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ABSTRACT

We study lightlike submanifolds of a semi-Riemannian product manifold. We introduce a class of
lightlike submanifolds called screen semi-invariant lightlike submanifold. We consider lightlike
submanifolds with respect to a quarter symmetric non-metric connection which is determined by
the product structure. We give some equivalent conditions for integrability of distributions with
respect to the Levi-Civita connection of semi-Riemannian manifolds and the quarter-symmetric
nonmetric connection, and we obtain some results.
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1. Introduction

The theory of degenerate submanifolds of semi-Riemannian manifolds is one of a important topics of
diferential geometry because of the following reasons: It is well known that while the geometry of semi-
Riemannian manifold is fully developed, its counter part of lightlike submanifolds (for which the local
geometry is completely different from the non-degenerate case) is relatively new and in a developing
stage. Second reason is that the growing importance of null geometry in mathematical physics and limited
information on its geometric theory. Several papers have been written on lightlike submanifold in recent years
in [3] (see also [4]) by K.L. Duggal and A. Bejancu. Differential Geometry of Lightlike Submanifolds was
presented in [9] by K. L. Duggal and B. Sahin. In [5],[6], [7], [8], K. L. Duggal and B. Sahin introduced and
studied geometry of classes of lightlike submanifolds in indefinite Kaehler and indefinite Sasakian manifolds
which is an umbrella of CR-lightlike, SCR-lightlike, Screen real GCR-lightlie submanifolds. In [2], M. Atceken
and E. Kilic introduced semi-invariant lightlike submanifolds of a semi-Riemannian product manifold. In [12],
E. Kilic and B. Sahin introduced radical anti-invariant lightlike submanifolds of a semi-Riemannian product
manifold and gave some examples and results for lightlike submanifolds. In [13] E. Kilic and O. Bahadir studied
lightlike hypersurfaces of a semi-Riemannian product manifold with respect to quarter symmetric non-metric
connection.

In [11], Hayden introduced a metric connection with nonzero torsion on a Riemannian manifold. The
properties of Riemannian manifolds with semi-symmetric (symmetric) and nonmetric connection have been
studied by many authors ([15]-[14]). The idea of quarter-symmetric linear connections in a differential manifold
was introduced by Golab [10]. A linear connection is said to be a quarter-symmetric connection if its torsion
tensor T̃ is of the form:

T̃ (X,Y ) = π(Y )φX − π(X)φY (1.1)

for any vector fields X, Y on a manifold, where is a 1− form and φ is a tensor of type (1, 1)
In this paper, we study r- lightlike and coisotropic submanifolds of a semi- Riemannian product manifold.

First, we introduce screen semi-invariant light- like submanifolds of a semi-Riemannian product manifold. We
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define some special distribution of screen semi-invariant lightlike submanifold. Then we give some examples
and find their geometric properties of screen semi-invariant lightlike submanifold. Finally, by considering
the quarter-symmetric non-metric connection, we study lightlike submanifolds of a semi-Riemannian product
manifold. We obtain some results on lightlike submanifolds of a semi- Riemannian product manifold admitting
the quarter symmetric non-metric connection.

2. Preliminaries

In this section, we give some notations and terminology, given by Duggal and Bejancu in [3] used throughout
this paper.

Let (M̃, g̃) be a real (m+ n)−dimensional semi-Riemannian manifold of constant index such that 1 ≤ ν ≤
m+ n− 1 and (M, g) be an m−dimensional submanifold of M̃ . In case g̃ is degenerate on the tangent bundle
TM of M , M is called a lightlike submanifold of M̃ . Denote by g the induced tensor field of g̃ on M and suppose
g is degenerate. Then, for each tangent space TxM we consider

TxM
⊥ =

{
Yx ∈ TxM̃ | g̃x (Yx, Xx) = 0, ∀Xx ∈ TxM

}
which is a degenerate n−dimensional subspace of TxM̃ . Thus, both TxM and TxM

⊥ are degenerate orthogonal
subspaces but no longer complementary subspaces. For this case, there exists a subspace RadTxM = TxM ∩
TxM

⊥ called radical (null) subspace. If the mapping

RadTM : x ∈ M −→ RadTxM

defines a smooth distribution on M of rank r > 0, the submanifold M of M̃ is called r−lightlike (r−degenerate)
submanifold and RadTM is called the radical (lightlike) distribution on M. In the following , there are four possible
cases:
Case 1 . M is called a r−lightlike submanifold if 1 ≤ r < min{m,n}.
Case 2 . M is called a coisotropic submanifold if 1 < r = n < m.
Case 3 . M is called an isotropic submanifold if 1 < r = m < n.
Case 4 . M is called a totally lightlike submanifold if 1 < r = m = n [3].

