ax + d(x) and
G(x) = bx + δ(x). Since I, R, and U satisfy the same generalized polynomial identities
(see [3]) as well as the same differential identities (see [14]), without loss of generality, to
prove our results, we may assume F (f(x1, . . . , xn))2 = F (f(x1, . . . , xn))G(f(x1, . . . , xn))+
G(f(x1, . . . , xn))F (f(x1, . . . , xn)) for all x1, . . . , xn ∈ U .

If F and G both are inner generalized derivations of R, then by Lemma 2.9 we obtain
our conclusions. Thus we assume that not both of F and G are inner. Hence U satisfies

af(x1, . . . , xn)2 + d(f(x1, . . . , xn)2)
= (af(x1, . . . , xn) + d(f(x1, . . . , xn)))(bf(x1, . . . , xn) + δ(f(x1, . . . , xn)))
+(bf(x1, . . . , xn) + δ(f(x1, . . . , xn)))(af(x1, . . . , xn) + d(f(x1, . . . , xn))) (2.16)

for all (x1, . . . , xn ∈ U , where d, δ are two derivations on U not both are inner.

Case 1: Assume that d and δ are C-dependent modulo inner derivations of U i.e.,
αd + βδ = adq, where α, β ∈ C.

Subcase 1.i: Suppose α = 0. Then δ(x) = [p, x], where p = β−1q. Obviously d is not an
inner derivation of U . From (2.16) we obtain that U satisfies

af(x1, . . . , xn)2 + d(f(x1, . . . , xn))f(x1, . . . , xn) + f(x1, . . . , xn)d(f(x1, . . . , xn))
= (af(x1, . . . , xn) + d(f(x1, . . . , xn)))(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])
+(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])(af(x1, . . . , xn) + d(f(x1, . . . , xn)). (2.17)

Let fd(x1, . . . , xn) be the polynomials obtained from f(x1, . . . , xn) replacing each coeffi-
cients ασ with d(ασ). Then we have

d(f(x1, . . . , xn)) = fd(x1, . . . , xn) +
∑

i

f(x1, . . . , d(xi), . . . , xn).

Thus (2.17) gives

af(x1, . . . , xn)2 + (fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))f(x1, . . . , xn)

+f(x1, . . . , xn)(fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))

= (af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))

·(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)]) + (bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])
·(af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑
i

f(x1, . . . , d(xi), . . . , xn)). (2.18)

Since d is outer derivation, by Kharchenko’s theorem [11], we have that U satisfies
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af(x1, . . . , xn)2 + (fd(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))f(x1, . . . , xn)

+f(x1, . . . , xn)((fd(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))

= (af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))

·(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)]) + (bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])
·(af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑
i

f(x1, . . . , yi, . . . , xn)). (2.19)

Particularly, U satisfies the blended component,

∑
i

f(x1, . . . , yi, . . . , xn)f(x1, . . . , xn) + f(x1, . . . , xn)
∑
i

f(x1, . . . , yi, . . . , xn)

=
∑
i

f(x1, . . . , yi, . . . , xn)(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])

+(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])
∑
i

f(x1, . . . , yi, . . . , xn). (2.20)

In particular, for y1 = x1, y2 = y3 = . . . = yn = 0, we get from above

2f(x1, . . . , xn)2 = f(x1, . . . , xn)(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])
+(bf(x1, . . . , xn) + [p, f(x1, . . . , xn)])f(x1, . . . , xn), (2.21)

which gives

(b + p)f(x1, . . . , xn)2 − f(x1, . . . , xn)2(p + 2) + f(x1, . . . , xn)bf(x1, . . . , xn) = 0.

