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ON THE SECOND KIND TWISTED SURFACES

IN MINKOWSKI 3-SPACE

MILICA GRBOVIĆ, EMILIJA NEŠOVIĆ AND ANICA PANTIĆ

(Communicated by Kazım İLARSLAN)

Abstract. In this paper, we introduce the notion of the second kind twisted

surfaces in Minkowski 3-space. We classify all non-degenerate second kind
twisted surfaces in terms of flat, minimal, constant Gaussian and constant
mean curvature surfaces, with respect to a chosen lightlike transversal bundle.
We also prove that a lightlike second kind twisted surfaces, with respect to

a chosen lightlike transversal vector bundle, are the lightcones, the lightlike
binormal surfaces over pseudo null base curve and the lightlike ruled surfaces
with null rulings whose base curve lies on lightcone.

1. Introduction

In the Euclidean 3-space, twisted surfaces are introduced by A. Gray in [5] to
generalize the construction used to produce the Möbius strip and the twisted Klein
bottle. These surfaces arise by rotating a profile curve lying in its supporting plane
π about a fixed point in π (i.e. about an axis spanned by the orthogonal complement
of π), while simultaneously the supporting plane π rotates about an axis lying in it
[2]. Hence twisted surfaces represent generalizations of the surfaces of the revolution
and also can be called a double rotational surfaces. In the Euclidean and Minkowski
space, twisted surfaces are classified in terms of flat, minimal, constant Gaussian
and constant mean curvature surfaces in [2] and [3].

In Minkowski 3-space, the supporting plane π of the twisted surface profile curve
can be a spacelike, a timelike or a lightlike. If the supporting plane π is a lightlike,
the obtained twisted surfaces are only lightlike (lightlike planes or lightlike cones,
see [4] page 5). This situation motivated us to introduce the second kind twisted
surfaces in Minkowski 3-space, as a new kind of the twisted surfaces, whose profile
curve lies in a lightlike supporting plane, but which can be a spacelike, a timelike and
a lightlike. More precisely, we define the second kind twisted surfaces as the surfaces
obtained by the rotation of a profile curve about an axis in its lightlike supporting
plane π, while simultaneously the supporting plane π rotates about an axis spanned
by a lightlike transversal vector ltr(Tπ) of π. We classify all non-degenerate second
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kind twisted surfaces, with respect to a chosen lightlike transversal bundle, in terms
of a flat, a minimal, constant Gaussian and constant mean curvature surfaces. We
also prove that the lightlike second kind twisted surfaces, with respect to a chosen
lightlike transversal vector bundle, are the lightcones, the lightlike binormal surfaces
over pseudo null base curve and the lightlike ruled surfaces with null rulings, whose
base curve lies on lightcone.

2. Preliminaries

Minkowski 3-space E3
1 is a 3-dimensional affine space endowed with an indefinite

flat metric g with signature (+,+,−). This means that metric bilinear form can
be written as

g(x, y) = x1y1 + x2y2 − x3y3,

for any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1 . Recall that a vector

v ∈ E3
1\{0} can be spacelike, timelike or null (lightlike), if g(v, v) > 0, g(v, v) < 0

and g(v, v) = 0, respectively. A vector v = 0 is said to be a spacelike. The norm

of a vector v is given by ||v|| =
√
|g(v, v)|. Two vectors v and w are said to be

orthogonal, if g(v, w) = 0. An arbitrary curve α in E3
1 , can locally be spacelike,

timelike or null (lightlike), if all its velocity vectors α′(s) are respectively spacelike,
timelike or null ([7]). A spacelike curve α whose principal normal N and binormal
B are null vectors satisfying g(N,B) = 1, is called a pseudo null curve [9].

Lemma 2.1. Let u, v and w be the vectors in E3
1 . Then:

(i) g(u× v, w) = det(u, v, w),

(ii) u× (v × w) = −g(u,w)v + g(u, v)w,

(iii) g(u× v, u× v) = −g(u, u)g(v, v) + g(u, v)2.

