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Abstract

The paper considers the elastostatic axisymmetric problem for long nested thick-walled cylinders with two different
crack cases under uniform axial load according to the theory of elasticity. Both of cylinders have different elastic
constants. Using the Fourier and Hankel transform techniques, the problem is formulated in terms of an integral
equation which has a simple Cauchy kernel. The singular integral equation is solved numerically. Some results for the
stress intensity factors are presented graphically.
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Oz

Bu ¢alismada diizgiin yayili cekmeye maruz i¢ ice ge¢mis eksenel simetrik sonsuz uzun kalin borularda ¢atlak problemi
elastisite teorisine gore incelenmistir. Her iki borunun da elastik ozellikleri birbirinden farklidw. Fourier and Hankel
doniigiim tekniklerinden yararlanilarak problem basit Cauchy c¢ekirdegine sahip bir tekil integral denklem sistemine
indirgenmistir. Bu tekil integral sistemi, Gauss-Chebyshev integrasyon formiilii kullanilarak sayisal olarak
coziilmiistiir. Gerilme siddeti faktorleri hesaplanmis ve grafik olarak sunulmustur.
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1. Introduction

The problems of a cylinder containing a crack are
important for many engineering applications such
as pressure vessels, pipes and other cylindrical
containers. In this type of problems, axisymmetric
field of displacements is often used due to its
appropriateness. To find the maximum load to be
carried by the structure with a crack, the most
commonly used criteria is the stress intensity
factor for linear elastic materials.

Many studies were done in the field of cylinder
problems that contain cracks in the past. Sneddon
and Welch (1963) examined the distribution of
stress in a long and elastic cylinder containing a
penny-shaped crack. Sneddon and Tait (1963)
treated the effect of a penny shaped crack on
distribution of stress in a long circular cylinder.
Erdogan and Ratwani (1972) investigated the
fracture problem for various geometric shaped
shells with a through crack. Gupta (1974)
investigated the problem of a semi-infinite
cylinder with axial symmetry. Erdogan and Erdol
(1978) examined an axisymmetric ring shaped
internal and edge crack problem of hollow
circular cylinder. The problem of a long cylinder
containing a circumferential crack in axially
symmetric under various loadings was solved by
Nied and Erdogan (1983). The elastostatic
axisymmetric problem for a long thick-walled
cylinder containing an axisymmetric
circumferential crack has been investigated by
Birinci (2002), in which the crack was considered
to be internal or edge crack with cladding.
Altundag Artem and Gecit (2002) concerned with
the fracture of an axisymmetric hollow cylindrical
bar containing rigid inclusions. The cylinder is
under the action of uniformly distributed axial
tension applied at infinity. Toygar and Gegit
(2006) considered the problem of an axisymmetric
infinite cylinder with a ring shaped crack at z=0
and two ring shaped rigid inclusions with
negligible thickness at z==+L. The cylinder is
under the action of uniformly distributed axial
tension applied at infinity and its lateral surface is
free of fraction. The elastostatic axisymmetric
problem for a long thick walled cylinder
containing internal crack with two cladding was
investigated by Birinci et al. (2006). Aydin and
Altundag Artem (2008) examined the fracture of
an infinite thick-walled cylinder. The inner
surface of the cylinder is stress free and the outer
is rigidly fixed. The cylinder having a ring-shaped
crack located at the symmetry plane is subjected
to distributed compressive load on its surface.
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In this paper, the stress intensity factors at the
crack tips for nested thick pipes containing a ring-
shaped crack under axial symmetry are studied. In
Fig. 1, two nested hollow-circular cylinders are
shown. The cylinders are assumed to be elastic,
homogeneous, and isotropic. The inner cylinder
with inner radius ‘a’ and outer radius ‘e’ is
included a crack having axial symmetry. The
outer cylinder has inner radius ‘e’ and outer radius
‘b’. The system is subjected to uniformly
distributed tensile load. Two cases are considered:
a) the internal crack case (a < c <d <e), and (b)
the internal edge crack case (a=c <d <e). The
elastic properties of the cylinders 1 and 2 are
different. The effect of the body forces is
neglected.

