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ABSTRACT

Let G be the group M(n, 1) generated by all pseudo-orthogonal transformations and translations
of Lorentzian space En

1 or G = SM(n, 1) is the subgroup of M(n, 1) generated by rotations and
translations of En

1 . We describe the correlations between Gram determinant detG(x1, . . . , xm) of the
system {x1, . . . , xm} and the number of linearly independent null vectors in the system {x1, . . . , xm}.
Using methods of invariant theory and these results, the system of generators of the polynomial
ring of all G-invariant polynomial functions of vectors x1, x2, . . . , xm in En

1 is obtained for groups
G = M(n, 1) and G = SM(n, 1).
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1. Introduction

Let R be real numbers field. The ring of polynomials f(x1, x2, . . . , xm) in m variables with real coefficients is
denoted R[x1, . . . , xm](shortly, R[x]). Let G be a subgroup of the group GL(n,R) of invertible n× n-matrices.
Given a polynomial function f ∈ R[x1, . . . , xm]. We are interested the set R[x1, . . . , xm]G(shortly, R[x]G) of all
polynomials which are invariant f(x1, x2, . . . , xm) = f(gx1, gx2, . . . , gxm) for all g ∈ G. We call R[x1, . . . , xn]

G

the invariant subring of G. One of important and fundamental problems of invariant theory is finding a set
I1, . . . , Im of generators for the invariant subring R[x1, x2, . . . , xm]G under the group G.

All geometric magnitudes and properties are invariant with respect to the underlying transformation
group. Properties in Euclidean geometry are invariant under the Euclidean group of rotations, reflections and
translations, properties in projective geometry are invariant under the projective transformations,etc. Similarly,
properties in Lorentzian space(that is n-dimensional pseudo-Euclidean geometry of index 1) are invariant
under the Lorentz transformations.For the classical group, the following problem is given in [13, pp.15] :
"Given a geometric property P , find the corresponding invariants and vice versa". This problem is also
important for Lorentz group.

First, finding a system generator invariants of Lorentz group is suggested for Lorentz group by [14, pp.66].
The first comprehensive treatment of Euclidean geometry is given in the fundamental work of [12] and [14,
pp.52] . Fundamental theorems for invariants in orthogonal group are obtained by [3] and [14]. Recently, all
m-points invariants for different geometries is determined by a characterization of orbits of m-tuples of vectors
in paper [4]. All scalar concomitants of vectors and all biscalars of a system of s ≤ n linearly independent
contravariant vectors in n-dimensional Lorentz space is determined in papers [6, 11]. Let U be a subspace
generated by vectors x1, x2, . . . , xm. All subspaces U in Euclidean space En

0 are nondegenerate(or regular).
But for the Lorentzian space En

1 , therefore mentioned subspace U can not be a non-degenerate subspace.
Therefore,the classification of subspaces in Lorentzian space is given by [9]. By using methods and results in
[9] and [14], we will give the system generator invariants of Lorentz group(or pseudo-orthogonal group of
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index 1) in terms of inner products and determinant of m-vector.

Applications of the invariant theory and invariants, transformations and invariants of curves, surfaces
and graphical objects appear in many areas Computer Aided Geometric Design, the computer vision, etc.
The important problem is to find simple but efficient method for the equivalence check of two m-uples
{x1, x2, . . . , xm} and {y1, y2, . . . , ym} vectors in En

1 . This problem can be solve by invariants in this paper for
groups G = M(n, 1), SM(n, 1). In [10], a solution of the problem of G-equivalence of a system of vectors for
groups G = O(1, 1), SO(1, 1), L(1, 1) in terms of invariants of vectors {x1, x2, . . . , xm} in the two dimensional
Minkowski spacetime geometry and its an application of control invariants of Bézier curves are given. In
[5, 10],the complete systems of G-invariants of m-tuples and describe complete systems relations between
elements of obtained complete systems of G-invariants.For solutions of these problems in paper [5] , hyperbolic
numbers are used.

This paper is organized as follows: In Section 2, we give some known definitions and propositions, which
we use in the next sections. In Section 3, using results of the Section 2, correlations between gram determinant
detG(x1, . . . , xm) of the system {x1, . . . , xm} and the number of linearly independent null vectors in the system
{x1, . . . , xm} is given (Theorem3.1, Corollaries3.1 and 3.2). In Section 4, using methods of invariant theory,
we prove that a system of generators of R[x]O(n,1), R[x]SO(n,1), R[x]M(n,1) and R[x]SM(n,1) is given(Theorems
4.1-4.4).