Definition 2.1. A surface S in E3
1 is called a timelike (resp. a spacelike), if the

induced metric on S is a Lorentzian (resp. positive definite Riemmanian) metric.

Definition 2.2. A surface S in E3
1 is called a lightlike (degenerate or null), if the

induced metric on S is a degenerate.

The Gaussian curvature of a non-degenerate surface x(s, t) in E3
1 is given by

(2.1) K(s, t) = g(U,U)
LN −M2

EG− F 2
,

where E, F , G are the coefficients of the first fundamental form, L, M , N are the
coefficients of the second fundamental form and

(2.2) U(s, t) =
xs × xt

∥xs × xt∥
is the unit normal vector field on x(s, t). A non-degenerate surface in E3

1 is called
flat, if its Gaussian curvature vanishes identically. A non-degenerate surface in E3

1

is called minimal (or stationary), if its mean curvature

(2.3) H =
EN − 2FM +GL

2|EG− F 2|
vanishes identically. A timelike ruled surface with parametrization

x(s, t) = β(s) + tn(s)

in Minkowski 3-space is called a null scroll, if β is a null base curve and n is a null
vector field along β, such that g(β′(s), n(s)) = 1 ([6]). Moreover, any timelike ruled
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surface with null rulings in E3
1 , can be reparameterized as a null scroll ([6]). A null

scroll having a non-zero constant Gaussian curvature K and a non-zero constant
mean curvature H = K2, is called a B-scroll.

3. The second kind twisted surfaces in E3
1

In this section, we introduce the notion of the second kind twisted surfaces in E3
1 .

The profile curve of such surfaces lies in a lightlike supporting plane. In relation to
that, denote by π a lightlike plane in E3

1 . Since g|π is degenerate on π, the radical
(null) space of Tpπ at each point P ∈ π is a subspace Rad(Tpπ) defined by ([1])

Rad(Tpπ) = {Y ∈ Tpπ | g(X,Y ) = 0, ∀X ∈ Tpπ}.
For the radical space it holds

Rad(Tpπ) = Tpπ ∩ Tpπ
⊥.

Denote by S(Tπ) a complementary vector bundle of Rad(Tπ) in π. This means
that

Tπ = Rad(Tπ)⊕ S(Tπ).

A vector bundle S(Tπ) is called a screen distribution on π. For a given screen
distribution S(Tπ), it exists a unique complementary vector bundle ltr(Tπ) to Tπ
in TE3

1 |π. The vector bundle ltr(Tπ) is called a lightlike transversal vector bundle
of π. Consequently, we have the following decomposition ([1])

E3
1 |π = Rad(Tπ)⊕ S(Tπ)⊕ ltr(Tπ).

Definition 3.1. The second kind twisted surface in Minkowski 3-space is a surface
obtained by rotating the profile curve about an axis in its lightlike supporting plane
π, while simultaneously the supporting plane π rotates about an axis spanned by
lightlike transversal vector ltr(Tπ) of π.

According to Definition 3.1, the second kind twisted surfaces are a new gen-
eralization of the surfaces of revolution in Minkowski 3-space. It is known that
the lightlike transversal vector bundle ltr(Tπ) of a lightlike supporting plane π is
not unique ([1]). For example, if a lightlike supporting plane π has the equation
x1 = x3, then Rad(Tπ) = span{(1, 0, 1)}, so the lightlike transversal bundle of π
can be spanned by b = ( 12 , 0,−

1
2 ), or by c = (0, 1,−1), which shows that it is not

unique. This implies that different choices of a lightlike transversal vector bundle of
the supporting plane produce different parameterizations of the second kind twisted
surfaces.