Fig. 1. Geometry of the problem
2. Derivation of Integral Equation

The solution of the problem in Fig.1 is obtained
by using the superposition of solutions for two
different problems such that an axisymmetric
infinite thick pipe problem subjected to only a
uniform axial tensile loads with no crack, and an
axisymmetric infinite thick pipe problem
containing annular crack at z=0 symmetry plane.
Crack free surface can be obtained under the
influence of the uniform tensile load P, with the
superposition of these two cases (Gupta, 1974;
Erdol and Erdogan, 1978; Artem and Gecit,
2002). The main problem in this paper is actually
the second one, because the first part was solved
in the earlier studies (Erdol and Erdogan, 1978;
Gecit, 1986). For this purpose, the stresses f(r) are
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obtained from the solution of the first problem, U,(r,0)=0 a<r<c d<r<b (11)

then they are applied to the crack surfaces in

opposite direction as external load in the problem limz—)O& =0 a<r<c d<r<b(12)
(?r )

of axisymmetric hollow cylinder containing a
crack. Because the z=0 is symmetry plane, only

. a,
the interval 0 < z < oo is considered. Boundary lim, o —>=G(@) c<r<d (13)
conditions of the problem can be written as
follows: Compatibility condition related with
displacements through the z axis of points along
or.(a,z) =0 0<z<ow @) the crack can be written as follows,
,(a,z) =0 0<z<ow 2)
da
[ =%dr c<r<d (14)
ot (b,2) = 0 0<z<w (3 ©a
2.(b,z) =0 0<z<o @) V\{here U,, U, are r and _z components of the
displacement vector, respectively.
o,(r0)= Z,(r,0=0 a<r<b 5
ro(r,0) = 7;(r, 0) ©) The plane of the ring crack symmetry is taken as
(1) @ the plane where the z axis of the cylinder is zero.
Ur~(e,2) = U;" (e, 2) (6) The solution of the axial symmetry infinite
o @ cylinder without crack obtained by using the
U, (e,2) = U;" (e, 2) (7 Fourier and Hankel transforms is added to the
solution of the half space loaded (Erdol and
aﬁ)(e, z) = ag)(e, z) (8) Erdogan, 1978), which also has axial symmetry
characterizing the crack. Thus, the displacement
rﬁ? (e,2) = rﬁ? (e,2) (9) and_ the relevant stress components of problem for
cylinders 1 and 2 are obtained as follows,
02) (r,0)=—f(r) c<r<d (10) respectively.

1

Unry = =5 \/%ff & [A1(D (&) + Bi(9EL (&) — CL(HK1(&r) — D1(§ Ko ()] Cos(éz)d (15)

Une = 2 217 1090 + By (DI — W) + &4 ()] + (DKol +

(4v,—2-22)F ()

D&k (&) — 41 = v)Ko(EINSin(E)dE+ [ 2% [FH=T2E0 — FF(D) | ey (r)dA)  (16)

o7, (1, 2) = \Ef;”fz (A~ Eh (&) + h(&)/r] + By (D& — Do(&) — &rh(&n] -
CL(DIEKo (&) + Ky (&)/1] + Dy(HEN — 2v)Ko (&) — &Ky (&) Cos(&ndé+ [ A {EA |22

1]0(/17’)] + FWD)[Q2v, — Az + 1)]o(Ar) + (Az — 1)]1(/1r)//1r]} e *da 17)
0-91 (T', Z) =

ﬁfo” £ (ML 4 B (H &2 — DI (&) + (K, (&) /& + D1 (D - 21K (&)} Cos(&2)dé +
Iy 2 {-ED LU 1 P 2o (ar) + (1 — A2)], () JArl}e~*da (18)
0y, (r,z) =

I8 10180 + BL(O12Gw ~ DI&) + &h(@)] + (DKo (&) + Dy (&K () -

22— w)Ko(&)}Cos(&)dé+ [, 2° [AE(A) + F(D)(Az + 1 — 2vy)]e #], (Ar)d A (19)
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Ty = \/%fo‘” E{A(OL(E) + B (H2(1 — v)L (&) + &1y (&)] = CL(DK, (&) — D1 (D[ErKo(&r) —

2(1= Ky (EODSin(ED)dé + [} 2° DED) + F() 2z = 2vp)]e ™), (Ar)dA (20)
Urz (T, Z) =

- —ff” & [A2(D 1) + B2 (9 &1y (&) — C(HK1 (&) = Dy (§ &K (6r)]Cos(éz)dé (21)
Uy, (r,2) = \/%f;“ E (A (O (&) + By (41 — v) (&) + &L (&n)] + C(HKo(&r) +
DL(HLEK, (&) — 41 = v)Ko (E])Sin(Ez)dé (22)
o, (1, 7) =