This paper is devoted to the study of a system generator invariants of m-vectors for the groups G = O(n, 1),
G = SO(n, 1), G = M(n, 1) and G = SM(n, 1).

2. Preliminaries

Let En
1 be the n-dimensional Lorentzian space(or pseudo-Euclidean space Rn of index 1) with the scalar

product(or Lorentz inner product) g(x, y) = ⟨x, y⟩ = x1y1 + · · ·+ xn−1yn−1 − xnyn, where R is the field of real
numbers and n > 0. In particularly, E4

1 is the Minkowski spacetime. Denote the group of all pseudo-orthogonal
transformations( that is the set of all linear transformations g : En

1 → En
1 such that ⟨gx, gy⟩ = ⟨x, y⟩ for all

x, y ∈ En
1 ) by O(n, 1).

Then the group M(n, 1) of all pseudo-Euclidean motions of an n-dimensional pseudo-Euclidean space has
the form
M(n, 1) = {F : En

1 → En
1 : Fx = gx+ b, g ∈ O(n, 1), b ∈ En

1 }, where gx is the multiplication of a matrix g and a
column vector x ∈ En

1 .
The group of all proper pseudo-orthogonal transformations of En

1 is denoted by SO(n, 1). It is a subgroup of
O(n, 1). That is, SO(n, 1) = {g ∈ O(n, 1) : detg = 1}.
Put SM(n, 1) = {F ∈ M(n, 1) : Fx = gx+ b, g ∈ SO(n, 1), b ∈ En

1 }.

Remark 2.1. In [7, pp.14-16], the groups O (n, 1) and SO (n, 1) are named general Lorentz group and proper
Lorentz group , respectively.

The following definition is known in [7, pp.10,12].

Definition 2.1. (i) A vector x in En
1 is called timelike, if ⟨x, x⟩ < 0.

(ii) A vector x in En
1 is called spacelike, if ⟨x, x⟩ > 0.

(iii) A non-zero vector x in En
1 is called null, if ⟨x, x⟩ = 0.

A subspace U of En
1 is called spacelike (or timelike) if ⟨u, u⟩ > 0 (or ⟨u, u⟩ < 0) for any nonzero vector u in U .

We denote a restriction of Lorentz inner product g to U by g ↓ U .

Definition 2.2. Let U be a subspace of En
1 . A subspace U will be called regular if rank (g ↓ U) = dim(U).

If a subspace U is non-regular, then U is called singular subspace.

Remark 2.2. Regular space is called as non-degenerate space. In this opposite case the singular space is called
degenerate space.

A subspace U of En
1 is called regular if g ↓ U is regular. When g is referred to as a Euclidean inner product,

every subspace of Euclidean space En
0 is regular. But, when g is referred as a Lorentz inner product, there will

always be singular subspaces.
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Definition 2.3. Let U be a subspace of En
1 . A subspace U will be called a null if it contains a null vector, but no

timelike vector.

Proposition 2.1. Let U be a subspace of En
1 . Then U is a null subspace if and only if U is a singular.

Proof. The proof of the proposition is easy, so it is omitted or see [1].

Let S(n, 1) be the set of all subspaces of En
1 . We consider the following action of the group O(n, 1) on

S(n, 1) : α(F, V ) = F (V ), where F ∈ O(n, 1) and V ∈ S(n, 1). Let Z be the ring of all integers.

Definition 2.4. A function f : S(n, 1) → Z will be called O(n, 1)-invariant if f(F (V )) = f(V ) for all F ∈ O(n, 1)
and V ∈ S(n, 1).

Let U ∈ S(n, 1). Denote the dimension of U by dim(U). It is obvious that the function dim(U) is O(n, 1)-
invariant function on S(n, 1). Denote the number of linearly independent null vectors in U by κ(U).

The following propositions is given in [9].

Proposition 2.2. The function κ(U) is O(n, 1)-invariant.