Denote by {e1, e2, e3} positively oriented pseudo-orthonormal basis of E3
1 , con-

sisting of the unit vector e1 = (0, 1, 0) and of two normalized null vectors e2 =
(1, 0, 1) and e3 = ( 12 , 0,−

1
2 ). Up to isometries of E3

1 , assume that a lightlike sup-
porting plane π of the profile curve has the equation x1 = x3. Then the radical
space Rad(Tπ) of π is spanned by e2 = (1, 0, 1). Let us choose a lightlike transver-
sal bundle ltr(Tπ) of π as follows. Consider a locally defined non-zero section
a = (1, 0, 0), defined on an open set U ⊂ E3

1 . Then g(a, e2) = 1, g(a, a) = 1, so the
lightlike transversal bundle ltr(Tπ) is spanned by ([1]):

b =
1

g(a, e2)
[a− g(a, a)

2g(a, e2)
e2] = (

1

2
, 0,−1

2
) = e3.

A chosen lightlike transversal vector e3 will span one of two axis of two simultaneous
rotations producing the second kind twisted surface.
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Since the profile curve α of the second kind twisted surface lies in π, it can be
parameterized as

(3.1) α(t) = (t, g(t), t),

for some differentiable function g(t). In a lightlike plane there are no timelike
straight lines, so the profile curve α can rotate about a spacelike or a lightlike
axis lying in π. Consequently, we may distinguish two cases: (3.A) an axis l is a
spacelike; (3.B) an axis l is a lightlike.

(3.A) an axis l is a spacelike;

By rotating the profile curve α about an axis l through the point P (a, 0, a),
parallel with the spacelike vector e1 = (0, 1, 0), we obtain parametrization

(3.2) x̄(s, t) =

 a
0
a

+

 cosh(bs) 0 sinh(bs)
0 1 0

sinh(bs) 0 cosh(bs)

 t
g(t)
t

 ,

where ϕ = bs, b ∈ R is the Lorentzian angle of rotation. By using (3.2) and applying
the simultaneous rotation of the supporting plane π about a lightlike axis spanned
by the lightlike transversal vector e3, we find that parametrization of the second
kind twisted surface reads

(3.3) x(s, t) =

 1− s2

2 s − s2

2
−s 1 −s
s2

2 −s 1 + s2

2

 a+ t cosh(bs) + t sinh(bs)
g(t)

a+ t cosh(bs) + t sinh(bs)

 .

Since both rotations are executed simultaneously, we use the same parameter s in
relation (3.3). If b = 0, the first rotation is identity mapping. Consequently, assume
that b ∈ R\{0}.

By using (3.3), a straightforward calculation shows that the coefficients E,F,G
of the first fundamental form of x(s, t) are given by

E(s, t) = g(xs, xs) = 4(a+ tebs)2 + 4btg(t)ebs,

F (s, t) = g(xs, xt) = 2g(t)ebs − 2g′(t)(a+ tebs),(3.4)

G(s, t) = g(xt, xt) = g′ 2(t).

If EG− F 2 = 0, by using (3.4) we obtain the system of equations

2tg(t)g′(t)− g(t)2 = 0, btg(t)g′ 2(t) + 2ag(t)g′(t) = 0.

The only solutions of the above system are: (1) g(t) = a = 0; (2) g(t) = 0, a ̸= 0.

(1) If g(t) = a = 0, substituting this in (3.3) we obtain that the second kind twisted
surface is a lightcone with parametrization

x(s, t) = t((1− s2)ebs,−2sebs, (1 + s2)ebs).

(2) If g(t) = 0 and a ̸= 0, substituting this in (3.3) we get that the second kind
twisted surface is a ruled surface with parametrization

(3.5) x(s, t) = ((1− s2)a,−2as, (1 + s2)a) + t((1− s2)ebs,−2sebs, (1 + s2)ebs),

where α(s) = ((1 − s2)a,−2as, (1 + s2)a) is a pseudo null base curve. It can be
easily verified that a binormal vector of α is a null vector given by

B(s) = sgn(a)(
s2 − 1

2
, s,−s2 + 1

2
).
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Consequently, the rulings

β(s) = ebs(1− s2,−2s, 1 + s2)

of the ruled surface with parametrization (3.5) have the same direction as the
binormal vector B(s) of α. Putting β(s) = B(s) in parametrization (3.5), we
obtain parametrization

x(s, t) = ((1− s2)a,−2as, (1 + s2)a) + t(
s2 − 1

2
, s,−s2 + 1

2
).

of the binormal surface over a pseudo null base curve . This proves the next theorem.