ﬁf;” & {A:(D1-¢h (&) + h(&) [r] + By(DEA@ v, — Do(&r) — &rh(&n] - €29 [eKo (&) +

D] 4 D, (91— 2v5)Ko (&) — &Ky (&)} Cos(&z)de (23)

00, = (2178 [~ 4 5,92, - (&) + GOKL(E) /& + DA -

2)Ko(&)} Cos(&2)dé (24)
0, (r2) =

\/%fowéﬁ {4:(D (&) + B2 (O[2(2—v,) [ (&r) + &riy(&r)] + Co (Ko (&r) + Do ([ érK, (&r) —
2(2—)Ko(ér)]}Cos(2)dé (25)

Trzy = \/%fo"" & {A2(D 1 (&) + B(HI2(1 = v (&) + &rip ()] = C(K1 (&) + Dy (=Ko (&) +
2(1-v)K; (&r)}Sin(&z)dg (26)
In the expressions given above, I;,K; and J;(i = 0,1) are the modified Bessel functions of the first and

second kind, and the ith-order Bessel functions of the first kind, respectively. A4;(&), B;(&), C;i(&), D;(9),
E(A)and F(A)(i = 1,2) are unknown coefficients, and they are calculated from the boundary conditions

depending on G(r)_ By using boundary condition in Eq. (5), Eq. (27) is obtained.
Iy RIAER) = 2nF(D1(Ar) dA el

Assuming the term in parenthesis is equal to zero in Eq. (27), boundary condition Eg. (5) is constantly
verified such that

AE(A) —2uF(A) =0 (28)

From Eq. (13), Eq. (29) can be written following form:

Bt = 6(r) = L [ 2y Gr) 2 @)

where the function G(r) is unknown. Applying the inverse Henkel transform of both sides in Eqg. (29), Eq.
(30) can be expressed as:

PEQ) = 525 1 p6 O Gp) dp (30)
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Making use of Egs. (15)-(26) and Egs. (28)-(29), the boundary conditions Egs. (1)-(5) and Egs. (8)-(10) may
be written as:

A1 (O[-éali (Sa) + I, (Ea)] + SaB, (H[(2vy — 1)10(561) — &aly(&a)] — C1(H[&aKy(Sa) + K1 (Sa)] +
&aD;(H)[(1 - 2w)Ky(&a) — daK,(&a)] = § 2(1 )2 \/;f P{*f paly(E)Ko(Sp) +[2(1vy — 1) —

(a)?11 (Sa)Ky (Ep) + Salg(a)K: (Ep) — Epli (Sa)Ko (£0)}G (p)d (p) (31)
Al(f)ll(fa) + B1(H[2(1 — ») L (&a) + Saly(Sa)] — C1(HK (&a) + D1 (H[2(1 — v)K,(Sa)] =

o Frowe hﬁf pléalo(Ea)Ky(E0) — Eply (£a)Ko(£0)} G(p)d (o) (32)
A (O[=Eb1o(b) + 1, (ED)] + EbBL(D[(2v, — 1)1y (Eb) — b1y ()] — Co(H[EbKo (&) + K1 (Eb)] +
EbD,(H[(1 — 2v,)Ko(Eb) — EbK1(&b)] = 0 (33)
A3 (O1,(&b) + B2 (9[2(1 — vy) (D) + bIo(Eb)] — Co (K1 (ED) + Do (E)[2(1 — 2v3) Ky (b)) —
$bKo(&h)] =0 (34)

— () 204, (911 () + B (Déelo (&) — Cu(OKL (&) — Dy(DEeKo (20D} + (4 (D (&) +

B,(&éely(e) — CL(HK (Se) — D, (&) deKy(Se)} = gm\[ f P21 — v (Ep)Ky(&e) +
Sel, (Ep)Ko(&e) — $pK1(Se)lo(6p)3 G (p)d(p) (35)

— (Fr2) 214091 (&) + (A4 = m)Io(Ee) + Eely ()] + C1(HKo(&e) + Dy (D] ek (&) -
41— v)Ko(E)T} — [42(Dlo(e) + By (HA4(1 12h(E) + EL(E] + COK(E) +
D([-41 ~ 1Ko(E)ée + Ky(E)]) = ~ s [ pleets (o) (60) — 21 -
v (Ep)Ko(Se) — SpKo(Se)lo} G(0)d(p) (36)