Proposition 2.3. Let U be a subspace of En
1 such that dim(U) = 1. Then only the following three cases hold:

1. κ(U) = 0 and index(U) = 0 that is U is spacelike;

2. κ(U) = 0 and index(U) = 1 that is U is timelike;

3. κ(U) = 1 and index(U) = 0.

Proposition 2.4. Let U be a subspace of En
1 such that dim(U) > 1. Then κ(U) = 0 if and only if U is a spacelike subspace.

Proposition 2.5. Let U be a subspace of En
1 such that 1 ≤ dim(U) < n. Then κ(U) = 1 if and only if U is a null subspace.

Proof. It follows from Proposition 2.3 and [9, Theorem 4.4].

Corollary 2.1. Let U be a subspace of En
1 such that 1 ≤ dim(U) < n. Then κ(U) = 1 if and only if U is a singular

subspace.

Proof. It follows from Propositions 2.1 and 2.5.

3. Gram determinant and its properties

Let x1, x2, . . . , xm be real vectors in En
1 .

Definition 3.1. The matrix ∥⟨xi, xj⟩∥i,j=1,2,...,m is called the Gram matrix of x1, x2, . . . , xm ∈ En
1 and it is denoted

by Gr (x1, x2, . . . , xm).
The determinant of it will be called the Gram determinant of x1, x2, . . . , xm and denoted by
detGr (x1, x2, . . . , xm).

Proposition 3.1. Vectors x1, x2, . . . , xm ∈ En
1 are linearly depended if and only if detGr (x1, x2, . . . , xm) = 0.

Proof. It is similar to the proof of [14, pp.75].

We denote the matrix of column-vectors x1, x2, . . . , xm ∈ En
1 by

∥x1x2 . . . xm∥. Denote by [x1 . . . xn] determinant of the matrix ∥x1 . . . xn∥. Denote by ∥x1 . . . xn∥T the transpose
matrix ∥x1 . . . xn∥.

Theorem 3.1. Let x1, x2, . . . , xm be linearly independent vectors in En
1 and {x1, x2, . . . , xm} be a basis of U such that

for 1 ≤ m < n. Then κ(U) = 1 if and only if detGr (x1, x2, . . . , xm) = 0.

Proof. ⇒ . Assume that κ(U) = 1.
(a) Let m = 1. Then there exists vector x1 such that ⟨x1, x1⟩ = 0. Clearly, detGr (x1) = 0.
(b) Let 1 < m < n and {x1, x2, . . . , xm} be a basis of U . From [9, Proposition3.8], there exist F ∈ O(n, 1) such
that
F (U) = {x̄1 = (1, 0, . . . , 0), x̄i = (0, x̄i2, . . . , x̄in−1, 0), i = 2, 3, . . . ,m}. Hence
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detGr (Fx1, Fx2, . . . , Fxm) = detGr (x1, x2, . . . , xm) = detGr (x̄1, x̄2, . . . , x̄m) = 0.

⇐ . Let detGr (x1, x2, . . . , xm) = 0 and {x1, x2, . . . , xm} be a basis of U . Assume that κ(U) ̸= 1. Then κ(U) = 0
or κ(U) > 1.
(i) Assume that κ(U) = 0.
(i.1) Let m = 1. From Proposition2.3, we have detGr (x1) > 0. This is a contradiction by detGr (x1) = 0.
(i.2) Let 1 < m < n and {x1, x2, . . . , xm} be a basis of U . From Proposition2.4, we have U is a spacelike subspace.
That is, detGr (x1, x2, . . . , xm) > 0.This is a contradiction by detGr (x1) = 0.
(ii) Assume that κ(U) > 1.
From [9, Proposition3.13], we have κ(U) = dim(U) > 1. From [9, Proposition3.6], there exist F ∈ O(n, 1) such
that
F (U) = {x̄1 = (1, 0, . . . , 0), x̄i = (x̄i1, x̄i2, . . . , x̄in−1, 0), i = 2, 3, . . . ,m}. For example, assume that x̄21 ̸= 0 and
x̄i1 = 0 for all 3 ≤ i ≤ m. Then, detGr (Fx1, Fx2, . . . , Fxm) = detGr (x1, x2, . . . , xm) = detGr (x̄1, x̄2, . . . , x̄m) =
−x̄2

21 detGr (x̄3, x̄4, . . . , x̄m). Since vectors x̄3, x̄4, . . . , x̄m are linearly independent and ⟨xi, xi⟩ > 0 for all
3 ≤ i ≤ m, we have detGr (x̄3, x̄4, . . . , x̄m) ̸= 0. So, detGr (x1, x2, . . . , xm) ̸= 0. This is a contradiction by
detGr (x1, x2, . . . , xm) = 0.