In this paper, we have considered case 1 where there exists a non-degenerate screen distribution S(TM)
which is a complementary vector subbundle to RadTM in TM. Therefore,

TM = RadTM⊥s(TM). (2.1)

in which ⊥ denotes orthogonal direct sum. Although S(TM) is not unique, it is canonically isomorphic to
the factor vector bundle TM/RadTM. Denote an r−lightlike submanifold by (M, g, S(TM), S(TM⊥)), where
S(TM⊥) is a complementary vector bundle of RadTM in TM⊥ and S(TM⊥) is non-degenerate with respect to
g̃. Let us define that tr(TM) is a complementary (but never orthogonal) vectors bundle to TM in TM̃|M and

trTM = ltrTM⊥s(TM⊥), (2.2)

where ltr(TM) is an arbitrary lightlike transversal vector bundle of M . Then we have

TM̃|M = TM ⊕ tr(TM)

= (RadTM ⊕ ltr(TM))⊥S(TM)⊥S(TM⊥) (2.3)

where ⊕ denotes direct sum, but it is not orthogonal [3].
The Gauss and Weingarten formulas given by

∇̃XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM), (2.4)

∇̃XV = −AV X +∇t
XV, ∀V ∈ Γ(trTM), (2.5)

for any X,Y ∈ Γ(TM), where {∇XY,AV X} belong to Γ(TM) while {h(X,Y ),∇t
XV } belong to Γ(ltr(TM)).
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Suppose S(TM⊥) ̸= 0,that is, M is either in Case 1 or in Case 3 . According to the decomposition (2.3) we
consider the projection morphisms L and S of tr(TM) on ltr(TM) and S(TM⊥), respectively. Then (2.4)− (2.5)
become

∇̃XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∀X,Y ∈ Γ(TM), (2.6)

∇̃XN = −ANX +∇l
XN +Ds(X,N), ∀N ∈ Γ(ltr(TM)), (2.7)

∇̃XW = −AWX +∇s
XW +Dl(X,W ) ∀W ∈ Γ(s(TM⊥)). (2.8)

where hl(X,Y ) = Lh(X,Y ), hs(X,Y ) = Sh(X,Y ), {∇l
XN, Dl(X,W )} ∈ Γ(ltrTM), {∇s

XW, Ds(X,N)} ∈
Γ(s(TM⊥) and {∇XY, ANX, AWX} ∈ Γ(TM) [9]. Then, taking account of (2.6)-(2.8) and the Levi-Civita
connection ∇̃ is a metric, we obtain

g̃(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y ), (2.9)
g̃(Ds(X,N),W ) = g̃(AWX,N). (2.10)

Let P be the projection of S(TM) on M . Then according to (2.1) and (2.3) we have

∇XPY = ∇∗
XPY + h∗(X,PY ), (2.11)

∇Xξ = −A∗
ξX +∇∗t

Xξ, (2.12)

for any X,Y ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)). By using above equations we obtain

g(hl(X,Y ), ξ) + g(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0, (2.13)
g(h∗(X,PY ), N) = g(ANX,PY ), (2.14)
g(hl(X,PY ), ξ) = g(A∗

ξX,PY ), (2.15)

g(ANX,PY ) = g(N, ∇̃XPY ), (2.16)
g(hl(X, ξ), ξ) = 0, A∗

ξξ = 0, (2.17)

In general, the induced connection ∇ on M is not metric connection. Since ∇̃ is a metric connection, by using
(2.6) we get

(∇Xg)(Y,Z) = g̃(hl(X,Y ), Z) + g̃(hl(X,Z), Y ), (2.18)

However, it is important to note that ∇∗ is a metric connection on S(TM) [9].

3. Product manifolds

In this section, we give basic concept for product manifold.
Let M be an n− dimensional diferentiable manifold with a tensor field F of type (1, 1) on M̃ such that

F 2 = I. (3.1)

Then M is called an almost product manifold with almost product structure F . If we put

π =
1

2
(I + F ), σ =

1

2
(I − F )

then we have
π + σ = I, π2 = π, σ2 = σ, πσ = σπ = 0, F = π − σ.

Thus π and σ define two complementary distributions and F has the eigenvalue of +1 or −1, If an almost
product manifold M̃ admits a semi-Riemannian metric g̃ such that

g(FX,FY ) = g(X,Y ), (3.2)

for any X,Y vector fields on M̃ , then M̃ is called a semi-Riemannian almost product manifold. From (3.1) and
(3.2), we have

∇̃XFY = F ∇̃XY, (3.3)

If, for any vector fields X,Y on M̃ ,

∇̃F = 0, that is ∇̃XFY = F ∇̃XY, (3.4)

then M̃ is called a semi-Riemannian product manifold, where ∇̃ is the Levi-Civita connection on M̃ [16].
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4. Lightlike Submanifolds of Semi-Riemannian Product Manifolds

In this section we defined screen semi-invariant lightlike submanifolds of a semi-Riemannian product
manifold. We give some examples and study their geometric properties.

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a semi-Riemannian product manifold (M̃, g̃, F ).
For each X tangent to M, FX can be written as follows:

FX = fX + wX, (4.1)

where fX and wX are the tangential and the transversal parts of FX , respectively. In addition, for any
V ∈ Γ(tr(TM)), FV can be written as:

FV = BV + CV, (4.2)

where BV and CV are the tangential and the transversal parts of FV , respectively .

Definition 4.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a semi-Riemannian product manifold
(M̃, g̃, F ). If FRadTM ⊂ s(TM), FltrTM ⊂ s(TM) and Fs(TM⊥) ⊂ s(TM) then we say that M is a screen
semi-invariant lightlike submanifold.

