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1. Introduction
Consider the nonlinear n-th order delay differential equation of the form(

a(t)
(
[x(t) − p(t)x(σ(t))](n−1)(t)

)α)′
+ q(t)xβ(τ(t)) = 0, t ≥ t0, (1.1)

where n is even and t0 > 0 is fixed. It will be assumed that
(i) α, β are the ratios of positive odd integers such that α ≥ β;

(ii) a ∈ C1([t0, ∞),R), a(t) > 0, a′(t) ≥ 0.
(iii) p, q ∈ C([t0, ∞),R), 0 < p(t) ≤ p0 < 1, q(t) ≥ 0 and q(t) is not identically zero for

all large t;
(iv) τ, σ ∈ C1([t0, ∞),R), τ(t) ≤ t, σ(t) ≤ t, τ ′(t) ≥ 0, σ′(t) > 0, and limt→∞ τ(t) =

limt→∞ σ(t) = ∞.
By a solution of Eq. (1.1) we mean a function x(t) ∈ Cn−1([Tx, ∞),R), for some tx ≥

t0, which has the property a(t)([x(t) − p(t)x(σ(t))](n−1))α ∈ C1([tx, ∞),R) and satisfies
Eq. (1.1) on [tx, ∞). We consider only those solutions x(t) of (1.1) which satisfy sup{x(t) :
t ≥ T} > 0 for all T ≥ tx. Such a solution of (1.1) is said to be oscillatory if it has
arbitrarily large zeros, and otherwise it is called nonoscillatory. Equation (1.1) is said
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to be oscillatory if all its solutions are oscillatory. We note that the equation is called
half-linear when α = β, and sub-half-linear when α > β.

Recently, the oscillation of equations of the form (1.1) with linear and nonlinear neutral
term, has been considered in [1–8,11,13–15,17,20,21], where it is usually assumed that

−∞ < −p0 ≤ p(t) ≤ 0.

We note that there are only few results dealing with the oscillation of differential equations
having a nonpositive neutral term. For an important initial contribution for such equations
we refer in particular to [20], where equation (1.1) was studied in the special case n = 2
and α = 1 under the assumptions

0 ≤ p(t) ≤ p0 < 1, τ(t) = t − τ0, σ(t) = t − σ0.

Further contributions for (1.1) and its particular cases can be found in [5, 11, 15, 17, 21],
where the authors established sufficient conditions ensuring that every solution x of (1.1)
is either oscillatory or converges to zero as t → ∞. Unfortunately, these results cannot
distinguish solutions with different behaviors.

In this article, mainly motivated by the ideas [5, 8, 9, 19], we present new oscillation
theorems for n-th order nonlinear differential equations with a nonpositive neutral term
of type (1.1). The obtained results improve and correlate many of the known results in
the literature even for the case p(t) = 0. The method we employ here in this work has
naturally a partial resemblance for the second-order case [9], however the results and most
arguments are quite different due to higher-order nature of (1.1).

In the sequel, we let

A(v, u) =
∫ v

u

1
a1/α(s)

ds, v ≥ u ≥ t0,

and assume that
A(t, t0) → ∞ as t → ∞. (1.2)

It turns out that the improper integral∫ ∞

t0
q(s) ds (1.3)

plays a key role in our study. In case it is convergent we define

Q(t) =
∫ ∞

t
q(s)ds, t ≥ t0.

The results of this paper are presented in a form which is essentially new. The paper
is organized as follows. In Section 2 we provide some useful lemmas to be relied upon
in the proofs of the theorems in Section 3. The last section is devoted to the illustrative
examples. It may be of interest to study equation (1.1) with β > α.