Theorem 3.1. A lightlike second kind twisted surfaces in E3
1 with parametrization

(3.3) are the lightcones

x(s, t) = t((1− s2)ebs,−2sebs, (1 + s2)ebs), b ∈ R0,

and the lightlike binormal surfaces

x(s, t) = ((1− s2)a,−2as, (1 + s2)a) + t(
s2 − 1

2
, s,−s2 + 1

2
), a ∈ R0,

over a pseudo null base curve (figure 1).

Figure 1. A lightlike binormal surface over a pseudo null base curve

In order to classify a non-degenerate second kind twisted surfaces with parametriza-
tion (3.3) in terms of flat and minimal surfaces, we obtain that the coefficients

L(s, t) =
[xss, xs, xt]

||xs × xt||
, M(s, t) =

[xst, xs, xt]

||xs × xt||
, N(s, t) =

[xtt, xs, xt]

||xs × xt||
,

of the second fundamental form are given by

L(s, t) =
1

W (s, t)
[8t2e3bs + e2bs(8btg(t) + 16at+ 4bt2g′(t))

+ebs(8a2 + 4abtg′(t) + 2b2tg(t)g′(t))],

M(s, t) =
1

W (s, t)
[e2bs(4g(t)− 4tg′(t)) + ebs(2bg(t)g′(t)− 4ag′(t)(3.6)

−2btg′ 2(t))],

N(s, t) =
1

W (s, t)
(−2)g(t)g′′(t)ebs,
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where W (s, t) is given by

W (s, t) = ||xs × xt|| =
√
|EG− F 2|.

Theorem 3.2. The second kind twisted surface in E3
1 with parametrization (3.3)

is flat, if and only if it is a part of a cone

(3.7) x(s, t) = t((1− s2)ebs + cs, c− 2sebs, (1 + s2)ebs − cs),

whose base curve lies on a pseudosphere S2
1(c), c ∈ R+

0 , b ∈ R0.

Proof. By using the relation (3.6), it follows that LN −M2 = 0 if and only if the
next system of equations is satisfied:

−16g(t)g′′(t)t2 − (4g(t)− 4tg′(t))2 = 0,(3.8)

−2g(t)g′′(t)(8btg(t) + 16at+ 4bt2g′(t))− 2(4g(t) −(3.9)

4tg′(t))(2bg(t)g′(t)− 4ag′(t)− 2btg′ 2(t)) = 0,

−2g(t)g′′(t)(8a2 + 4abtg′(t) + 2b2tg(t)g′(t)) −(3.10)

(2bg(t)g′(t)− 4ag′(t)− 2btg′ 2(t))2 = 0.

The only solution of the above system of equations is g(t) = ct, c ̸= 0 and a = 0.
Substituting this in (3.3), we obtain parametrization (3.7). Consequently, the sec-
ond kind twisted surface is a cone with vertex at the origin, over the pseudospherical
curve

α(s) = ((1− s2)ebs + cs, c− 2sebs, (1 + s2)ebs − cs).

�

Theorem 3.3. There are no minimal second kind twisted surfaces in E3
1 with

parametrization (3.3).

Proof. Assume that it exists minimal second kind twisted surface in E3
1 , with

parametrization (3.3). By using the relations (3.4) and (3.6), it follows that EN −
2FM +GL = 0 if and only if the next system of equations is satisfied:

−8g(t)g′′(t)t2 + 8t2g′ 2(t)− (4g(t)− 4tg′(t))2 = 0,(3.11)

−2g(t)g′′(t)(8at+ 4btg(t)) + 8btg(t)g′ 2(t) + 16atg′ 2(t) +(3.12)

4bt2g′ 3(t)− (4g(t)− 4tg′(t))(2bg(t)g′(t)− 8ag′(t) −
2btg′ 2(t)) = 0.