Now, let M be a screen semi-invariant lightlike submanifold of a semi-Riemannian product manifold. If we
set L1 = FRadTM , L2 = FltrTM and L3 = Fs(TM⊥) then we can write

s(TM) = L0⊥{L1 ⊕ L2}⊥L3, (4.3)

where L0 is a (m− r − 4)− dimensional distribution. Hence we have the following decomposition:

TM = {L1 ⊕ L2}⊥L3⊥L0⊥RadTM, (4.4)

TM̃ = {L1 ⊕ L2}⊥L3⊥L0⊥{RadTM ⊕ ltrTM}. (4.5)

According to this definition we can write

L = L0⊥L1⊥RadTM (4.6)

and
L

′
= L2⊥L3. (4.7)

Thus we have
TM = L⊕ L

′
(4.8)

From (4.7) and (4.8) we have the following proposition

Proposition 4.1. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then L and L

′
are F−invariant and anti-invariant distributions, respectively.

For Case (2), we know that s(TM⊥) = {0}. Therefore we have the following decomposition

s(TM) = {L1 ⊕ L2}⊥L0, (4.9)
TM = {L1 ⊕ L2}⊥L0⊥RadTM, (4.10)

TM̃ = {L1 ⊕ L2}⊥L0⊥{RadTM ⊕ ltrTM}, (4.11)
TM = L⊕ L2. (4.12)

Proposition 4.2. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). The distribution L0 is a invariant distribution with respect to F .

Example 4.1. Let M be a submanifold of semi- Riemannian product manifold M̃ = R5
2 ×R3

1 with metric
tensor g̃ = π∗g1 + σ∗g2, where g1 and g2 are standard metric tensors of R5

2 and R3
1, respectively. Consider the
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submanifold M in M̃ defined by the equations:

x1 = t1 + t2 + 2t3 + 2t4 + (1 + 2
√
2)t5 − 3t6,

x2 = 2t1 + 2t2 + t3 + (2−
√
2)t5 + (2−

√
2)t6,

x3 = t3 + t4 + 3
√
2t5 − 6t6,

x4 = t1 + t2 + 2t3 +
√
2t4 + t5 + t6,

x5 = 2t1 + 2t2 + t3 + t4 + 2t5 −
√
2t6,

x6 =
√
2t1 −

√
2t2 −

√
2t3 − 3t4,

x7 = −
√
2t3 − t4,

x8 = 2t1 − 2t2 − t3 − 2
√
2t4,

where ti, 1 ≤ i ≤ 4, are real parameters. Then the tangent bundle TM is spanned by {U1, U2, U3, U4, U5, U6},
where

U1 =
∂

∂x1
+ 2

∂

∂x2
+

∂

∂x4
+ 2

∂

∂x5
+

√
2

∂

∂x6
+ 2

∂

∂x8
,

U2 =
∂

∂x1
+ 2

∂

∂x2
+

∂

∂x4
+ 2

∂

∂x5
−

√
2

∂

∂x6
− 2

∂

∂x8
,

U3 = 2
∂

∂x1
+

∂

∂x2
+

∂

∂x3
+ 2

∂

∂x4
+

∂

∂x5
−
√
2

∂

∂x6
−

√
2

∂

∂x7
− ∂

∂x8
,

U4 = 2
∂

∂x1
+

∂

∂x3
+
√
2

∂

∂x4
+

∂

∂x5
− 3

∂

∂x6
− ∂

∂x7
− 2

√
2

∂

∂x8
,

U5 = (1 + 2
√
2)

∂

∂x1
+ (2−

√
2)

∂

∂x2
+ 3

√
2

∂

∂x3
+

∂

∂x4
+ 2

∂

∂x5
,

U6 = −3
∂

∂x1
+ (2−

√
2)

∂

∂x2
− 6

∂

∂x3
+

∂

∂x4
−
√
2

∂

∂x5
.

It is easy to check that M is a lightlike submanifold and U1 is a degenerate vector. Then we have Rad TM =
Span{U1} and S(TM) = Span{U2, U3, U4, U5, U6}. By direct calculations we obtain

ltrTM = Span{N = 2
∂

∂x1
+

∂

∂x3
+
√
2

∂

∂x4
+

∂

∂x5
+ 3

∂

∂x6
+

∂

∂x7
+ 2

√
2

∂

∂x8
},

and
s(TM⊥) = Span{u = 2

∂

∂x1
+

∂

∂x2
+

∂

∂x3
+ 2

∂

∂x4
+

∂

∂x5
+
√
2

∂

∂x6
+
√
2

∂

∂x7
+

∂

∂x8
}.

Hence M is a 6− dimensional 1− lightlike submanifold. Furthermore, we get

Fξ = U2 ∈ Γ(s(TM)), FN = U4 ∈ Γ(s(TM)),

Fu = U3 ∈ Γ(s(TM)), FU5 = U5, FU6 = U6.

Thus we have
L0 = Span{U5, U6}, L1 = Span{U2},
L2 = Span{U4}, L3 = Span{U3}.

Therefore M is screen semi-invariant lightlike submanifold of M̃ .