2. Lemmas
All the functional inequalities are assumed to hold eventually, that is, they are satisfied

for all t large enough.
In what follows, we put

y(t) = x(t) − p(t)x(σ(t)). (2.1)

Lemma 2.1 (See [12]). Let u be a positive and k-times differentiable function on an
interval [ta, ∞) with its k-th derivative u(k) nonpositive on [ta, ∞) and not identically zero
on any subarray of [ta, ∞). Then there exists a tb ≥ ta and an integer l, 0 ≤ l ≤ k − 1,
with k + l odd so that{

(−1)l+ju(j) > 0 on [tb, ∞) (j = l, . . . , k − 1),
u(i) > 0 on [tb, ∞) (i = 1, . . . , l − 1), when l > 1.
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Lemma 2.2 (See [16]). Let u be as in Lemma 2.1 and tb ≥ ta be assigned to u by Lemma
2.1. Moreover, let θ be a number with 0 < θ < 1. Then there exists a tc ≥ tb/θ such that

u(θt) ≥ [θ(1 − θ)]k−1

(k − 1)!
tk−1u(k−1)(t), for all t ≥ tc. (2.2)

In addition, when limt→∞ u(t) ̸= 0, for some tc ≥ ta we have

u(t) ≥ θ

(k − 1)!
tk−1u(k−1)(t), for every t ≥ tc. (2.3)

Lemma 2.3 (See [18]). Let u(t) be a bounded k-times differentiable function on an interval
[ta, ∞) with

u(t) > 0 (−1)ku(k)(t) ≥ 0 for t ≥ ta.

Then there exists a tb ≥ ta such that
(−1)iu(i)(t) ≥ 0 for every t ≥ tb, i = 1, 2, . . . , k

and

u(ξ) ≥ (−1)k−1u(k−1)(η)
(k − 1)!

(η − ξ)k−1 for every t ≥ tb, tb ≤ ξ ≤ η. (2.4)

Lemma 2.4. Assume that x(t) is a positive solution of (1.1) for t ≥ t1, t1 ∈ [t0, ∞).
Then there exists t2 ∈ [t1, ∞) such that the corresponding function y(t) defined by (2.1)
satisfies one of the following two cases:

y(t) > 0, y′(t) > 0, y(n−1)(t) > 0,
(
a(t)

(
y(n−1)(t)

)α)′
≤ 0, (C1)

y(t) < 0, (−1)i+1y(i)(t) > 0, i = 1, 2, . . . , n,
(
a(t)

(
y(n−1)(t)

)α)′
≤ 0, (C2)

for t ≥ t2.

Proof. Let x(t) be a positive solution of (1.1), say x(t), x(τ(t)) > 0, and x(σ(t)) > 0 for
t ≥ t1. By Eq. (1.1), we have(

a(t)
(
y(n−1)(t)

)α)′

= − q(t)xβ(τ(t)) ≤ 0, t ≥ t1. (2.5)

Hence a(t)
(
y(n−1)(t)

)α
is nonincreasing and of one sign eventually. That is, there exists

t2 ≥ t1 such that either y(n−1)(t) > 0 or y(n−1)(t) < 0 for t ≥ t2. We claim that
y(n−1)(t) > 0 for t ≥ t2. To see this, suppose on the contrary that y(n−1)(t) < 0 for t ≥ t2.
Then

a(t)
(
y(n−1)(t)

)α
≤ a(t2)

(
y(n−1)(t2)

)α
=: c < 0, t ≥ t2.

Integrating the above inequality, we see that

y(n−2)(t) ≤ y(n−2)(t2) + c1/α
∫ t

t2
a−1/α(s)ds.

By virtue of (1.2), we have limt→∞ y(t) = −∞. Since y(t) > −x(σ(t)), x(t) must be
unbounded, and so there exists a sequence {Tk}∞

k=0 such that x(Tk) = max{x(s) : T0 ≤
s ≤ Tk} with limk→∞ Tk = ∞ and limk→∞ x(Tk) = ∞. Furthermore, since σ(Tk) > T0 for
all k sufficiently large and σ(t) ≤ t, we see that

x(σ(Tk)) ≤ max{x(s) : T0 ≤ s ≤ Tk} = x(Tk).
Therefore, for all large k,

y(Tk) = x(Tk) − p(Tk)x(σ(Tk)) ≥ (1 − p(Tk))x(Tk) > 0
which contradicts the fact that limt→∞ y(t) = −∞. Hence, we have proven the claim. In
view of (2.5) and (ii), we also have y(n)(t) < 0 for t ≥ t2. There are two possibilities to
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consider: either y(t) > 0 or y(t) < 0 for t ≥ t2. If y(t) > 0, then it follows from Lemma
2.1 that y(t) satisfies (C1). If y(t) < 0, then we see that

x(t) ≤ p(t)x(σ(t)) ≤ x(σ(t)), (2.6)

which implies that x(t) and hence y(t) are bounded functions. Using Lemma 2.3 with
u = −y, we obtain that y(t) satisfies (C2). The proof is complete. �

Remark 2.1. For any positive solution x(t) of (1.1), the case (C2) is completely caused
by presence of the neutral term. If p(t) = 0, such a case never occurs.

3. Oscillation of solutions
For the sake of clarity, we put

k(t) =
{

1, when β = α
c (tn−2A(t, t1))α−β, when β < α,

l(t) =


(

41−n

(n−1)!

)β
, when β = α

c̃ (tn−2A(t, t1))α−β, when β < α,

and

R(t) = τn−2(t)τ ′(t)
(a(τ(t))k(t))1/α

, h(t) = σ−1(τ(t))

where c, c̃, t1 ∈ R.

We start with the following theorem.

Theorem 3.1. Let conditions (i)–(iv) and (1.2) hold, and let the integral (1.3) be con-
vergent. If there exists a function ρ ∈ C1([t0, ∞), (0, ∞)) with ρ′(t) ≥ 0 such that, for all
sufficiently large c, c̃, t1, and for some T > t1,

lim sup
t→∞

[
ρ(t)Q(t) +

∫ t

T

[
ρ(s)q(s) − µ

a(τ(s))k(s)(ρ′(s))α+1

(τn−2(s)τ ′(s)ρ(s))α

]
ds

]
= ∞, (3.1)

where

µ = αα

(1 + α)α+1

(2(n − 2)!
β 42−n

)α

,

and

lim sup
t→∞

a−1(h(t))
∫ t

h(t)

(
(h(t) − h(s))n−1

(n − 1)!

)β
q(s)

pβ(h(s))
ds

 >

{
1 when β = α,

0 when β < α,
(3.2)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists t2 ∈ [t1, ∞) such
that the function y defined by (2.1) satisfies either (C1) or (C2) for t ≥ t2. We will consider
both cases separately.

At first, assume that (C1) holds. In view of (2.5) and x(t) ≥ y(t), we may write that(
a(t)

(
y(n−1)(t)

)α)′
≤ −q(t)yβ(τ(t)) ≤ −q(t)yβ (τ(t)/2) . (3.3)

Define

w(t) := ρ(t)a(t)(y(n−1)(t))α

yβ(τ(t)/2)
, t ≥ t2. (3.4)
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Therefore, w(t) > 0. By differentiating (3.4) and using (3.3), we get

w′(t) =
(

ρ(t)
yβ(τ(t)/2)

)′
(a(t)(y(n−1)(t))α +

(
a(t)(y(n−1)(t))α

)′ ρ(t)
yβ(τ(t)/2)

≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t) − βρ(t)a(t)(y(n−1)(t))αy′(τ(t)/2)τ ′(t)

2yβ+1(τ(t)/2)
. (3.5)

Employing the inequality (2.2) in Lemma 2.2 with u = y′, it follows that there exists
t3 ≥ t2 such that

y′ (τ(t)/2) ≥ M1/2τn−2(t)y(n−1)(τ(t)), M1/2 = 42−n

(n − 2)!
, for t ≥ t3. (3.6)

Using (3.5), (3.6) and the fact that a1/α(t)y(n−1)(t) is decreasing, we have

w′(t) ≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w(t) −
βM1/2

2
τn−2(t)τ ′(t)ρ(t)

a1/α(τ(t))

(
a1/α(t)y(n−1)(t)

)α+1

yβ+1(τ(t)/2)
, (3.7)

and hence

w′ ≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w −
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))ρ(t))1/α
y(β−α)/α(τ(t)/2)w(α+1)/α(t).

