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ABSTRACT

Assume that M is a compact orientable Lorentz manifold with timelike boundary ∂tM . If the Ricci
curvature of M is bounded below by a positive constant k, then λ1 < (n− 1)maxM |H| −k where λ1

is the first eigenvalue of the Laplacian of M.
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1. Introduction

From the differential geometric point of view, the study of boundaries of Riemannian and Lorentz manifolds
has its own interest. Many interesting results on Riemannian and Lorentz manifolds have been obtained by
many mathematicians (see [2-5]).

In [4], Choi and Wang proved that if M is a compact orientable hypersurface minimally embedded in N, then
λ1 ≥ k/2 where λ1 is the first eigenvalue of the Laplacian of M. Ho showed that if M is a compact orientable
hypersurface embedded in N, then 2λ1 > k − (n− 1)maxM |H| in [5].

In this paper, we studied Lorentz manifold with timelike boundary ∂tM and we obtained rigidity theorem
under the assumption on nonnegative Ricci curvature and we proved the rigidity theorem by considering
Stokes theorem. The Stokes theorem is one of the most beautiful topics in mathematics. This beauty comes from
bringing together a variety of topics: integration, differentiation, manifolds and boundaries. Furthermore, it is
widely used in other sciences such as engineering and physics.

The main purpose of this paper is to carry out some results which were given in [4] and [5] to Lorentz
manifold with timelike boundary ∂tM.

2. Preliminaries

Let Rn be the real n-dimensional vector space with standart basis
{e1, e2, ..., en}. A inner product on Rn is defined by

⟨X,Y ⟩ =
n∑

i=1

εixiyi

for each vectors X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn), where ε1 = −1 and εi = 1 for 2 ≤ i ≤ n [3]. This inner
product is called the Lorentz metric on Rn. Then the pairs (Rn, ⟨, ⟩) is called the n-dimensional Lorentz space
and denoted by Ln. A vector X in Ln is respectively called spacelike, timelike or lightlike(null) if ⟨X,X⟩ > 0,
⟨X,X⟩ < 0 or ⟨X,X⟩ = 0, X ̸= 0 [6].

Consider a Lorentz manifold (M, ⟨, ⟩) with boundary ∂M. A normal vector to ∂M at a point may have one of
the three Lorentzian causal characters with respect to the induced metric on ∂M. Denote ∂sM, ∂tM, ∂oM the
sets of the points where normal vectors are spacelike, timelike, lightlike(null) respectively. The subsets ∂sM
and ∂tM are open in ∂M and the subset ∂oM is closed in ∂M. Clearly, ∂M consists of ∂sM , ∂tM , ∂oM and
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those subsets are pairwise disjoint. Consequently, ∂M
′
consists of ∂sM and ∂tM. ∂M

′
is an open submanifold

of ∂M and may be considered as the nondegenerate boundary of M and ∂oM is referred to as the degenerate
boundary of M.

The main difficulty in stating a boundary for a Lorentz manifold is that the boundary may become
degenerate at some of its points, and hence there exists no well-defined unit outward normal at such points.

Let M be an n-dimensional Lorentz manifold with nondegenerate timelike boundary ∂tM . Let u be a function
defined on M smooth up to ∂tM. Then ∆u and gradu denotes the Laplacian and the gradient of u with respect to
the Lorentz metric on M respectively, similarly Lu and Gradu denotes the Laplacian and the gradient of u with
respect to the induced Lorentz metric on ∂tM respectively. For x ∈ M and X,Y ∈ TxM, we define the Hessian
tensor Hessu(X,Y ) = X(Y u)− (DXY )u where DXY is the covariant derivative of the Lorentz connection of
M. We denote the covariant derivative of the Lorentz connection of ∂tM by DXY.

Let {e1, e2, ..., en−1, en} be a local orthonormal frame such that at x ∈ ∂tM, e1, e2, ..., en−1 are tangent to ∂tM
and en is the outward normal vector. We define the second fundemantal form II as, II(v, w) = ⟨Dven, w⟩ , v

and w are vectors tangent to ∂tM, and H to be the mean curvature, that is, H = 1
n−1

n−1∑
i=1

εiII(ei, ei).

In differential geometry, the Stokes Theorem can be stated as follows [1]:
Let M be a compact orientable k-dimensional manifold with boundary. If w is (k − 1)− form on M , then∫

M

dw =

∫
∂M

w

where ∂M is the oriented boundary of M.

3. Main Theorem

Theorem 3.1. Suppose that M is a compact orientable Lorentz manifold with nondegenerate timelike boundary ∂tM. If
the Ricci curvature of M is bounded below by a positive constant k, then λ1 < (n− 1)maxM |H| − k where λ1 is the first
eigenvalue of the Laplacian of M.

Proof. Let f be the first eigenvalue of M, that is,

∆f + λ1f = 0.

(3.1)

Let u be the solution of the Dirichlet problem such that:{
∆u = 0, in M ;
u = f, in ∂tM.