Example 4.2. Let (M̃ = R5
2, g̃) be a 5-dimensional semi-Euclidean space with signature (−,−,+,+,+) and

(x1, x2, x3, x4, x5) be the standard coordinate system of R5
2. If we set

F (x1, x2, x3, x4, x5) = (x2, x1, x4, x3, x5),

then F 2 = I and F is a product structure on R5
2. Consider a submanifold M in M̃ by the equations:

x1 = 2t1 + t2 + t3 − arcsin t4,

x2 = t1 + 2t2 + 2t3 + arcsint4,

x3 = −t2 + t3 + 2arcsint4,

x4 = −t1,

x5 = 2t1 + 2t2 + 2t3 −
1

2
arcsint4.
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where ti, 1 ≤ i ≤ 4, are real parameters. Then the tangent bundle TM is spanned by {U1, U2, U3, U4}, where

U1 = 2
∂

∂x1
+

∂

∂x2
− ∂

∂x4
+ 2

∂

∂x5
,

U2 =
∂

∂x1
+ 2

∂

∂x2
− ∂

∂x3
+ 2

∂

∂x5
,

U3 =
∂

∂x1
+ 2

∂

∂x2
+

∂

∂x3
+ 2

∂

∂x5
,

U4 = − ∂

∂x1
+

∂

∂x2
+ 2

∂

∂x3
− 1

2

∂

∂x5
,

It is easy to check that M is a 1− lightlike submanifold and U1 is a degenerate vector. Then we have
RadTM = Span{ξ} and S(TM) = Span{U2, U3, U4}. Then by direct calculations we get

ltrTM = Sp{N = 2
∂

∂x1
+

∂

∂x2
+

∂

∂x4
+ 2

∂

∂x5
}.

Moreover we can write L0 = Sp{U4}, L1 = Sp{U2}, L2 = Sp{U3}. Thus M is a screen semi-invariant coisotropic
submanifold of M̃ .

Now, let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). For any X,Y ∈ Γ(TM) we obtain

∇̃XFY = ∇XfY + h(X, fY )−AwY X +∇t
XwY (4.13)

and

F ∇̃XY = f∇XY + w∇XY +Bh(X,Y ). (4.14)

Since F is parallel on M , from (4.13) and (4.14) we get

(∇Xf)Y = AwY X +Bh(X,Y ), (4.15)
w∇XY = ∇t

XwY + h(X, fY ). (4.16)

Theorem 4.1. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) M is mixed geodesic.
(ii) A∗

ξX and AWX have no component in L1 and L3, for any X ∈ Γ(L).
(iii) AFY X has no component L2 and L3, for any X ∈ Γ(L) and Y ∈ Γ(L

′
).

Proof. M is mixed geodesic if and only if

g(h(X,Y ), ξ) = 0 and g(h(X,Y ),W ) = 0,

for any N ∈ Γ(ltrTM), W ∈ Γ(s(TM⊥)), X ∈ Γ(L) and Y ∈ Γ(L
′
). From (2.4), (2.7), (2.8) and (2.12) we obtain

g(h(X,Y ), ξ) = g(Y,A∗
ξX)

and
g(h(X,Y ),W ) = g(Y,AWX).

Thus we get (i) ⇔ (ii). Similarly from (2.4), (2.5), (3.3) and (3.4) we obtain

g(h(X,Y ), ξ) = −g(AFY X,Fξ)

and
g(h(X,Y ),W ) = −g(AFY X,FW ).

Therefore we conclude (i) ⇔ (iii). Thus we have our assertion

If M is coisotropic submanifold, that is S(TM⊥) = 0, then from (2.11) we have the following theorem.
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Theorem 4.2. Let (M, g, S(TM)) be a screen semi-invariant coisotropic submanifold of a semi-Riemannian product
manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) M is mixed geodesic.
(ii) A∗

ξX have no component in L1, for any X ∈ Γ(L).
(iii) h∗(X,Fξ) = 0, for any X ∈ Γ(L).

Theorem 4.3. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) M is L− geodesic.
(ii) A∗

ξX ∈ Γ(L1⊥L3) and g(Y,AWX) = g(Y,Dl(X,W )), for any X,Y ∈ Γ(L)
(iii) ∇XFY have no component in L2 and L3, for any X,Y ∈ Γ(L).

Proof. It is known that M is L− geodesic if and only if

g(h(X,Y ), ξ) = 0 and g(h(X,Y ),W ) = 0,

for any X,Y ∈ Γ(L), N ∈ Γ(ltrTM), W ∈ Γ(s(TM⊥)). Accordingly from (2.4), (2.7), (2.8) and (2.12) we obtain

g(h(X,Y ), ξ) = g(Y,A∗
ξX)

and

g(h(X,Y ),W ) = g(Y,AWX −Dl(X,W )).

Thus we get (i) ⇔ (ii). Similarly from (2.4), (2.5), (3.3) and (3.4) we have

g(h(X,Y ), ξ) = −g(∇XFY, Fξ))

and

g(h(X,Y ),W ) = −g(∇XFY, FW )).

This is (i) ⇔ (iii).

From above the theorem, we have the following theorem.

Theorem 4.4. Let(M, g, S(TM)) be a screen semi-invariant coisotropic submanifold of a semi-Riemannian product
manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) M is L− geodesic.
(ii) A∗

ξX ∈ Γ(L1), for any X ∈ Γ(L).
(iii) ∇∗

XFξ ∈ Γ(L1), for any X ∈ Γ(L).

Theorem 4.5. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) M , L

′− geodeziktir.
(ii) AWX and A∗

ξX have no component in L1 and L3, for any X ∈ Γ(L
′
).

(iii) AFY X have no component in L2 and L3, for any X,Y ∈ Γ(L
′
).