41(9 [~ &lo(ge) + 252 + B, (D121 — DIp(e) + el (Ge)] — C1() [~ &Ko (de) + 552 +
£D,(HI(1 — 21Ky (e) — EeKy (£e)] — Ax(O) [~ &lo(e) + 22| — &8, (D[(2v, — Dio(e) -

gely (Z)] — Co(&) [ &Ko (80) + 22| — 2D, (H[(1 — 2v,)Ko(e) — deKy(£e)] =

— Lot A0 - 1 - (76K (@) — 2L (EK(8) + (K (E@)Io(E0) +

& peKo(&e)lo(£0)} G(p)d(p) (37)
A1 (DL (&e) + B (H[2(1 — v) i (Se) + Cely(Se)] — €1 (DK (Se) + D1(H[2(1 — vi)K (Se)] +

Dy (D[—GeKo(&e)] - Ax(1 (&) — B (DI2(1 = vy)hy(Ge) + Eelo(Ge)] + Co (DK, (ée) — Dy(H2(1 -
2Ha(E) - Ko(60)] = — 2B [ [ plEpks (8)I(0) — EpeKo(GOLENI GG (39

Now, substituting A;(&), B;(&), C;(&), D;(&), E(A) and F(4) given by Egs. (31)-(38) into the condition

Eqg. (10), one may obtain the following singular integral equation for G('0):

%,deG(P){/%r+K(p,T)}dp=—2(1E—_1@f(r) c<r<d (39)

The kernel K(p,7) in Eq. (39) is

M 1 M(p,
K(pr) =202+ 220 — 2pi(p,1) (40)
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E (Z) p>T
M(p,1) = o, 41
N CRE=E -
L(pr) = f0°°§{(2?=1 zia; ) lo(&r) + (Tfo1z:b:)[2(2 — v (&r) + &rL (&N + (T8-1 zici ) Ko (1) +
(Xe_1z:d;)[—2(2 — vKo(&r) + &Ky (&n)]}dé (42)

K and E are the complete elliptic integrals of the first and second kind in Eqg. (41),
respectively. 4,a;, b;, ¢;, d;, z;(i = 1,...,6) in Eq. (42) are described in Appendix A. The singular integral
equation given by Eq. (39) has a simple Cauchy type singularity. From Eq. (14), Eq. (39) must be solved
under the following single-valuedness condition

d

JSGwdp=o. (43)

i i 1 1
3. Solution of the Integral Equation ?=1Z{q-—zk +K(z; — Zk)} G(z) =
3.1. Internal Crack Case _lewf(Zk) (k=1,...,n—1) (49)
Referring to Fig. 1, if the crack is not opened, n _
ie,a<c and d <e, the kernel function is i=1ZG(Ti) =0 (50)
always finite. In this case, integral equation is
solved by certain numerical methods (Erdol and where
Erdogan, 1978; Erdogan and Gupta, 1972). For .
this purpose, the normalized quantities are defined 7 = Cos (2;‘1 ,;) i=1,..,n (51)
in Eq. (44). "

k
_ - = Cos— k=1,.,n—-1 52

Here, Egs. (49) - (50) are solved. Then, stress-
intensity factors are calculated by

ke =lim,,./2(c — 1) 0,,(r,0) =

The singular integral equation in Eq. (39) and the
single-valuedness condition Eq. (43) become as

LK [+ K(n o)) de=

= E,q d—c
_ —— [—G(-1 53
—2(1E—@f(z) (-1<r<1) (45) -y 2 0D ©3)
1
L g dr=0 (46) ka =Ehm“dd V2 =d) o, (r0) =
1 —-C
———— |5 G(+1) (54)
where 209N 2
dec By using the interpolation formulas (Krenk,
K(zz) =—K(p1) (47) 1975), G(—1) and G(+1) are obtained from
G(z;)(i=1,..,N). These stress intensity factors
In this case, the index of the integral equation is are normalized as K, = kq/(oy [(d - c)/2) and
+1), thus, the solution may be expressed as
(+1) y P K, = ke/(o1J@ = 0)/2).

