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ABSTRACT. In the present paper we study 3-dimensional normal almost para-
contact metric manifolds admitting Ricci solitons and gradient Ricci solitons.
We give an example of 3-dimensional normal almost paracontact metric man-
ifold. It is shown that if in a 3-dimensional normal almost paracontact metric
manifold with «, 8 = constant the metric is Ricci soliton, where potential vec-
tor field V' is collinear with the characteristic vector field £, then the manifold
is n-Einstein. We also prove that an n-Einstein 3-dimensional normal almost
paracontact metric manifold with «, f = constant and V = £ admits a Ricci
soliton. Furthermore, we show that if a 3-dimensional normal almost paracon-
tact metric manifold admits a Ricci soliton (g, &, A) then the Ricei soliton is
shrinking.

1. INTRODUCTION

The notion of Ricci soliton was introduced by Hamilton [17] in 1982. A Ricci
soliton is a natural generalization of an Einstein metric. A pseudo-Riemannian
manifold (M, g) is called a Ricci soliton if it admits a smooth vector field V' (po-
tential vector field) on M such that

(1.1) % (£v 9) (X,Y) + S(X,Y) + Ag(X,Y) = 0,

where £y denotes the Lie-derivative in the direction V, A is a constant and X, Y
are arbitrary vector fields on M. A Ricci soliton is said to be shrinking, steady
or expanding according to A being negative, zero or positive, respectively. It is
obvious that a trivial Ricci soliton is an Einstein manifold with V' zero or Killing.
Since Ricci solitons are the fixed points of the Ricci flow, they are important in
understanding Hamilton’s Ricci flow [18] : % gi; = —28;;, viewed as a dynamical
system, on the space of Riemannian metrics modulo diffeomorphisms and scalings.
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In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process
that deforms the metric of a Riemannian manifold in a way formally analogous to
the diffusion of heat, smoothing out irregularities in the metric.

The vector field V' generates the Ricci soliton viewed as a special solution of the
Ricci flow, and is called the generating vector field. A Ricci soliton is said to be a
gradient Ricci soliton if the generating vector field V' is the gradient of a potential
function —f, that is V = -V f.

Some basic facts about Ricci solitons are given in following;:

1. Compact steady or expanding solitons are Einstein in all dimensions [17, 19];

2. Compact shrinking solitons in dimension n = 2 and n = 3 must be of positive
constant curvature [18, 19];

3. Compact Ricci solitons are always gradient Ricci solitons [6, 25].

If the manifold is Euclidean space, or more generally Ricci-flat, then Ricci flow
leaves the metric unchanged. Conversely, any metric unchanged by Ricci flow is
Ricci-flat. For a compact Einstein manifold, the metric is unchanged under nor-
malized Ricci flow. Conversely, any metric unchanged by normalized Ricci flow is
Einstein.

Geometric flows, especially Ricci flows, have become important tools in theoret-
ical physics. Ricci soliton is known as quasi Einstein metric in physics literature
and solutions of the Einstein field equations correspond to Ricci solitons [1, 14].
See also, [10, 22, 31].

Sharma [26] initiated the study of Ricci solitons in contact geometry as a K-
contact metric. The authors in [16] studied gradient Ricci soliton of a non-Sasakian
(K, pt)-contact manifold. Sharma and Ghosh [27] proved that Sasakian 3-manifold
as a Ricci soliton represents the Heisenberg group. We also refer [11, 15, 23, 28, 29]
for further read.

In spite of introducing and studying firstly in Riemannian geometry, the Ricci
soliton equation has recently been investigated in pseudo-Riemannian context, es-
pecially in Lorentzian case (see [4, 5, 24]).

These circumstances motivated us to study the Ricci solitons in paracontact
geometry. As a first step we consider 3-dimensional normal almost paracontact
metric manifolds.

The study of paracontact geometry was initiated by Kaneyuki and Konzai in
[20]. The authors defined almost paracontact structure on a pseudo-Riemannian
manifold M of dimension (2n+1) and constructed the almost paracomplex structure
on M2+ x R. Recently, Zamkovoy [34] studied paracontact metric manifolds and
some important subclasses like para-Sasakian manifolds. Especially, in the recent
years, many authors [2, 3, 7, 8, 13] have pointed out the importance of paracontact
geometry, and in particular of para-Sasakian geometry, by several papers giving
the relationships with the theory of para-K&hler manifolds and its role in pseudo-
Riemannian geometry and mathematical physics.

The paper is organized as follows. Section 2 is devoted to some basic defini-
tions for 3-dimensional normal almost paracontact metric manifolds. In section
3, we obtain some curvature identities for a 3-dimensional normal almost para-
contact metric manifold and construct an example. In section 4, we prove that if
a 3-dimensional non-paracosymplectic normal almost paracontact metric manifold
with «, 8 =constant admits a Ricci soliton and V' is pointwise collinear with the
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structure vector field £, then V is a constant multiple of £, the manifold is an 7-
Einstein manifold and the Ricci soliton is shrinking. Moreover, we show that if
a 3-dimensional non-paracosymplectic normal almost paracontact metric manifold
with «, 8 =constant is an n-Einstein manifold then the manifold admits a Ricci
soliton. In section 5, we obtain some results for a 3-dimensional normal almost
paracontact metric manifold admitting gradient Ricci soliton.

2. 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS

A differentiable manifold M of dimension (2n + 1) is called almost paracontact
manifold with the almost paracontact structure (¢, &, n) if it admits a tensor field
v of type (1, 1), a vector field &, a 1—form 7 satisfying the following conditions [20]:

(2.1) P’ =I-nQ®¢,

(2.2) nE) =1, ¢{=0,
where I denotes the identity transformation. Moreover the tensor field ¢ induces
an almost paracomplex structure on the paracontact distribution D = kern, i.e.
the eigendistributions D* corresponding to the eigenvalues +1 of ¢ are both n-
dimensional. As an immediate consequences of the conditions (2.1) and (2.2) we
have
now=20, rank(p)=2n.