−8g(t)g′′(t)a2 + g′ 2(t)(8a2 + 4abtg′(t) + 2b2tg(t)g′(t)) +(3.13)

4ag′(t)(2bg(t)g′(t)− 4ag′(t)− 2btg′ 2(t)) = 0.

The only solution of the above system of equations is g(t) = 0. Then relation (3.4)
implies EG− F 2 = 0, which is a contradiction. �

Theorem 3.4. The second kind twisted surface in E3
1 with parametrization (3.3)

has a non-zero constant Gaussian curvature K = c, if and only if it is a part of:

(a) a B-scroll with parametrization

(3.14) x(s, t) = (
s√
c
+

√
c

2
t(1− s2),

1√
c
−
√
cst,− s√

c
+

√
c

2
t(1 + s2)),

where c ∈ R+
0 ;
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(b) a pseudosphere S2
1(

1√
c
) with parametrization

x(s, t) = ((1− s2)(a+ tebs) +
s√
c
,−2s(a+ tebs) +

1√
c
,(3.15)

(1 + s2)(a+ tebs)− s√
c
),

where c ∈ R+
0 and a ∈ R0.

Proof. Assume that it exists the second kind twisted surface inE3
1 with parametriza-

tion (3.3) and a non-zero constant Gaussian curvature K = c ∈ R0. According to
(2.1), it holds

(3.16) LN −M2 = cg(U,U)(EG− F 2).

Since sgn g(U,U) = −sgn(EG− F 2) and substituting (3.4) and (3.6) in (3.16), we
obtain the system of equations:

(3.17) 16g(t)g′′(t)t2 + [4g(t)− 4tg′(t)]2 = c[8g(t)g′(t)t− 4g2(t)]2,

−2g(t)g′′(t)[8btg(t) + 16at+ 4bt2g′(t)]− 2[4g(t)− 4tg′(t)](3.18)

[2bg(t)g′(t)− 4ag′(t)− 2btg′ 2(t)] = −2c[8g(t)g′(t)t−
4g2(t)][4btg(t)g′ 2(t) + 8ag(t)g′(t)],

−2g(t)g′′(t)[8a2 + 4abtg′(t) + 2b2tg(t)g′(t)]− [2bg(t)g′(t)−(3.19)

4ag′(t)− 2btg′ 2(t)]2 = −c[4btg(t)g′ 2(t) + 8ag(t)g′(t)]2.

The only solutions of the above system of equations are (a) g(t) = 1√
c
, c ∈ R+

0 ,

a = 0; (b) g(t) = 1√
c
, c ∈ R+

0 , a ̸= 0;

(a) If g(t) = 1√
c
, c ∈ R+

0 and a = 0, substituting this in relation (3.3), we obtain

parametrization of the ruled surface

x(s, t) = ((1− s2)tebs +
s√
c
,−2stebs +

1√
c
, (1 + s2)tebs − s√

c
)

with null base curve

α(s) = (
s√
c
,
1√
c
,− s√

c
)

and null rulings

β(s) = ebs(1− s2,−2s, 1 + s2).

Normalizing the rulings, we may assume g(α′(s), β(s)) = 1. Hence the ruled surface
is a B-scroll with parametrization (3.14) (figure 2). This proves statement (a).

(b) If a ̸= 0 and g(t) = 1√
c
, substituting this in relation (3.3) we get parametriza-

tion (3.15). In this case, the second kind twisted surface is a pseudosphere S2
1(

1√
c
)

with center at the origin, which proves (b). �
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Figure 2. B-scroll

The following theorem can be proved analogously, so we omit its proof.

Theorem 3.5. The second kind twisted surface in E3
1 with parametrization (3.3)

has a non-zero constant mean curvature H = h, if and only if it is a part of:

(a) a B-scroll with parametrization

x(s, t) = (
s

h
+

h

2
t(1− s2),

1

h
− hst,− s

h
+

h

2
t(1 + s2)),

where h ∈ R+
0 ;

(b) a pseudosphere S2
1(h) with parametrization

x(s, t) = ((1− s2)(a+ tebs) +
s

h
,−2s(a+ tebs) +

1

h
, (1 + s2)(a+ tebs)− s

h
),

where h ∈ R+
0 and a ∈ R0.