If β = α, then y(β−α)/α(t) = 1 while for the case β < α and since a(t)(y(n−1)(t))α is
decreasing, there exists a constant c1 > 0 such that

a(t)(y(n−1)(t))α ≤ c1 for t ≥ t2,

which by integrating (n − 1)-times from t2 to t leads to
y(t) ≤ c2tn−2A(t, t2) for t ≥ t4

for some constant c2 > 0 and t4 ≥ t2 . Then,

y(β−α)/α(τ(t)/2) ≥ y(β−α)/α(t) ≥ c
(β−α)/α
2 t(n−2)(β−α)/αA(β−α)/α(t, t2).

Using the two cases and the definition of k(t) in (3.7), we get

w′ ≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w −
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))k(t)ρ(t))1/α
w(α+1)/α. (3.8)

Setting

B1 := ρ′(t)
ρ(t)

, B2 :=
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))k(t)ρ(t))1/α

and employing the inequality

B1u − B2u(1+α)/α ≤ αα

(1 + α)α+1 Bα+1
1 B−α

2 ,

(see [10]), we have from (3.8),

w′(t) ≤ −ρ(t)q(t) + µ
a(τ(t))k(t)

(τn−2(t)τ ′(t))α

(ρ′(t))α+1

ρα(t)
.

Integrating this inequality from t4 to t we get

w(t) ≤ w(t4) −
∫ t

t4

[
ρ(s)q(s) − µ

a(τ(s))k(s)
(τn−2(s)τ ′(s))α

(ρ′(s))α+1

ρα(s)

]
ds. (3.9)

On the other hand, it follows from (3.5) that

w′(t) ≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w(t), (3.10)
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that is, (
w(t)
ρ(t)

)′
≤ −q(t).

Integrating the above inequality from t to t′, we get

w(t′)
ρ(t′)

≤ w(t)
ρ(t)

−
∫ t′

t
q(s)ds,

and hence
w(t) ≥ ρ(t)Q(t). (3.11)

By using (3.11) in (3.9), we find that

w(t4) ≥ ρ(t)Q(t) +
∫ t

t4

[
ρ(s)q(s) − µ

a(τ(s))k(s)
(τn−2(s)τ ′(s))α

(ρ′(s))α+1

ρα(s)

]
ds,

which clearly contradicts (3.1).
Consider now case (C2). If we put z = −y, then Eq. (1.1) gives(

a(t)
(
z(n−1)(t)

)α)′
≥ q(t)xβ(τ(t)).

Using the inequality z(t) ≤ p(t)x(σ(t)), we get(
a(t)

(
z(n−1)(t)

)α)′
≥ q(t)

pβ(h(t))
zβ(h(t)). (3.12)

In view of Lemma 2.3, we have

z(h(s)) ≥ (h(t) − h(s))n−1

(n − 1)!

(
−z(n−1)(h(t))

)
, t ≥ s ≥ t2. (3.13)

Integrating (3.12) from h(t) to t and using (3.13) in the resulting inequality gives

(
−z(n−1)(h(t))

)α
≥

(
−z(n−1)(h(t))

)β

a(h(t))

∫ t

h(t)

q(s)
pβ(h(s))

(
(h(t) − h(s))n−1

(n − 1)!

)β

ds

or (
−z(n−1)(h(t))

)α−β
≥ a−1(h(t))

∫ t

h(t)

q(s)
pβ(h(s))

(
(h(t) − h(s))n−1

(n − 1)!

)β

ds,

which contradicts (3.2). Note that z(n−1)(t) → 0 as t → ∞ is used when α > β. �

Remark 3.1. As it will be shown in Example 4.1, the additional term ρ(t)Q(t) in (3.1)
plays an important role in case

lim sup
t→∞

∫ t

T

[
ρ(s)q(s) − αα

(1 + α)α+1

(2(n − 2)!
β 42−n

)α a(τ(s))k(s)(ρ′(s))α+1

(τn−2(s)τ ′(s)ρ(s))α

]
ds < ∞. (3.14)

Theorem 3.2. Let conditions (i)–(iv), (1.2), and (3.2) hold. If the integral (1.3) is
divergent, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists
t2 ∈ [t1, ∞) such that y satisfies either (C1) or (C2) for t ≥ t2.