(Erdogan and Gupta, 1972),

1 3.2. Internal Edge Crack Case
#HD)=G(D(1—12)2 (-1<7<1) (48)
In this specific case, the kernel L(p, r) has also
point singularities at p=a and r =a. Singular

terms in the kernel of integral equation may be
obtained as following form:

G(7) in EqQ. (48) is bounded in the closed interval
(-1<7<1). Then, using Gauss-Chebyshev

integration equality (Erdogan and Gupta, 1972),
Eqgs. (45)-(46) are replaced by:
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K(or) = [ ?e - Hdp+r—-20){28(p—-a)(r -
a) + d-3(p—a) — (r —a) + 2]}d¢ (59)

If the singular terms are replaced by their closed-
form integrals, the singularities in the kernels are
removed. The closed-form integral of the above
expression is:

1 _ 1 6(r—a) _
Ki(pr) = 2\/}{ prr—2a + (p+r-2a)?

4(r-a)?
(p+r—2a)3} 0

The kernel K;(p,r) may be designed as the total
of three pieces as
Ki(pr) = Ki(p1) — Ks(p1) + K (o) (57)

Defining normalized variables in the following,

p=d-a)r+a 0<r<l1 (58)
r=d-a)z+a 0<z<1 (59)
the integral Eq. (31) becomes

[ S+ @-arGa| g de=

- 2(1E_1‘2) oy 0<r<1 (60)
where,

WD) = g(H(1 -7 (61)

Using the technique described by Gupta and
Erdogan (1974) and using the Gauss-Chebyshev
integration formula (Erdogan and Gupta 1972),
Eqg. (60) is re-arranged in the form

g [+ (@ = K (7,220 ] g () =
—2(1—1"2)01 (k=1,..,m) (62)
where,
q=Cos(2=n) (i=1.,n) (63)
z=Cos(-=7) (k=1,..n) (64)

The stress-intensity factor for the internal edge
crack case may be given by

407

kd = llmp_wi \/2(,0— d) GZl(T', O) =
—ﬁ\/ (d-a)g(1)

where g(1) is defined Gupta and Erdogan (1974)
by

(65)

g(D) = 2n+1 j=1Cot [2(2 +1)7r]Sm [(2]_
D 2n+1”]9( 5)

(66)

The stress intensity factor (ky;) is given in the
normalized form as K; = kq/(o1Vd — a).

4. Results and Discussion

The numerical solutions are obtained for a
uniform axial tension load applied at z = 0 plane
of symmetry. Stress intensity factors at crack tips
depending on the ratio of elastic constants and
various geometric dimensionless quantities are
obtained. The effect of geometric parameters on
the stress-intensity factors has been investigated
for two different crack cases. The results are
presented in Tables 1-4 and Figs. 2-8.

Figs. 2 to 5 show the variation of the normalized
stress-intensity factors with increasing crack
length (d/e) for the internal crack case. When the
crack lengths are getting smaller, the values of K,
and K, approach the unity. This is expected since
the problem reduces to that of a finite crack in an
infinite medium when the ratio {[(d —c)/e] =
1x107%} is small enough.

2.40
——.
—h—.

v=0 B—.. v=0.5

2.00 -

y:]_ x—.. y=2

1.60 -

1.20 -

Kc

0.80 -

0.40 -

0.00 T T T T T T
030 040 050 060 070 080 090
d/e

1.00

Fig. 2. Variation of normalized K. with crack
length (d/e) for an internal crack

(a/e =0.1,c/e=02,b/e=15,y
=E,(1+w)/E;(1+ v), K,

= e/ (Po/@=O72))
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It may be seen in Tables 1 and 2 and Figs. 2 to 6
that K.is always bigger than K;. In case the
stiffness of the inner pipe is greater than that of
the outer one (< 1), the values of the stress
intensity factors at the crack tips also increase
with increasing crack width. On the other hand, in
case the stiffness of the inner pipe is smaller than
that of the outer one (> 1), the values of the
stress intensity factors at the crack tips gradually
decrease with increasing the crack length as seen
in Figs. 2 and 3.

Another observation is that for a certain rate of
shear moduli, the values of the stress intensity
factors at the crack tips increase with decreasing
of the thickness of the inner and outer pipes both.
The values of the stress intensity factors decrease
at the crack tips for the internal crack case and
approach a constant asymptotic value as shown in
Fig. 6. These results are also presented in Tables 1
and 2 for various y and (b/e) values.