(3.B) an axis l is a lightlike;

By rotating the profile curve α about an axis l through the point P (0, a, 0)
parallel with a null vector e2 = (1, 0, 1), we obtain parametrization

(3.20) x̄(s, t) =

 0
a
0

+

 1− b2s2

2 bs b2s2

2
−bs 1 bs

− b2s2

2 bs 1 + b2s2

2

 t
g(t)
t

 .

If b = 0, the rotation matrix in relation (3.20) is identity matrix. Hence assume b ∈
R\{0}. By using (3.20) and applying the simultaneous rotation of the supporting
plane π about an axis spanned by a null transversal vector e3 = ( 12 , 0,−

1
2 ), we get

that parametrization of the second kind twisted surface reads

(3.21) x(s, t) =

 1− s2

2 s − s2

2
−s 1 −s
s2

2 −s 1 + s2

2

 t+ bsg(t)
a+ g(t)
t+ bsg(t)

 .

Since both rotations are realized simultaneously, we use the same parameter s in
(3.21). We also use the factor b ̸= 0 in rotation matrix to indicate the fact that the
speeds of the rotations can be different.



ON THE SECOND KIND TWISTED SURFACES IN MINKOWSKI 3-SPACE 17

By using (3.21), a straightforward calculation shows that the coefficients E,F,G
of the first fundamental form of x(s, t) are given by

E(s, t) = g(xs, xs) = 4b2s2g(t)2 + 8bstg(t) + 4t2 + 4abg(t) + 4bg(t)2,

F (s, t) = g(xs, xt) = 2absg′(t) + 2a+ 2g(t)− 2tg′(t),(3.22)

G(s, t) = g(xt, xt) = g′ 2(t).

If EG− F 2 = 0, by using (3.22) we obtain system of equations:

g(t)2g′ 2(t)− a2g′ 2(t) = 0,

8btg(t)g′ 2(t)− 4abg′(t)(2a+ 2g(t)− 2tg′(t)) = 0,

g′ 2(t)(4t2 + 4abg(t) + 4bg(t)2)− (2a+ 2g(t)− 2tg′(t))2 = 0.

The only solutions of the above system of equations are (1) g(t) = a = 0; (2)
g(t) = −a, a ̸= 0.
(1) If g(t) = a = 0, the axis l coincide with the profile curve α, which is a contra-
diction.
(2) If g(t) = −a, a ̸= 0, substituting this in (3.21) we obtain that the second kind
twisted surface is a lightlike ruled surface with parametrization

x(s, t) = ab(s(s2 − 1), 2s2, s(−1− s2)) + t(1− s2,−2s, 1 + s2),

where α(s) = ab(s(s2 − 1), 2s2, s(−1 − s2)) is a spacelike base curve lying on a
lightcone. It can be easily verified that the rulings of the surface are the null
vectors. This proves the following theorem.

Theorem 3.6. A lightlike second kind twisted surfaces in E3
1 with parametrization

(3.21) are the lightlike ruled surfaces

x(s, t) = ab(s(s2 − 1), 2s2, s(−1− s2)) + t(1− s2,−2s, 1 + s2), a, b ∈ R0,

with null rulings, whose base curve lies on a lightcone (figure 3).

Figure 3. A lightlike ruled surface with null rulings

In order to classify a non-degenerate second kind twisted surfaces with parametri-
zation (3.21) in terms of flat and minimal surfaces, we obtain that the coefficients
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L, M and N of the second fundamental form are given by

L(s, t) =
1

W (s, t)
[8b3s3g2(t)g′(t) + s2(16b2tg(t)g′(t) + 8b2g2(t))

+s(16btg(t) + 8bt2g′(t) + 12b2g2(t)g′(t) + 8ab2g(t)g′(t))

+8t2 + 4btg(t)g′(t) + 8abg(t) + 8bg2(t)],

M(s, t) =
1

W (s, t)
[4ab2g′ 2(t)s2 + 4bs(g(t)g′(t)− tg′ 2(t) + 2ag′(t))(3.23)

−4tg′(t) + 2abg′ 2(t) + 4g(t) + 4a],

N(s, t) =
1

W (s, t)
(−2)g′′(t)(a+ g(t)),

where W (s, t) = ||xs × xt|| =
√
|EG− F 2|.