If we assume that (C1) holds, then by letting t′ → ∞ in (3.10), we obtain a contradiction
to the positivity of w(t). The rest of the proof is similar to that of Theorem 3.1 and hence
is omitted. �

In the following results we use different approaches to replace (3.1) in Theorem 3.1.
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Theorem 3.3. Assume that α ≤ 1 and the hypotheses of Theorem 3.1 hold with (3.1)
replaced by

lim sup
t→∞

[
ρ(t)Q(t) +

∫ t

T

(
ρ(s)q(s) − (n − 2)!

β42−n

(a(τ(s))k(s))1/α (ρ′(s))2

τn−2(s)τ ′(s)ρ(s)Q(1−α)/α(s)

)
ds

]
= ∞.

(3.15)
Then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists
t2 ∈ [t1, ∞) such that y satisfies either (C1) or (C2) for t ≥ t2. If (C1) holds, then as in
the proof of Theorem 3.1, we obtain (3.8). Thus, in view of (3.11), we have

w′(t) ≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w(t) −
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))k(t)ρ(t))1/α
w(α+1)/α(t)

≤ −ρ(t)q(t) + ρ′(t)
ρ(t)

w(t) −
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))k(t))1/α ρ(t)
Q(1−α)/α(t)w2(t)

≤ −ρ(t)q(t) + 1
βM1/2

(a(τ(t))k(t))1/α (ρ′(t))2

τn−2(t)τ ′(t)ρ(t)Q(1−α)/α(t)
.

The rest of the proof is similar to that of Theorem 3.1 and hence is omitted. �
Theorem 3.4. Assume that the hypotheses of Theorem 3.1 hold with (3.1) replaced by

lim inf
t→∞

( 1
Q(t)

∫ ∞

t
R(s)Q(α+1)/α(s)ds

)
>

α

(α + 1)(α+1)/α

2(n − 2)!
β42−n

. (3.16)

Then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) , say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists
t2 ∈ [t1, ∞) such that y satisfies either (C1) or (C2) for t ≥ t2. We will consider both cases
separately.

At first, assume that (C1) holds. Define w(t) as in (3.4) with ρ(t) = 1, i.e.,

w(t) := a(t)(y(n−1)(t))α

yβ(τ(t)/2)
, t ≥ t2. (3.17)

Then as in proof of Theorem 3.1 we get

w′(t) ≤ −q(t) −
βM1/2

2
τn−2(t)τ ′(t)

(a(τ(t))k(t))1/α
w(α+1)/α(t), (3.18)

Integrating (3.18) from t to t′, we see that

w(t′) ≤ w(t) −
∫ t′

t
q(s)ds −

βM1/2
2

∫ t′

t

τn−2(s)τ ′(s)
(a(τ(s))k(s))1/α

w(α+1)/α(s)ds

= w(t) −
∫ t′

t
q(s)ds −

βM1/2
2

∫ t′

t
R(s)w(α+1)/α(s)ds.

(3.19)

As in the proof of Theorem 3.1, we can show Q(t) < ∞ and
∫∞

t R(s)w(α+1)/α(s)ds < ∞
for t ≥ t3. Letting t′ → ∞ in (3.19), we get

w(t) ≥ Q(t) + β42−n

2(n − 2)!