Proof. For any N ∈ Γ(ltrTM), W ∈ Γ(s(TM⊥)) and X,Y ∈ Γ(L), by using (2.12) and Gauss- Weingarten
formulas we obtain

g(h(X,Y ), ξ) = g(Y,A∗
ξX),

and

g(h(X,Y ),W ) = g(Y,AWX).

Thus we get (i) ⇔ (ii). Moreover from (3.2), (3.3) and Gauss-Weingarten formulas we get

g(h(X,Y ), ξ) = −g(AFY X,Fξ)

and

g(h(X,Y ),W ) = −g(AFY X,FW ).

This is (i) ⇔ (iii).
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Theorem 4.6. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) L is parallel distribution.
(ii) h(X,FY)=0, X,Y ∈ Γ(L).
(iii) (∇Xf)Y = 0, for any X,Y ∈ Γ(L).

Proof. For any N ∈ Γ(ltrTM), W ∈ Γ(s(TM⊥)) and X,Y ∈ Γ(L) by using Gauss-Weingarten formulas we have

g(∇XY, Fξ) = −g(hl(X,FY ), ξ),

and

g(∇XY, FW ) = −g(hs(X,FY ),W ).

Thus we get (i) ⇔ (ii). Since F is parallel, from (2.4), (4.1) we obtain

h(X,FY ) = −(∇Xf)Y + w∇XY + Fh(X,Y )

If we take tangential and transversal parts of this last equation we have

(∇Xf)Y = Fh(X,Y ).

Thus we get (ii) ⇔ (iii).

Proposition 4.3. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the distribution L

′
is parallel on M if and only if AFY X ∈ Γ(L

′
).

Proof. For any X ∈ Γ(TM), Y ∈ Γ(L
′
) and Z ∈ Γ(L0), from (3.2), (3.3) and Gauss-Weingarten formulas we

obtain

g(∇XY,N) = g(∇̃XY,N) = g(∇̃XFY, FN) = −g(AFY X,FN), (4.17)

g(∇XY, FN) = g(∇̃XFY,N) = −g(AFY X,N), (4.18)

g(∇XY,Z) = g(∇̃XY, Z) = g(∇̃XFY, FZ) = g(AFY X,FZ), (4.19)

From (4.17), (4.18) and (4.19), proof is completed.

Theorem 4.7. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the following assertions are equivalent:
(i) L is integrable.
(ii) h(X,FY ) = h(Y, FX), X,Y ∈ Γ(L).
(iii) (∇Xf)Y = (∇Y f)X , X,Y ∈ Γ(L).

Proof. For any X,Y ∈ Γ(L), from (2.4) we obtain

g([X,Y ], F ξ) = g(h(X,FY )− h(Y, FX), ξ).

Thus we get (i) ⇔ (ii). From (2.4) and (4.1) we obtain

h(X,FY ) = F∇XY + Fh(X,Y )−∇XFY. (4.20)

Interchanging role of X and Y we have

h(Y, FX) = F∇Y X + Fh(Y,X)−∇Y FX. (4.21)

From (4.20) and (4.21) we get

h(X,FY )− h(Y, FX) = −(∇Xf)Y + (∇Y f)X + w([X,Y ])

If we take tangential and transversal parts of this last equation we have
(ii) ⇔ (iii).
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Proposition 4.4. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then the distribution L

′
is integrable if and only if

AFXY = AFY X, X, Y ∈ Γ(L
′
),

Proof. For any N ∈ Γ(ltrTM), Z ∈ Γ(L0) and X,Y ∈ Γ(L
′
), from (2.5) we obtain

g([X,Y ], FN) = g(AFXY −AFY X,N), (4.22)

g([X,Y ], Z) = g(AFXY −AFY X,FZ). (4.23)

nnd

g([X,Y ], Z) = g(AFXY −AFY X,FZ). (4.24)

From (4.22) and (4.24) we get the proof.

Theorem 4.8. Let (M, g, S(TM), S(TM⊥)) be a screen semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃, F ). Then M is a locally product manifold according to the decomposition (4.8) if and only if f is
parallel with respect to induced connection ∇, that is ∇f = 0.

Proof. Let M be a locally product manifold. Then the leaves of distributions L and L
′

are both totally geodesic
in M . Since the distribution L is invariant with respect to F then, for any Y ∈ Γ(L), FY ∈ Γ(L). Thus ∇XY and
∇XfY belong to Γ(L) We know that ∇̃F = 0. Then from the Gauss formula we obtain

∇XfY + h(X, fY ) = f∇XY + w∇XY + Fh(X,Y ). (4.25)

Comparing the tangential and normal parts with respect to L of (4.25), we have

(∇Xf)Y = 0. (4.26)

For any X ∈ Γ(TM) and Z ∈ Γ(L
′
), since fZ = 0, we get ∇XfZ = 0 and f∇XZ = 0, that is (∇Xf)Z = 0. Thus

we have ∇f = 0 on M .
Conversely, we assume that ∇f = 0 on M . Then we have ∇XfY = f∇XY , for any X,Y ∈ Γ(L) and ∇W fU =

f∇WU = 0, for any U,W ∈ Γ(L
′
). Hence, the leaves of the distributions L and L

′
are totally geodesic in M .

5. Lightlike Submanifolds of Semi-Riemannian Product Manifolds with Quarter
Symmetric Non-Metric Connection

In this section we investigated screen semi-invariant lightlike submanifolds of a semi-Riemannian product
manifold with quarter symmetric non-metric connection and we study their geometric properties.