Then by Lemma 2.2, one of the following holds:
(1) b + p, p + 2, b ∈ C and (b + p) − (p + 2) = −b. This implies p ∈ C and b = 1. Thus

in this case we have G(x) = bx + [p, x] = x for all x ∈ R, a contradiction.
(2) f(x1, . . . , xn)2 is central valued on R and (b + p) − (p + 2) = −b ∈ C. This gives

b = 1. In this case, we have from (2.17) that U satisfies

af(x1, . . . , xn)2 + d(f(x1, . . . , xn)2)
= (af(x1, . . . , xn) + d(f(x1, . . . , xn)))(f(x1, . . . , xn) + [p, f(x1, . . . , xn)])

+(f(x1, . . . , xn) + [p, f(x1, . . . , xn)])(af(x1, . . . , xn)
+d(f(x1, . . . , xn))). (2.22)

This implies

0 = af(x1, . . . , xn)[p, f(x1, . . . , xn)] + d(f(x1, . . . , xn))[p, f(x1, . . . , xn)]
+f(x1, . . . , xn)af(x1, . . . , xn) + [p, f(x1, . . . , xn)]af(x1, . . . , xn)
+[p, f(x1, . . . , xn)]d((f(x1, . . . , xn)).

It gives

0 = af(x1, . . . , xn)[p, f(x1, . . . , xn)]
+(fd(x1, . . . , xn) +

∑
i

f(x1, . . . , yi, . . . , xn))[p, f(x1, . . . , xn)]

+f(x1, . . . , xn)af(x1, . . . , xn) + [p, f(x1, . . . , xn)]af(x1, . . . , xn)
+[p, f(x1, . . . , xn)](fd(x1, . . . , xn) +

∑
i

f(x1, . . . , yi, . . . , xn)).
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In particular, U satisfies the blended component

∑
i

f(x1, . . . , yi, . . . , xn)[p, f(x1, . . . , xn)]

+[p, f(x1, . . . , xn)]
∑

i

f(x1, . . . , yi, . . . , xn) = 0. (2.23)

Putting yi = [q, xi] in (2.23), where q /∈ C, we have that U satisfies

[q, f(x1, . . . , xn)][p, f(x1, . . . , xn)] + [p, f(x1, . . . , xn)][q, f(x1, . . . , xn)] = 0.(2.24)

Then by Lemma 2.3, p ∈ C. Thus G(x) = bx + [p, x] = x for all x ∈ R, a contradiction.

Subcase 1.ii: Suppose α ̸= 0, then αd + βδ = adq gives d = µδ + adc for some µ ∈ C and
c ∈ U . Then we can assume that δ is not an inner derivation, otherwise d and δ both will
be inner derivations, a contradiction. From (2.16), U satisfies

af(x1, . . . , xn)2 + µδ(f(x1, . . . , xn)2) + [c, f(x1, . . . , xn)2]

=
(

af(x1, . . . , xn) + µδ(f(x1, . . . , xn)) + [c, f(x1, . . . , xn)]
)

·
(

bf(x1, . . . , xn) + δ(f(x1, . . . , xn))
)

+
(

bf(x1, . . . , xn) + δ(f(x1, . . . , xn))
)

·
(

af(x1, . . . , xn) + µδ(f(x1, . . . , xn))

+[c, f(x1, . . . , xn)]
)

,

that is,

af(x1, . . . , xn)2 + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn))f(x1, . . . , xn)

+µf(x1, . . . , xn)(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn)) + [c, f(x1, . . . , xn)2]

=
(

af(x1, . . . , xn) + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn)) + [c, f(x1, . . . , xn)]
)

·
(

bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn)
)

+
(

bf(x1, . . . , xn) + (f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn))
)

·
(

af(x1, . . . , xn) + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn))

+[c, f(x1, . . . , xn)]
)

.
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Then by Kharchenko’s theorem [11], we have that U satisfies

af(x1, . . . , xn)2 + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))f(x1, . . . , xn)

+µf(x1, . . . , xn)(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn)) + [c, f(x1, . . . , xn)2]

=
(

af(x1, . . . , xn) + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn)) + [c, f(x1, . . . , xn)]
)

·
(

bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn)
)

+
(

bf(x1, . . . , xn) + (f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))
)

·
(

af(x1, . . . , xn) + µ(f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))

+[c, f(x1, . . . , xn)]
)

. (2.25)