2.00

180 —— y=0 —m— =05
—A 7=l e y=2
—* y=5 -e— ¢=10

1.60 -
1.40 -
1.20 -+
1.00
0.80 -
0.60 -
0.40
0.20 -
0.00 t f T T f f

030 040 050 060 070 080 090 1.00
d/e

Kd

Fig. 3. Variation of normalized Ky with crack
length (d/e) for an internal crack

(a/e =0.1,c/e=0.2,b/e =15,y
= Ez(l + V1)/E1 1+ Vz); Ky

= ka! (Pr/(@=0)/2))

120
1.15 -
1.10 4
105 -
1.00 4
0.95 -
0.90 -
0.85 -

Kc, Kd

—o—Kc
—A—Kd

0.80 T T
0.00 2.00 4.00

6.}(/)0 800 10.00 12.00

Fig. 4. Variation of normalized K., K; with ‘y’ for an internal crack (a/e = 0.2, ¢/e = 0.5,d/e = 0.7,
b/e=2,y=E,(1+ w)/E (1 + v,),K; = kc/(Poy/(d = ©)/2), Ky = ka/(Por/(d — C)/Z))

1.40
—8—b/e=15
130 4| = b/e=2
—e—b/e=25
1.20
el
4
:Z 1.10 -
1.00
0.90 ;

040 0.0 0.60

0.70 0.80 0.90 1.00
d/e

Fig. 5. Variation of normalized K, K; with crack length (d/e) for an internal crack (a/e = 0.1,c/e = 0.4,

y= 05K, = ke/(Poy/(d = ©)/2), Ky = ka/(Por/(d = ©)/2) )
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1.18
1.16 -
1.14 -
112

—e— Kc
—a— Kd

<110 -
108 -
106 -
1.04 -
1.02 -
1.00 -

*

0.98 . .
0.00 200 4.00

6.00

b/e

8.00 1000 12.00

Fig. 6. Variation of normalized K, K; with ‘b/e’ for an internal crack

(a/e = 02,c/e = 0.5,7= 05K, = ke/ (P @~ 0)/2), Kq = ka/ (Po/d c)/z))

Table 1. Normalized values of K., K; for an internal crack

(a/e=0.1,c/e =0.3,b/e =0.2,v; = v, = 0.2)
d/e y=20 y=0.5 y=1 y=2 y=15
Ka K. Ka K. Kq K. Kq K. Kq K¢
0.3 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.4 0.9781 | 1.0473 | 0.9759 | 1.0450 | 0.9728 | 1.0417 | 0.9748 | 1.0437 | 0.9739 | 1.0468
0.5 0.9788 | 1.1090 | 0.9685 | 1.0976 | 0.9537 | 1.0814 | 0.9629 | 1.0914 | 0.9415 | 1.0824
0.6 1.0008 | 1.1899 | 0.9727 | 1.1579 | 0.9325 | 1.1134 | 0.9573 | 1.1406 | 0.8864 | 1.0873
0.7 1.0529 | 1.3017 | 0.9901 | 1.2291 | 0.9025 | 1.1333 | 0.9559 | 1.1912 | 0.7987 | 1.0544
0.8 1.1584 | 1.4677 | 1.0275 | 1.3176 | 0.8553 | 1.1373 | 0.9584 | 1.2436 | 0.6678 | 0.9871
0.9 14031 | 1.7456 | 1.1081 | 1.4358 | 0.7704 | 1.1224 | 0.9648 | 1.2988 | 0.4721 | 0.9029
Table 2. Normalized values of K., K; for an internal crack
(a/e=01,c/e=0.3,y=0.2,v; = v, = 0.2)
d/e b/e =15 b/e =2 b/e =4 b/e=5 b/e =10
Kq K¢ Kq K Kq K Ka K Ka K-
0.3 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.4 0.9735 | 1.0424 | 0.9728 | 1.0417 | 0.9725 | 1.0413 | 0.9725 | 1.0413 | 0.9725 | 1.0413
0.5 0.9569 | 1.0850 | 0.9537 | 1.0814 | 0.9521 | 1.0796 | 0.9521 | 1.0795 | 0.9520 | 1.0795
0.6 0.9406 | 1.2229 | 0.9325 | 1.1134 | 0.9285 | 1.1087 | 0.9283 | 1.1085 | 0.9282 | 1.1084
0.7 0.9185 | 1.1526 | 0.9025 | 1.1333 | 0.8949 | 1.1239 | 0.8946 | 1.1236 | 0.8945 | 1.1234
0.8 0.8819 | 1.1706 | 0.8553 | 1.1373 | 0.8431 | 1.1217 | 0.8427 | 1.1211 | 0.8424 | 1.1207
0.9 0.8088 | 1.1728 | 0.7704 | 1.2224 | 0.7540 | 1.0995 | 0.7534 | 1.0986 | 0.7530 | 1.0981