∫ ∞

t
R(s)w(α+1)/α(s)ds. (3.20)

Hence,

w(t)
Q(t)

≥ 1 + β42−n

2(n − 2)!
1

Q(t)

∫ ∞

t
R(s)Q(α+1)/α(s)

(
w(s)
Q(s)

)(α+1)/α

ds. (3.21)
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Let λ = inf
t≥T

(w(t)/Q(t)). Then it is easy to see that λ ≥ 1 and, from (3.16) and (3.21),

λ ≥ 1 + α

(
λ

α + 1

)(α+1)/α

,

which contradicts the admissible value of λ and α.
Consider now case (C2). Similar to the proof of Theorem 3.1, one can get a contradiction

to (3.2). The proof is complete. �

Let the integral (1.3) be convergent. We define the sequence {un(t)}∞
n=0 by

u0(t) = Q(t),

un(t) =
∫ ∞

t
R(s)u(α+1)/α

n−1 (s)ds + u0(t), n = 1, 2, . . .

for t ≥ T ≥ t1 ≥ t0. By induction, it is easy to see that un(t) ≤ un+1(t), n = 0, 1, 2, . . ..

Theorem 3.5. Assume that the hypotheses of Theorem 3.1 except (3.1) hold. If there
exists any ui(t) such that

lim sup
t→∞

l(t)τβ(n−1)(t)
aβ/α(τ(t))

ui(t) > 1, (3.22)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) , say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists
t2 ∈ [t1, ∞) such that y satisfies either (C1) or (C2) for t ≥ t2.

If y(t) satisfies (C1), then as in the proof of Theorem 3.4, we get that (3.20) holds for
w(t) defined by (3.17) and some T ≥ t0 large enough, and thus, w(t) ≥ Q(t) = u0(t). By
induction, we can see that

w(t) ≥ ui(t), t ≥ T, i = 1, 2, . . . . (3.23)

Since the sequence {ui(t)}∞
i=0 is monotone increasing and bounded above, there exists a

function u(t) such that u(t) = limi→∞ ui(t). By Lebesgue monotone theorem,

u(t) = β42−n

2(n − 2)!

∫ ∞

t
R(s)u(α+1)/α(s)ds + Q(t).

On the other hand, using (2.2) and the fact that a(t)(y(n−1)(t))α is decreasing in (3.17),
we arrive at

1
w(t)

= yβ(τ(t)/2)
a(t)

(
y(n−1)(t)

)α
≥
(

41−n

(n − 1)!
τn−1(t)

)β
(
y(n−1)(τ(t))

)β

a(t)
(
y(n−1)(t)

)α
≥
(

41−n

(n − 1)!
τn−1(t)

)β
(
a1/α(t)y(n−1)(t)

)β−α

aβ/α(τ(t))
.

(3.24)

If α = β, then evidently
1

w(t)
≥ l(t)τβ(n−1)(t)

aβ/α(τ(t))
. (3.25)

If α > β, then there exists a constant c > 0 such that

a1/α(t)y(n−1)(t) ≤ c for t ≥ T .
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Thus, in view of (i) and (3.24), we also get (3.25). Combining (3.23) with (3.25), we see
that

l(t)τβ(n−1)(t)
aβ/α(τ(t))

ui(t) ≤ 1,

which contradicts (3.22).
Consider now case (C2). Similar to the proof of Theorem 3.1, one can get a contradiction

to (3.2). The proof is complete. �

Theorem 3.6. Assume that the hypotheses of Theorem 3.1 except (3.1) hold. If

lim sup
t→∞

τ (n−1)β(t)a−1(τ(t))Q(t) > ((n − 1)!)β , β = α (3.26)

and
lim sup

t→∞
τ (n−1)β(t)a−β/α(τ(t))Q(t) = ∞, β < α, (3.27)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. It follows from Lemma 2.4 that there exists t2 ∈ [t1, ∞) such
that y satisfies either (C1) or (C2) for t ≥ t2. We will consider both cases separately.

At first, assume that (C1) holds. Now, set w(t) := a(t)
(
y(n−1)(t)

)α
. Integrating (1.1)

from t to ∞ and using (iii), we have

w(t) ≥
∫ ∞

t
q(s)yβ(τ(s))ds ≥ Q(t)yβ(τ(t)). (3.28)

By virtue of Lemma 2.2, we get

y(τ(t)) ≥ θ

(n − 1)!
τn−1(t)y(n−1)(τ(t)) (3.29)

for every θ ∈ (0, 1). Thus,

w(t) ≥ Q(t)
(

θ

(n − 1)!