Corollary 3.1. Let x1, x2, . . . , xm be linearly independent vectors in En
1 and {x1, x2, . . . , xm} be a basis of U such that

for 1 ≤ m < n. Then κ(U) = 0 if and only if detGr (x1, x2, . . . , xm) > 0.

Proof. It follows from Theorem3.1.

Corollary 3.2. Let x1, x2, . . . , xm be linearly independent vectors in En
1 and {x1, x2, . . . , xm} be a basis of U such that

1 < m ≤ n. Then κ(U) > 1 if and only if detGr (x1, x2, . . . , xm) < 0.

Proof. It follows from Theorem3.1.

4. The generating system of the ring of invariants polynomials of m-vector

Let x1, x2, ..., xm be real vectors(or points) in En
1 .

Definition 4.1. A polynomial p(x1, x2, ..., xm) of x1, x2, ..., xm will be called a polynomial of x1, x2, ..., xm. It will
be denoted by p {x}.

We denote the set of all polynomials of x1, x2, ..., xm by R [x1, x2, ..., xm] (shortly, R [x]). It is a R-algebra.
Let G be a subgroup of O (n, 1).

Definition 4.2. A polynomial p {x} will be called G-invariant if p {gx} = p {x} for all g ∈ G.

The set of all G-invariant polynomials of x1, x2, ..., xm will be denoted by R [x1, x2, ..., xm]
G(shortly, R [x]

G). It
is a R-subalgebra of R [x].

Definition 4.3. A subset S of R [x]
G will be called a generating system of R [x]

G if the smallest R-subalgebra
with the unit containing S is R [x]

G.

The following lemma is similar to [14, Theorem2.9.A,pp.53].

Lemma 4.1. (i) Every even pseudo-orthogonal invariant depending on m-vectors x1, x2, . . . , xm ∈ En
1 is expressible

in terms of < xi, xj >, 1 ≤ i, j ≤ m.

(ii) Every odd pseudo-orthogonal is a sum of terms [xi1xi2 . . . xin ]F {x}, where xij ∈ En
1 for all j = 1, 2, . . . , n are

selected from the row x1, x2, . . . , xm ∈ En
1 and F {x} is an even pseudo-orthogonal invariant.

Proof. We denote every even pseudo-orthogonal invariant depending on m-vectors x1, x2, . . . , xm in En
1 by Tm

n .
By using Capelli’s general and special identities [8, Theorem 5,pp.56], the theorem Tm

n (m ≥ n) is reduced to the
theorem Tn−1

n concerning n− 1 argument vectors. When n− 1 vectors x1, x2, . . . , xn−1 are numerically given
and linearly independent, one may introduce a new pseudo-orthogonal coordinate system such that they lie
in the (n− 1)-dimensional space spanned by the first n− 1 fundamental vectors(non-formal part). Thus one
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has reduced the question to the study of pseudo-orthogonal invariants in n− 1-dimensions ,or more precisely,
since they depend on exactly n− 1 vectors, to Tn−1

n−1 . In view of this situation , it seems best first to pass from

Tn−1
n−1 → Tn−1

n → Tn
n (4.1)

and then to generalize Tn
n to Tm

n . We prove first the step Tn
n → Tn

n+1. The two steps into which the transition
Tn−1
n−1 to Tn

n breaks up according to (4.1) are performed by the "non-formal" argument and Capelli’s special
identity respectively, whereas the transition Tn

n to Tm
n , (n > m) rest on Capelli’s general identity. As it is

obvious how to carry out the second part, we turn to the inductive proof of Tn
n according to the scheme (4.1).

Let us first restate. An even invariant depending on n vectors x1, x2, . . . , xn in En
1 is expressible in terms of

their Lorentzian inner products and its denoted Tn
n . We prove first the step Tn−1

n−1 to Tn−1
n .