Let (M, g, F ) be a semi-Riemannian product manifold and ∇̃ be the Levi-Civita connection on M . If we set

D̃XY = ∇̃XY + π(Y )FX (5.1)

for any X,Y ∈ Γ(TM̃), then D̃ is a linear connection on M̃ , where u is a 1-form on M̃ with U as associated
vector field, that is

π(X) = g̃(X,U).

The torsion tensor of D̃ on M̃ denoted by T̃ . Then we obtain

T̃ (X,Y ) = π(Y )FX − π(X)FY, (5.2)

and
(D̃X g̃)(Y, Z) = −π(Y )g̃(FX,Z)− π(Z)g̃(FX, Y ), (5.3)

for any X,Y ∈ Γ(TM̃). Thus D̃ is a quarter-symmetric non-metric connection on M̃ . From (5.1) we have

(D̃XF )Y = π(FY )FX − π(Y )X. (5.4)
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Replacing X by FX and Y by FY in (5.4) we obtain

(D̃FXF )FY = π(Y )X − π(FY )FX. (5.5)

Thus we have
(D̃XF )Y + (DFXF )FY = 0. (5.6)

If we set
′F (X,Y ) = g̃(FX, Y ) (5.7)

for any X,Y ∈ Γ(TM), from (5.1) we get

(D̃X
′F )(Y,Z) = (∇̃X

′F )(Y, Z)− π(Y )g̃(X,Z)− π(Z)g̃(X,Y ). (5.8)

From (5.1) the curvature tensor R̃D of the quarter-symmetric non-metric connection D̃ is given by

R̃D(X,Y )Z = R̃(X,Y )Z + λ̃(X,Z)FY − λ̃(Y, Z)FX, (5.9)

for any X,Y, Z ∈ Γ(TM̃), where λ̃ is a (0, 2)-tensor given by λ̃(X,Z) = (∇̃Xπ)(Z)− π(Z)π(FX). If we set
R̃D(X,Y, Z,W ) = g̃(R

D
(X,Y )Z,W ), then, from (5.9), we obtain

R̃D(X,Y, Z,W ) = −R̃D(Y,X,Z,W ).

We note that the Riemannian curvature tensor R̃D of D̃ does not satisfy the other curvature-like properties.
But, from (5.9), we have

R̃D (X,Y )Z + R̃D (Y,Z)X + R̃D (Z,X)Y = (λ̃(Z, Y )− λ̃(Y,Z))FX

+ (λ̃(X,Z)− λ̃(Z,X))FY

+ (λ̃(Y,X)− λ̃(X,Y ))FZ.

Thus we have the following proposition.

Proposition 5.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a semi-Riemannian product manifold
(M̃, g̃). Then the first Bianchi identity of the quarter symmetric non-metric connection D̃ on M is provided if and only if
λ̃ is symmetric.

Let M be a lightlike submanifold of a semi-Riemannian product manifold
(
M̃, g̃

)
with quarter symmetric

non-metric connection D̃. Then the Gauss and Weingarten formulas with respect to D̃ are given by, respectively,

D̃XY = DXY + h̃(X,Y ), X, Y ∈ Γ(TM) (5.10)

D̃XN = −ÃNX + ∇̃l
XN + D̃s(X,N), N ∈ Γ(ltrTM), (5.11)

and

D̃XW = −ÃWX + ∇̃s
XW + D̃l(X,W ), W ∈ Γ(s(TM⊥)) (5.12)

for any X,Y ∈ Γ(TM), where DXY, ÃNX, ÃuX ∈ Γ(TM), and ∇̃l and ∇̃s are linear connections on ltrTM and
s(TM⊥), respectively. Both ÃN and Ãu are linear operators on Γ(TM). From (5.1), (5.10), (5.11) and (5.12) we
obtain

DXY = ∇XY + π(Y )fX, (5.13)

h̃(X,Y ) = h(X,Y ) + π(Y )wX, (5.14)

ÃNX = ANX − π(N)fX, (5.15)

∇̃l
XN = ∇l

XN + π(N)wlX, (5.16)

D̃s(X,N) = Ds(X,N) + π(N)wsX, (5.17)
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and

ÃWX = AWX − π(W )fX, (5.18)

∇̃s
XW = ∇s

XW + π(W )wsX, (5.19)

D̃l(X,W ) = Dl(X,W ) + π(W )wlX, (5.20)

for any X,Y ∈ Γ(TM). In where ws and wl are projections on ltrTM and s(TM⊥), respectively. From (2.18) and
(5.13) we get

(DXg)(Y, Z) = g(hl(X,Y ), Z) + g(hl(X,Z), Y )− π(Y )g(fX,Z)− π(Z)g(fX, Y ),

(5.21)

On the other hand, the torsion tensor of the induced connection D is

TD(X,Y ) = π(Y )fX − π(X)fY. (5.22)

From last two equations we have the following proposition.

Proposition 5.2. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a semi-Riemannian product manifold(
M̃, g̃

)
with quarter symmetric non-metric connection D. Then the induced connection D on the lightlike submanifold

M is a quarter-symmetric non-metric connection.