In particular, for x1 = 0, U satisfies

0 = µf(x1, . . . , xn)2 + µf(x1, . . . , xn)2, (2.26)

that is, 2µf(x1, . . . , xn)2 = 0. Since char(R) ̸= 2, U satisfies µf(x1, . . . , xn)2 = 0. This
implies that either µ = 0 or f(x1, . . . , xn)2 = 0. Now f(x1, . . . , xn)2 = 0, implies
f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U , a contradiction. Hence we have µ = 0. Thus
(2.25) reduces to

af(x1, . . . , xn)2 =
(

af(x1, . . . , xn) + [c, f(x1, . . . , xn)]
)

·
(

bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn)
)

+
(

bf(x1, . . . , xn) + (f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . , xn))
)

·
(

af(x1, . . . , xn) + [c, f(x1, . . . , xn)]
)

.

In particular, U satisfies blended components

(af(x1, . . . , xn) + [c, f(x1, . . . , xn)])
∑
i

f(x1, . . . , yi, . . . , xn)

+
∑
i

f(x1, . . . , yi, . . . , xn)(af(x1, . . . , xn) + [c, f(x1, . . . , xn)]) = 0. (2.27)

For y1 = x1 and y2 = y3 =, . . . , = yn = 0, U satisfies

(af(x1, . . . , xn) + [c, f(x1, . . . , xn)])f(x1, . . . , xn)
+f(x1, . . . , xn)(af(x1, . . . , xn) + [c, f(x1, . . . , xn)]) = 0, (2.28)

that is

(a + c)f(x1, . . . , xn)2 − f(x1, . . . , xn)2c + f(x1, . . . , xn)af(x1, . . . , xn) = 0,

for all x1, . . . , xn ∈ U . Then by Lemma 2.2, we have one of the followings:
(1) a + c, c, a ∈ C and 2a = 0. Thus a = 0. In this case F (x) = ax + [c, x] = 0 for all

x ∈ U , a contradiction.
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(2) f(x1, . . . , xn)2 is central valued on R and a ∈ C with 2a = 0. This implies a = 0.
Then by (2.27), U satisfies

[c, f(x1, . . . , xn)]
∑

i

f(x1, . . . , yi, . . . , xn)

+
∑

i

f(x1, . . . , yi, . . . , xn)[c, f(x1, . . . , xn)] = 0.

Replacing yi with [q, xi] for some q /∈ C, we get from above that U satisfies

[c, f(x1, . . . , xn)][q, f(x1, . . . , xn)] + [q, f(x1, . . . , xn)][c, f(x1, . . . , xn)] = 0. (2.29)

By Lemma 2.3, c ∈ C. Then F (x) = ax + [c, x] = 0 for all x ∈ R, a contradiction.

Case 2: Let d and δ be linearly C-independent modulo inner derivations of U . Then from
(2.16), U satisfies

af(x1, . . . , xn)2 + (fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))f(x1, . . . , xn)

+f(x1, . . . , xn)(fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))

= (af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn))

·(bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn))

+(bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑
i

f(x1, . . . , δ(xi), . . . , xn))

·(af(x1, . . . , xn) + (fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn)) (2.30)

for all x1, . . . , xn ∈ U . Since d and δ are not inner, by Kharchenko’s theorem [11], U
satisfies

af(x1, . . . , xn)2 + (fd(x1, . . . , xn) +
∑

i

f(x1, . . . , yi, . . . , xn))f(x1, . . . , xn)

+f(x1, . . . , xn)(fd(x1, . . . , xn) +
∑

i

f(x1, . . . , yi, . . . , xn))

= (af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑

i

f(x1, . . . , yi, . . . , xn))

·(bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑

i

f(x1, . . . , zi, . . . , xn))

+(bf(x1, . . . , xn) + f δ(x1, . . . , xn) +
∑

i

f(x1, . . . , zi, . . . , xn))

·(af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑

i

f(x1, . . . , yi, . . . , xn)).

In particular, for x1 = 0, z1 = y1, we get 2f(y1, x2, . . . , xn)2 = 0 implying f(x1, . . . , xn)2 =
0 for all x1, . . . , xn ∈ U . It yields f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U , a contradiction.
Thus the proof of the theorem is completed.
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