Let f (x1, x2, . . . , xn−1) be an even invariant depending on n− 1 vectors
x1, x2, . . . , xn−1 ∈ En

1 .
Let xi = (xi1, . . . , xin−1, xin) ∈ En

1 for all i = 1, . . . , n− 1 and {x1, x2, . . . , xn−1} be a basis of U . There is two
situations:

(a) According to Corollaries3.1 and 3.2, we have κ(U) ̸= 1 if and only if detGr (x1, x2, . . . , xn−1) ̸= 0.

(b) According to Theorem3.1, we have κ(U) = 1 if and only if
detGr (x1, x2, . . . , xn−1) = 0.

(a) Assume that detGr (x1, x2, . . . , xn−1) ̸= 0.
Then there exists g ∈ O(n, 1) such that gxi = (0, yi2 . . . , yin−1, yin) = yi for all i = 1, . . . , n− 1 and so

detGr (y1, y2, . . . , yn−1) ̸= 0. (That is, g can be rewrite g =

(
h 0(n−1)1

01(n−1) h

)
, where 01(n−1) is the zero

1× (n− 1)-matrix, 0(n−1)1 is the zero (n− 1)× 1-matrix and h ∈ O(n− 1, 1) ).

We have the function f (y1, y2, . . . , yn−1) is a pseudo-orthogonal invariant in En−1
1 , and hence according to

Tn−1
n−1 is expressible as a polynomial F in the Lorentzian inner products < yi, yj > for all i, j = 1, 2, . . . , n− 1,

where < yi, yj >= yi2yj2 + . . .+ yin−1yjn−1 − yinyjn.

(b) Assume that detGr (x1, x2, . . . , xn−1) = 0 and vectors x1, x2, . . . , xn−1 are linearly independent.
Then, by using the principle of the irrelevance of algebraic inequalities [14, Lemma 1.1.A,pp.4], the proof seen
to clear.

If f were odd, there exist n× n-matrix σ =

(
−1 01(n−1)

0(n−1)1 In−1

)
,where 01(n−1) is the zero 1× (n− 1)-matrix,

0(n−1)1 is the zero (n− 1)× 1-matrix and I(n−1) is the identity (n− 1)× (n− 1)-matrix such that σxi =
(−xi1, . . . , xin−1, xin) ∈ En

1 for all i = 1, . . . , n− 1 and so
detGr (x1, x2, . . . , xn−1) = detGr (σx1, σx2, . . . , σxn−1) ̸= 0.
Then, we have the function f (x1, x2, . . . , xn−1) would show that

f(x1, x2, . . . , xn−1) = f(σx1, σx2, . . . , σxn−1) = det(σ)f(x1, x2, . . . , xn−1), hence f(x1, x2, . . . , xn−1) = 0.
Invariance of f with respect to the proper pseudo-orthogonal transformation which we have thus performed

results in the equation
f(x1, x2, . . . , xn−1) = f0(x̄1, x̄2, . . . , x̄n−1), where x̄1, x̄2, . . . , x̄n−1 are the (n− 1)-dimensional vectors with the
components x̄i = (0, x̄i2, x̄i3, . . . , x̄in−1, x̄in) = yi for all i = 1, . . . , n− 1.

If f be odd we obtain at once
f = 0; (4.2)

if f be even we apply Tn−1
n−1 to the even pseudo-orthogonal (n− 1)-dimensional invariant f0 as mentioned

above and thus find f0(x̄1, x̄2, . . . , x̄n−1) = F (< xi, xj >) for all i, j = 1, 2, . . . , n− 1.
Since our transformation was pseudo-orthogonal, < xi, xj >=< x̄i, x̄j > and therefore, as we claimed,

f(x1, x2, . . . , xn−1) = F (< xi, xj >) (4.3)

for all i, j = 1, 2, . . . , n− 1.
The equations (4.2) and (4.3), one for the odd and the other for the even invariants,hold numerically

irrespective of the values of the vectors x1, x2, . . . , xn−1 and consequently also as identities in the formal sense.
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Our results is Tn−1
n . That is, there does not exist any odd invariant form of n− 1 vectors in n-dimensions ,while

every even invariant of n− 1 vectors is expressible by their inner products.
The other step Tn−1

n → Tn
n is taken care of by Capelli’s special identity applied to invariants f(x1, x2, . . . , xn)

depending on n vectors. Its right side,

[x1x2 . . . xn]Ωf, (4.4)

contains the factor Ωf of lower rank than f . From [8, Proposition 37,pp.74], if f is even, Ωf is odd, and by
hypothesis for induction can be expressed as the product of [x1x2 . . . xn] with a polynomial of inner products.
One the resorts to the equation [x1x2 . . . xn]

2 = −detG(x1, x2, . . . , xn), in order to express the even invariant
(4.4) in terms of inner products only. It should be noticed that merely this special case of the equation
detG(x1, x2, . . . , xn) enters into our proof.