Figs. 7 to 9 and Tables 3 and 4 show the variation
of normalized stress-intensity factors (Kj) with
increasing the crack length (d/e) for the internal
edge crack. As crack length decreases, the stress
intensity factors at the crack tip approach a certain
limit value. For a very small crack ratio {[(d —
c)/e] = 1x107}, the limit value is obtained as
1.12. In case the stiffness of the inner pipe is
greater than that of the outer pipe (y< 1), the
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value of the stress intensity factor at the crack tips
increase with increasing the crack length.
Whereas, in case the stiffness of the inner pipe is
smaller than that of the outer pipe (y> 1), the
stress intensity factor at the crack tips decreases
with increasing the crack length as seen in Fig. 7.

Stress intensity factors at crack tips increase when
the stiffness of the outer pipe is greater than that
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of the inner pipe. For a certain rate of shear approach a constant asymptotic value as seen in
moduli, with increasing the thickness of the outer Fig. 9.
pipe, the stress intensity factors decrease and

K

OOO T T T T T T T
020 030 040 050 060 070 080 090 1.00
d/e
Fig. 7. Variation of normalized stress-intensity factors (K, ) with crack length (d/e) for an internal edge crack

(a/e =02,b/e=151v,=1,=027y=E0+w/E 1+w), K, = kd/(PO,/(d — c)/z))

1.20

—e&—Db/e=15

1.10 ¥ | —E—Db/e=2
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Fig. 8. Variation of normalized stress-intensity factors (K, ) with crack length (d/e) for an internal edge crack

(a/e = 0.1,b/e = 15,7=0.25,Ks = ky/ (Po/(d = c)/2)>

0.98
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Fig. 9. Variation of normalized stress-intensity factors (K,;) with (b/e) for an internal edge crack
(a/e = 04,d/e = 0.7,7= 025, v, = v, = 0.2, Ky = ka/ (Poy/(@ — c)/z))
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Table 3. Values of K; for an internal edge crack (a/e =0.1,b/e =2, v, = v, = 0.2)

d/e y=20 y=025| y=10.5 y=1 y=2 y=10
Ky Ky Kq A€ Ky Ky
0.1 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215
0.2 0.8072 0.8066 0.8061 0.8054 0.8041 0.7945
0.3 0.7636 0.7603 0.7582 0.7551 0.7499 0.7136
0.4 0.7512 0.7422 0.7367 0.7287 0.7159 0.6340
0.5 0.7637 0.7441 0.7325 0.7159 0.6902 0.5448
0.6 0.8031 0.7644 0.7421 0.7110 0.6645 0.4439
0.7 0.8835 0.8085 0.7672 0.7117 0.6332 0.3342
0.8 1.0461 0.8935 0.8157 0.7170 0.5892 0.2181
0.9 1.4442 1.0741 0.9124 0.7269 0.5182 0.1003
Table 4. Values of K for an internal edge crack (a/e =0.3,7=2, vy = v, = 0.2)
d/e b/e=15| b/e=2 b/e =4 b/e=5 | b/e=10
Kd Kd Kd Kd Kd
0.3 1.1215 1.1215 1.1215 1.1215 1.1215
0.4 0.9077 0.9054 0.9044 0.9043 0.9043
0.5 0.8496 0.8420 0.8385 0.8384 0.8383
0.6 0.7968 0.7819 0.7750 0.7747 0.7746
0.7 0.7503 0.7262 0.7152 0.7147 0.7145
0.8 0.6980 0.6636 0.6484 0.6478 0.6475
0.9 0.6196 0.5764 0.5576 0.5576 0.5573

4. Conclusion

The elastostatic axisymmetric problem for long
nested thick-walled cylinders with two different
crack cases under uniform axial load is presented.
It is determined that the stress-intensity factors
vary according to the crack length, shear moduli
and the rigidity of the inner and outer pipes. The
values of the stress intensity factors decrease at
the crack tips for the internal crack case and these
values approach a constant asymptotic value. Note
that, if the edge crack starts from the wall which is
under tension, the stress intensity factor is always
positive and decreases as the crack length
increases. For a certain rate of shear moduli, with
increasing the thickness of the outer pipe, the
stress intensity factors decrease and approach a
constant asymptotic value for the internal edge
crack case.
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