With analysis of (2), we can write

DXPY = D∗
XPY + h̃∗(X,PY ), X, Y ∈ Γ(TM) (5.23)

DXξ = −Ã∗
ξX + ∇̃∗t

Xξ (5.24)

for any X,Y ∈ Γ(TM), where D∗
XPY, Ã∗

ξX ∈ Γ(s(TM)) and h̃∗(X,PY ) ∈ Γ(RadTM). From (2.11), (2.12), (5.13),
(5.23) and (5.24) we obtain

D∗
XPY = ∇∗

XPY + π(PY )PfX, (5.25)

h̃∗(X,PY ) = h∗(X,PY ) + π(PY )

r∑
i

ηi(fX)ξi, (5.26)

Ã∗
ξX = A∗

ξX − π(ξ)PfX, (5.27)

∇̃∗t
Xξ = ∇∗t

Xξ + π(ξ)

r∑
i

ηi(fX)ξ, (5.28)

where D∗
XPY, Ã∗

ξX ∈ Γ (S (TM)), ηi(X) = g(X,Ni), and {ξ1, ..., ξr} is basis of Γ(RadTM) for i ∈ {1, . . . , r}.
From (5.14), (5.27) and (5.15), (5.26) we have

g(h̃l(X,PY ), ξ) = g(hl(X,PY ), ξ) + π(Y )g(wlX, ξ)

= g(A∗
ξX,PY ) + π(Y )g(wlX, ξ)

= g(Ã∗
ξX,PY ) + π(ξ)g(PfX,PY ) + π(Y )g(wlX, ξ),

(5.29)

and

g(h̃∗(X,PY ), N) = g(h∗(X,PY ), N) + π(PY )η(fX)

= g(ANX,PY ) + π(PY )η(fX)

= g(ÃNX,PY ) + π(N)g(fX, PY ) + π(PY )η(fX), (5.30)

Also, from (5.27) we obtain

g(Ã∗
ξPX,PY ) = g(A∗

ξPX,PY )− π(ξ)g(PfX,PY )

= g(A∗
ξPY, PX)− π(ξ)g(PfX,PY ),
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and

g(Ã∗
ξPY, PX) = g(A∗

ξPY, PX)− π(ξ)g(PfY, PX),

Then from the last two equation and (5.27), we obtain

g(Ã∗
ξPX,PY )− g(Ã∗

ξPY, PX) = π(ξ)g(PfY, PX)− π(ξ)g(PfX,PY ),

(5.31)

and

Ã∗
ξξ = −π(ξ)fξ, (5.32)

Lemma 5.1. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold

(
M̃, g̃

)
. Then

g(h̃l(X,Y ), ξ) = g(A∗
ξX,Y ) = g(Ã∗

ξX,Y ) + π(ξ)g(PfX, Y ), ξ ∈ Γ(RadTM), (5.33)

for any X ∈ Γ(L) and Y ∈ Γ(L
′
)

Proof. For any X ∈ Γ(L) and Y ∈ Γ(L
′
) from (5.14) we get h̃l(X,Y ) = hl(X,Y ). Thus from (5.27) we have

g(h̃l(X,Y ), ξ) = g(hl(X,Y ), ξ) = g(A∗
ξ , Y ) = g(Ã∗

ξ , Y ) + π(ξ)g(PfX, Y ).

From Lemma(5.1) and Teorem(4.1), we have the following Corollary

Corollary 5.1. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold

(
M̃, g̃

)
. The following assertions are equivalent:

(i) M is mixed geodesic.
(ii) M is mixed geodesic with respect to quarter symmetric non-metric connection.
(iii) A∗

ξX and AWX have no component in L1 and L3, for any X ∈ Γ(L) and Y ∈ Γ(L
′
).

(iv) AFY X have no component L2 and L3, for any X ∈ Γ(L) and Y ∈ Γ(L
′
).

Theorem 5.1. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold

(
M̃, g̃

)
. For any X,Y ∈ Γ(L) the following assertions are equivalent:

(i) M is L− geodesic with respect to quarter symmetric non-metric connection.
(ii) A∗

ξX ∈ Γ(L1⊥L3) and g(Y,AWX) = g(Y,Dl(X,W )).
(iii) ∇XFY have no component L2 and L3.
(iv) M is L− geodesic.

Proof. For any X,Y ∈ Γ(L), we know that

h̃(X,Y ) = h(X,Y ).

Thus from Teorem(4.3) we have the proof.

Theorem 5.2. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold

(
M̃, g̃

)
. M is L

′− geodesic with respect to quarter symmetric non-metric connection if and only if

AFY X = −π(Y )X, X, Y ∈ Γ(L
′
)

Proof. For any X,Y ∈ Γ(L
′
) and W ∈ Γ(s(TM⊥)) we obtain

g(h̃(X,Y ),W ) = −g(AFY X + π(Y )X,FW ),

and

g(h̃(X,Y ), ξ) = −g(AFY X + π(Y )X,Fξ),

From the last two equations we get the proof.
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Theorem 5.3. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold

(
M̃, g̃

)
. The distribution L is parallel with respect to quarter symmetric non-metric connection D if and only

if L is parallel with respect to ∇.

Proof. For any X,Y ∈ Γ(L), since wX = 0 we have

h̃(X,FY ) = h(X,FY ).

Then from teorem(4.6) proof is completed.

Then from teorem(4.6) we have the following corollary.