(3.2)

Then u is a function defined on M smooth up to ∂tM. Then

∆u =

n∑
i=1

Hessu(ei, ei) =

n+1∑
i=1

uii, (3.3)

where uij = Hessu(ei, ej) for i, j = 1, ..., n. When x ∈ ∂tM , when i ̸= n, we have grad(ei, ei) = Grad(ei, ei)−
IIiien, where IIij = II(ei, ej). Hence, by (3.2) and (3.3), when x ∈ ∂tM ,

∆u = unn +∆f +

n−1∑
i=1

IIiien(u)

= unn +∆f + (n− 1)Hun, (3.4)

where H is the mean curvature of M. Then, by (3.1) and (3.4), for x ∈ ∂tM,

unn = λ1f − (n− 1)Hun. (3.5)
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For x ∈ M, by the fact that ∆u = 0, we have 1
2∆ |gradu|2 =

n∑
i,j=1

u2
ij+

n∑
i,j=1

Rijuiuj , where Rij = Ric(ei, ej). By

our assumption that Ricci curvature of ∂tM is bounded below by k, 1
2∆ |gradu|2 ≥ |Hessu|2 + k |gradu|2 , which

implies ∫
M

1

2
∆ |gradu|2 ≥

∫
M

|Hessu|2 + k

∫
M

|gradu|2 . (3.6)

When i ̸= n, uin = Hessu(ei, en) = ei(enu)− grad(ei, en)u = ei(un)−
n−1∑
j=1

IIijuj . On the other hand, using the

Stokes theorem, ∫
M

1

2
∆ |gradu|2 =

∫
∂tM

n−1∑
i=1

uiuin +

∫
∂tM

ununn (3.7)

=

∫
∂tM

Gradf.Gradun −
∫
∂tM

n−1∑
i,j=1

IIijuiuj +

∫
∂tM

ununn

=

∫
∂tM

un∆f −
∫
∂tM

II(Gradu,Gradu) +

∫
∂tM

ununn

= −λ1

∫
∂tM

unf −
∫
∂tM

II(Gradu,Gradu)− (n− 1)

∫
∂tM

Hu2
n.

Here we have used (3.1) and (3.5). By Stokes theorem and (3.2),∫
M

|gradu|2 = −
∫
M

u∆u+

∫
∂tM

uun =

∫
∂tM

unf. (3.8)

Hence, by (3.7) and (3.8), we have∫
M

1

2
∆ |gradu|2 = −λ1

∫
M

|gradu|2 −
∫
∂tM

II(Gradu,Gradu) (3.9)

−(n− 1)

∫
∂tM

Hu2
n.

Combining (3.6) and (3.9), we obtain

(−λ1 − k)

∫
M

|gradu|2 ≥
∫
∂tM

II(Gradu,Gradu) + (n− 1)

∫
∂tM

Hu2
n (3.10)

+

∫
∂tM

|Hessu|2 .

Note that
∫

∂tM

II(Gradu,Gradu) =
∫
M

II(gradf, gradf) and we can assume that
∫

∂tM

II(Gradu,Gradu) ≥ 0. On the

other hand, by Stokes theorem and Holder’s inequality∫
∂tM

Hu2
n ≥ −max

M
|H|

∫
∂tM

u2
n (3.11)

= −max
M

|H|

∫
M

un∆u+

∫
M

gradun.gradu


≥ −max

M
|H|

∫
M

|gradun|2
1/2

.

∫
M

|gradu|2
1/2

.
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Here we have used (2). Now we consider two cases:
Case I: If

∫
M

|gradun|2 ≤
∫
M

|gradu|2 , then from (3.11), we have

∫
∂tM

Hu2
n ≥ −max

M
|H|

∫
M

|gradu|2 .

Since
∫
M

|Hessu|2 ≥ 0 and
∫

∂tM

II(Gradu,Gradu) ≥ 0, by (3.10), we have

(−λ1 − k)

∫
M

|gradu|2 ≥ −(n− 1)max
M

|H|
∫
M

|gradu|2 .

Since
∫
M

|gradu|2 > 0, we get λ1 ≤ (n− 1)maxM |H| − k.

Case II: If
∫
M

|gradun|2 ≥
∫
M

|gradu|2 , then from (3.11), we have

∫
∂tM

Hu2
n ≥ −max

M
|H|

∫
M

|gradun|2 .

Therefore, (3.10) implies that

(−λ1 − k)

∫
M

|gradu|2 + (n− 1)max
M

|H|
∫
M

|gradun|2 ≥

≥
∫
M

|Hessu|2 +
∫
∂tM

II(Gradu,Gradu) ≥ 0.

Since
∫
M

|gradun|2 ≥
∫
M

|gradu|2 , we have

(−λ1 − k + (n− 1)max
M

|H|)
∫
M

|gradun|2 ≥

≥ (−λ1 − k)

∫
M

|gradu|2 + (n− 1)max
M

|H|
∫
M

|gradun|2 ≥ 0.

Since
∫
M

|gradu|2 > 0,
∫
M

|gradun|2 ≥
∫
M

|gradu|2 > 0 by our assumption. Hence, λ1 ≤ (n− 1)maxM |H| − k.

Therefore, in both cases, we have λ1 ≤ (n− 1)maxM |H| − k. We claim that it is impossible for the equality
holds. Suppose not, then by above argument, we must have

∫
M

|Hessu|2 = 0. From this, we get uij = 0 on M

for all 1 ≤ i, j ≤ n. Since u is smooth up to ∂tM, we get fij = 0 on ∂tM for 1 ≤ i, j ≤ n− 1, which implies
that Lf = 0 which is impossible since f is the first eigenfunction of M. This proves our claim. We have
λ1 < (n− 1)maxM |H| − k as required.
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