Theorem 4.1. The system {< xi, xj >, 1 ≤ i ≤ j ≤ m} is a system of generators of R[x1, x2, . . . , xm]O(n,1).

Proof. It follows from the proof of the first part of Lemma 4.1.

Theorem 4.2. The systems {[xi1xi2 . . . xin ], 1 ≤ i1 < . . . < in ≤ m} and {< xi, xj >, 1 ≤ i ≤ j ≤ m, } are a system of
generators of R[x1, x2, . . . , xm]SO(n,1).

Proof. It follows from the proof of the second part of Lemma 4.1 and [8, Proposition 38,pp.76].

Example 4.1. Since < gxi, gxj >=< xi, xj > for all g ∈ O(n, 1), we obtain that the inner products < xi, xj > of
vectors xi ∈ En

1 is O(n, 1) -invariant.

Example 4.2. Let x1, x2, . . . , xn be vectors in En
1 . We denote the the matrix of column-vectors x1, x2, . . . , xn by

U = ∥x1x2 . . . xn∥ and its determinant by detU . Then detU is SO(n, 1)-invariant. In fact, det ∥gx1gx2 . . . gxn∥ =
det g detU = detU for all g ∈ SO(n, 1). Similarly, since < gxi, gxj >=< xi, xj > for all g ∈ SO(n, 1), the inner
products < xi, xj > are SO(n, 1)-invariant.

Proposition 4.1. Let x0, x1, . . . , xm be vectors in En
1 . Then

R[x0, x1, . . . , xm]M(n,1) = R[x1 − x0, x2 − x0, . . . , xm − x0]
O(n,1).

Proof. Let f(x0, x1, . . . , xm) ∈ R[x0, x1, . . . , xm]M(n,1). Clearly, f is M(n, 1)-invariant. Then,

f(x0, x1, . . . , xm) = f(Fx0, Fx1, . . . , Fxm) (4.5)

for all Fx = gx+ b, g ∈ O(n, 1), b ∈ En
1 .

Here, specially, put g = I and b = −x0, where I is identity matrix. Then we have Fx = x− x0 and so

f(Fx0, Fx1, . . . , Fxm) = f(0, x1 − x0, x2 − x0, . . . , xm − x0). (4.6)

Using equality (4.6), we have

f(0, x1 − x0, x2 − x0, . . . , xm − x0) = f(0, g(x1 − x0), g(x2 − x0), . . . , g(xm − x0)) (4.7)

for all g ∈ O(n, 1).
Using equalities (4.5) and (4.7), f(x0, x1, . . . , xm) is O(n, 1)-invariant. That is f(x0, x1, . . . , xm) =

φ (< xi − x0, xj − x0 >). Conversely, it is obvious.

Proposition 4.2. Let x0, x1, . . . , xm be vectors in En
1 . Then

R[x0, x1, . . . , xm]SM(n,1) = R[x1 − x0, x2 − x0, . . . , xm − x0]
SO(n,1).

Proof. It is similar to Proposition4.1.

Theorem 4.3. Let x0, x1, . . . , xm be vectors in En
1 . Then the system {< xi − x0, xj − x0 >, 1 ≤ i ≤ j ≤ m} is a system

of generators of R[x0, x1, . . . , xm]M(n,1).

Proof. It follows from Theorem 4.1 and Proposition 4.1.

Theorem 4.4. Let x0, x1, . . . , xm be vectors in En
1 . Then the systems

{[xi1 − xi0xi2 − xi0 . . . xin − xi0 ], 1 ≤ i0 < . . . < in ≤ m} and {< xi − x0, xj − x0 >, 1 ≤ i ≤ j ≤ m, } are a system of
generators of R[x0, x1, . . . , xm]SM(n,1).

Proof. It follows from Theorem 4.2 and Proposition 4.2.
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