Theorem 3.7. There are no flat the second kind twisted surfaces in E3
1 with

parametrization (3.21).

Proof. Assume that it exists flat the second kind twisted surface in E3
1 , with

parametrization (3.21). By using the relation (3.23), it follows that LN −M2 = 0
if and only if the following system of equations is satisfied:

(3.24) 16a2b4g′ 4(t) = 0,

−16b3g2(t)g′(t)g′′(t)(a+ g(t))− 32ab3g′ 2(t)(g(t)g′(t)−(3.25)

tg′ 2(t) + 2ag′(t)) = 0,

−2g′′(t)(a+ g(t))(16b2tg(t)g′(t) + 8b2g2(t))− 16(bg(t)g′(t)−(3.26)

btg′ 2(t) + 2abg′(t))2 − 8ab2g′ 2(t)(−4tg′(t) +

2abg′ 2(t) + 4g(t) + 4a) = 0,

−2g′′(t)(a+ g(t))(16btg(t) + 8bt2g′(t) + 12b2g2(t)g′(t) +(3.27)

8ab2g(t)g′(t))− 8(bg(t)g′(t)− tbg′ 2(t) + 2abg′(t))(−4tg′(t) +

2abg′ 2(t) + 4g(t) + 4a) = 0,

−2g′′(t)(a+ g(t))(8t2 + 4btg(t)g′(t) + 8abg(t) + 8bg2(t))−(3.28)

(−4tg′(t) + 2abg′ 2(t) + 4g(t) + 4a)2 = 0.

The only solution of the above system of equations is g(t) = −a, which implies
that the surface is a lightlike. A contradiction. �
Theorem 3.8. There are no minimal the second kind twisted surfaces in E3

1 with
parametrization (3.21).

Proof. Assume that it exists minimal the second kind twisted surface in E3
1 , with

parametrization (3.21). By using the relations (3.22) and (3.23), it follows that
EN − 2FM +GL = 0 if and only if the next system of equations is satisfied:

(3.29) b3g2(t)g′ 3(t)− 2a2b3g′ 3(t) = 0,

g′′(t)b2(a+ g(t))g2(t)− 2b2tg(t)g′ 3(t)− b2g2(t)g′ 2(t) +(3.30)

2ab2g′(t)[g(t)g′(t)− tg′ 2(t) + 2ag′(t)] + ab2g′ 2(t)(2a+

2g(t)− 2tg′(t)) = 0,



ON THE SECOND KIND TWISTED SURFACES IN MINKOWSKI 3-SPACE 19

−4bg′′(t)(a+ g(t))tg(t) + 4btg(t)g′ 2(t) + 2bt2g′ 3(t) +(3.31)

3b2g(t)2g′ 3(t) + 2ab2g(t)g′ 3(t)− abg′(t)(−4tg′(t) +

2abg′ 2(t) + 4g(t) + 4a)− 2b(2a+ 2g(t)− 2tg′(t))(g(t)g′(t)−
tg′ 2(t) + 2abg′(t)) = 0,

−2g′′(t)(a+ g(t))(4t2 + 4abg(t) + 4bg(t)2) + g′ 2(t)(8t2 +(3.32)

4btg(t)g′(t) + 8abg(t) + 8bg2(t))− 4(a+ g(t)− tg′(t))(−4tg′(t) +

2abg′ 2(t) + 4g(t) + 4a) = 0.