Corollary 5.2. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold M̃ . Then the following assertions are equivalent:
(i) The distribution L is parallel with respect to quarter symmetric non-metric connection D.
(ii) The distribution L is parallel with respect to ∇.
(iii) h(X,FY ) = 0, X, Y ∈ Γ(L).
(iv) h̃(X,FY ) = 0, X, Y ∈ Γ(L).
(v) (∇Xf)Y = 0, X, Y ∈ Γ(L).

Proposition 5.3. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃). The distribution L

′
is parallel with respect to quarter symmetric non-metric connection if

and only if
ÃFY X ∈ Γ(L

′
)

for any X,Y ∈ Γ(L
′
)

Proof. For any X,Y ∈ Γ(L
′
), since fX = 0 and ÃFY X = AFY X − π(FY )fX we have

ÃFY X = AFY X

From Proposition(4.3) and Proposition(5.3) we have the following corollary.

Theorem 5.4. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold (M̃, g̃). The distribution L is integrable with respect to quarter symmetric non-metric connection if and only if

h̃(X,FY ) = h̃(Y, FX), X, Y ∈ Γ(L).

Proof. For any X,Y ∈ Γ(L), since wX = 0 we get h̃(X,Y ) = h(X,Y ). From theorem(4.7) we have the proof.

Then from theorem(4.7) we have the following corollary.

Corollary 5.3. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold (M̃, g̃). Then the following assertions are equivalent:
(i) The distribution L is integrable with respect to quarter symmetric non-metric connection.
(ii) The distribution L is integrable with respect to ∇.
(iii) h̃(X,FY ) = h̃(Y, FX), X, Y ∈ Γ(L).
(iv) h(X,FY ) = h(Y, FX), X, Y ∈ Γ(L).
(v) (∇Xf)Y = (∇Y f)X, X, Y ∈ Γ(L).

Proposition 5.4. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian
product manifold (M̃, g̃). The distribution L

′
is integrable with respect to quarter symmetric non-metric connection if

and only if
ÃFY X = ÃFXY, X, Y ∈ Γ(L

′
).

Proof. For any X,Y ∈ Γ(L
′
), we know that fX = 0. Thus from (5.15) and (5.18) we get ÃFY X = AFY X . From

Proposition(4.4) we have the our assertion.

Then from proposition(4.4) we give the following corollary.
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Corollary 5.4. Let (M, g, S(TM), S(TM⊥)) be a semi-invariant r-lightlike submanifold of a semi-Riemannian product
manifold (M̃, g̃). The following assertions are equivalent:
(i) The distribution L

′
is integrable with respect to quarter symmetric non-metric connection.

(ii) The distribution L
′

is integrable with respect to ∇.
(iii) ÃFY X = ÃFXY, X, Y ∈ Γ(L

′
).

(iv) AFY X = AFXY, X, Y ∈ Γ(L
′
).

References

[1] Agashe, N. S. and Chafle, M. R., A semi symetric non-metric connection in a Riemannian manifold. Indian J. Pure Appl. Math. 23, 1992,
399-409

[2] Atceken, M. and Kilic, E. Semi-Invariant Lightlike Submanifolds of a Semi-Riemannian Product Manifold. Kodai Math. J. Vol. 30, No. 3,
(2007), pp. 361-378.

[3] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers,
Dordrecht, 1996.

[4] Duggal, K. L. and Bejancu, A., Lightlike submanifolds of codimension two. Math. J. Toyama Univ., 15(1992), 59-82.
[5] Duggal, K. L. and Sahin, B., Screen Cauchy Riemann lightlike submanifolds. Acta Math. Hungar. 106(1-2) (2005), 137-165
[6] Duggal, K. L. and Sahin, B., Generalized Cauchy Riemann lightlike submanifolds. Acta Math. Hungar., 112(1-2), (2006), 113-136.
[7] Duggal, K. L. and Sahin, B., Lightlike submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci. 2007, Art ID 57585, 1-21.[162]
[8] Duggal, K. L. and Sahin, B., Contact generalized CR-lightlike submanifolds of Sasakian submanifolds. Acta Math. Hungar. 122, No. 1-2,

(2009), 45-58.
[9] Duggal, K. L., Sahin, B., Differential Geometry of Lightlike Submanifolds. Birkhauser Veriag AG Basel-Boston-Berlin (2010).

[10] Golab, S., On semi-symmetric metric and quarter-symmetric linear connections, Tensor 29, 1975, 249-254.
[11] Hayden, H. A., Sub-spaces of a space with torsion. Proceedings of the London Mathematical Society. vol. 34, 1932, 27-50.
[12] Kilic, E. and Sahin, B., Radical Anti-Invariant Lightlike Submanifolds of a Semi-Riemannian Product Manifold. Turkish J. Math. 32, (2008),

429-449.
[13] Kilic, E. and Bahadir, O., Lightlike Hypersurfaces of a Semi-Riemannian Product Manifold and Quarter-Symmetric Nonmetric

Connections. Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2012, Article ID 178390,
17 pages.

[14] Tripathi, M. M., A new connection in a Riemannian manifold. International Journal of Geo. 1, (2008), 15-24.
[15] Yano, K., On semi-symmetric metric connections. Rev. Roumania Math. Pures. Appl. 15, (1970), 1579-1586.
[16] Yano, K., Kon, M., Structures on Manifolds. World Scientific Publishing Co. Pte, Ltd., 1984

Affiliations
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