)β

τβ(n−1)(t)
(
y(n−1)(τ(t))

)β

= Q(t)
(

θ

(n − 1)!

)β τβ(n−1)(t)
aβ/α(τ(t))

wβ/α(τ(t)).
(3.30)

Using the fact that w(t) is decreasing, we have

w(t) ≥ Q(t)
(

θ

(n − 1)!

)β τβ(n−1)(t)
aβ/α(τ(t))

wβ/α(t)

or

w1−β/α(t) ≥ Q(t)
(

θ

(n − 1)!

)β τβ(n−1)(t)
aβ/α(τ(t))

.

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a contradiction to
(3.26). when β = α and (3.27) when β < α.

Consider now case (C2). Similar to the proof of Theorem 3.1, one can get a contradiction
to (3.2). The proof is complete. �

If the equation is not of neutral type, then we can drop the condition (3.2). Without
this condition, a weaker result is still possible.

Theorem 3.7. Assume that excluding (3.2) all the assumptions of Theorems 3.1 or The-
orems 3.3 or Theorems 3.4 or Theorems 3.5 or Theorems 3.6 hold. Then every solution
x(t) of (1.1) is oscillatory when p(t)=0, and is either oscillatory or approaches zero as t
tends to infinity.
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Proof. It suffices to show that if x(t) is a positive solution of (1.1) and y(t) satisfies (C2),
then lim

t→∞
x(t) = 0. To see this we observe from y(t) < 0 and (2.6) that x(t) is bounded.

Therefore, we have
lim sup

t→∞
x(t) = a ≥ 0.

We claim that a = 0. If not, then there exists a sequence {Tk}∞
k=0 such that limk→∞ Tk =

∞ and limk→∞ x(Tk) = a > 0. Let ϵ = a(1 − p0)/(2p0); then, for all large k, we have
x(σ(Tk)) < a + ϵ. From this and the definition of y, we obtain

0 ≥ lim
k→∞

y(Tk) ≥ lim
k→∞

x(Tk) − p0(a + ϵ) = a(1 − p0)
2

> 0,

a contradiction. Thus a = 0 and limt→∞ x(t) = 0. The proof is complete. �

4. Examples
The following examples are illustrative.

Example 4.1. Consider the neutral equation((
(x(t) − p0x(σ0t))′′′

)1/4
)′

+ q0
t7/4 x1/4

(
4
5 t
)

= 0, (4.1)

where q0 is a positive constant, σ0 ∈ (0, 1) and p0 ∈ [0, 1). If we set ρ(t) := t, then
condition (3.1) reduces to

q0 > 3
√

10/5 ≈ 1.89737, (4.2)

while (3.14) gives only q0 > 4
√

10/5 ≈ 2.52828. This improvement is due to the additional
term ρ(t)Q(t) in (3.1). In view of Theorems 3.1 and 3.7, we conclude that Eq. (1.1) is
oscillatory for p0 = 0. For p0 > 0 and, e.g., σ0 = 10/9, it is easy to see that h(t) =
(8/9)t ≤ t, and by Theorem 3.1, we have that Eq. (4.1) is oscillatory if

q0 > 122.8072 p0.

Example 4.2. Consider the neutral equation(
x(t) − 1

2x(t − π
2 )
)′′

+ 8x(t − π) = 0. (4.3)

Clearly, σ(t) = t − π
2 and σ−1(t) = t + π

2 , τ(t) = t − π, and so h(t) := t − π
2 . All conditions

of Theorem 3.2 are satisfied and hence the Eq. (4.3) is oscillatory. One such solution is
x(t) = sin(4t).

Example 4.3. Consider the neutral equation(((
x(t) − 1

2x(
√

t)
)′
)3
)′

+ q0
t5/4 + 1

x(t1/4) = 0, (4.4)

where q0 is a positive constant. Here, σ(t) =
√

t and σ−1(t) = t2, τ(t) = t1/4, and so
h(t) =

√
t. All conditions of Theorem 3.1 are satisfied for every q0 and all large t and

hence the Eq. (4.4) is oscillatory.
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