The only solution of the above system of equations is g(t) = −a. This implies that
the surface is a lightlike, which is a contradiction. �

Theorem 3.9. The second kind twisted surface in E3
1 with parametrization (3.21)

has a non-zero constant Gaussian curvature K = c, if and only if it is a part of

pseudosphere S2
1(

√
c
c ) with parametrization

x(s, t) = ((1− s2)(t+ bs(

√
c

c
− a)) + s

√
c

c
,

√
c

c
− 2s(t+ bs(

√
c

c
− a)),(3.33)

(1 + s2)(t+ bs(

√
c

c
− a))− s

√
c

c
),

where a ∈ R, b ∈ R0, c ∈ R+
0 and

√
c
c ̸= a.

Proof. Assume that it exists the second kind twisted surface inE3
1 with parametriza-

tion (3.21) and a non-zero constant Gaussian curvature K = c ∈ R0. According to
(2.1), it holds

(3.34) LN −M2 = cg(U,U)(EG− F 2).

Since sgn g(U,U) = −sgn(EG − F 2) and substituting (3.22) and (3.23) in (3.34),
we obtain the system of equations:

(3.35) 16a2b4g′ 4(t) = c(4b2g2g′ 2 − 4a2b2g′ 2)2,

16b3g(t)2g′(t)g′′(t)(a+ g(t)) + 32ab3g′ 2(t)(g(t)g′(t)−(3.36)

tg′ 2(t) + 2ag′(t)) = c(8b2g2(t)g′ 2(t)− 8a2b2g′ 2(t))

(8btg(t)g′ 2(t)− 4abg′(t)(2a+ 2g(t)− 2tg′(t))),

2g′′(a+ g(t))(16btg(t)g′(t) + 8b2g(t)2) + 16(bg(t)g′(t)−(3.37)

btg′ 2(t) + 2abg′(t))2 + 8ab2g′ 2(t)(−4tg′(t) +

2ag′ 2(t) + 4g(t) + 4a) = c[(8b2g2(t)g′ 2(t)− 8b2a2g′ 2(t))

(g′ 2(t)(4t2 + 4abg(t) + 4bg2(t))− (2a+ 2g(t)− 2tg′(t))2) +

(8btg(t)g′ 2(t)− 4abg′(t)(2a+ 2g(t)− 2tg′(t)))2],

2g′′(t)(a+ g(t))(16btg(t) + 8bt2g′(t) + 12b2g(t)2g′(t) +(3.38)

8ab2g(t)g′(t)) + 8(bg(t)g′(t)− btg′ 2(t) + 2abg′(t))

(−4tg′(t) + 2ag′ 2(t) + 4g(t) + 4a) = c[(16btg(t)g′ 2(t)− 8abg′(t)

(2a+ 2g(t)− 2tg′(t)))(g′ 2(t)(4t2 + 4abg(t)) +

4bg(t)2)− (2a+ 2g(t)− 2tg′(t))2],



20 MILICA GRBOVIĆ, EMILIJA NEŠOVIĆ AND ANICA PANTIĆ

2g′′(t)(a+ g(t))(8t2 + 4btg(t)g′(t) + 8abg(t) + 8bg(t)2) + (4tg′(t) +(3.39)

2ag′ 2(t) + 4g(t) + 4a)2 = c[g′ 2(t)(4t2 + 4abg(t) + 4bg(t)2)− (2a+

2g(t)− 2tg′(t))2]2.

The only solution of the above system of equations is g(t) =
√
c
c − a ̸= 0. Substi-

tuting this in relation (3.21), we obtain parametrization (3.33). Since g(x, x) = 1
c ,

the second kind twisted surface is a pseudosphere S2
1(

√
c
c ). �

Analogously, the last theorem can be proved.

Theorem 3.10. The second kind twisted surface in E3
1 with parametrization (3.21)

has a non-zero constant mean curvature H = h, if and only if it is a part of
pseudosphere S2

1(
1
h ) with parametrization

x(s, t) = ((1− s2)(t+ bs(
1

h
− a)) +

s

h
,
1

h
− 2s(t+ bs(

1

h
− a)),

(1 + s2)(t+ bs(
1

h
− a))− s

h
),

where a ∈ R, b ∈ R0, c ∈ R+
0 and 1

h ̸= a.
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