If a (2n + 1)-dimensional almost paracontact manifold M with an almost para-

contact structure (¢, £, n) admits a pseudo-Riemannian metric g such that [34]

(2.3) g(pX,9Y) = —g(X,Y) +n(X)n(Y), X,Y eTM,

then we say that M is an almost paracontact metric manifold with an almost para-
contact metric structure (¢,&, 7, g) and such metric g is called compatible metric.
Any compatible metric g is necessarily of signature (n + 1,n).

From (2.3) it can be easily seen that [34]

(2.4) 9(X,9Y) = —g(pX,Y),

(2.5) 9(X, &) = n(X),

for any X, Y € TM. The fundamental 2-form of M is defined by
O(X,Y) = g(X, ¢Y).

An almost paracontact metric structure becomes a paracontact metric structure if
g(Xa SDY) = dn(Xv Y)7

for all vector fields X, Y, where dn(X,Y) = 3{Xn(Y) — Yn(X) — n([X,Y])}.

For a (2n+ 1)-dimensional manifold M with an almost paracontact metric struc-
ture (¢,&,n,¢g) one can also construct a local orthonormal basis. Let U be coordi-
nate neighborhood on M and X; any unit vector field on U orthogonal to €. Then
X7 is a vector field orthogonal to both X; and ¢, and |pX;|> = —1. Now choose
a unit vector field X5 orthogonal to £, X7 and ¢pX;. Then X5 is also vector field
orthogonal to &, X1, ¢X; and X, and |pX»|?> = —1. Proceeding in this way we

obtain a local orthonormal basis (X;, ¢X;,§), (i = 1,2,...,n), called a p-basis [34].
An almost paracontact metric manifold is said to be normal if [21]

(2.6) N(X,Y) — 2dn(X,Y)¢ = 0,
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where N is the Nijenhuis torsion tensor of ¢ given by
(2.7) N(X,Y) = ¢*[X, Y]+ [pX, Y] — 0 [pX,Y] = ¢ [X, Y],

for all X, Y € TM. The normality condition says that the almost paracomplex
structure J on M?" ™! x R is defined by [21]

(2.9 7 (x.15) = (ex+ e )

is integrable (paracomplex).
The following Proposition presents conditions equivalent to the normality of 3-
dimensional almost paracontact metric manifold for later use.

Proposition 2.1. [32]For a 3-dimensional almost paracontact metric manifold M,
the following three conditions are mutually equivalent

(i) M is normal,

(ii) there exists functions o, 8 on M such that

(2.9) (Vx )Y =B (9(X,Y)E = n(Y)X) —a(g(pX,Y)§ = n(Y)eX),
(i4i) there exist functions o, 8 on M such that
(2.10) Vx §=a(X —n(X)§) + BeX.

Corollary 2.1. [32] The functions «, 8 realizing (2.9) as well as (2.10) are given
by
(2.11) 200 = trace{X — Vx &}, 26 = trace{X — ¢V x &}

A 3-dimensional normal almost paracontact metric manifold is said to be
e paracosymplectic [9] if « = 8 =0,
e quasi-para-Sasakian [12, 32] if and only if & = 0 and 8 # 0,
e [-para-Sasakian [32, 34] if and only if & = 0, 8 # 0 and § is constant, in
particular, para-Sasakian if g = —1 ,
e a-para-Kenmotsu [33] if & # 0 and « is constant and 5 = 0.

3. SOME BASIC CURVATURE IDENTITIES

In this section we obtain some curvature identities for a 3-dimensional normal
almost paracontact metric manifold.

Let M be a 3-dimensional normal almost paracontact metric manifold. Then we
have

RX,Y)¢ = —{Ya+(@®+B8mY)}*X + {Xa+ (& + B )n(X)} ¢*Y
(3.1) —{YB+2aBn(Y)} X +{XB + 2a8n(X)} ¢,
(3.2) S(Y,8) = -Ya— (Ca+2(a” + B2) n(Y) + oY B,
(3.3) §B+2ap =0,

forall X, Y € TM.
In a 3-dimensional semi-Riemannian manifold, it is well known that the curvature
tensor always satisfies

(34) RX,Y)Z = g(Y,2)QX —g(X,Z)QY +S(Y,Z)X — S(X,Z)Y
-5 (9. 2)X — (X, 2)Y),
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where X, Y, Z € TM, @ is the Ricci operator and r is the scalar curvature of the
manifold [30].

Now let R(X,Y,Z,W) = g(R(X,Y)Z,W), for all X,Y,Z € TM. From (3.4)
and (3.1) we have

(3.5) R(E,Y,Z,€) = (€a+ (a® + 7)) g(¢Y. pZ).

Proposition 3.1. For a 3-dimensional normal almost paracontact metric manifold
with o, B =constant, we have

(36)  S(LY) == (5 +a%+82) g (eX,0Y) +2(a? + Bn(X)n(Y),

(3.7) QX = (5 +0a+ %) X + (=5 +a® + B2) n(X)&,
forall XY € TM.

Proof. From (3.2), (3.4) and (3.5), the proof is straightforward.
Using (3.6) in (3.4), we have following

Lemma 3.1. Let M be a 3-dimensional normal almost paracontact metric manifold
with a, B =constant, then the Riemannian curvature tensor satisfies

RX,Y)Z = (5+2(a®+8%)) (oY, 2)X - g(X,Z)Y)
(X >(~+a +8%) n(¥)g
(3.8) + +a +ﬁ2) n(Y)n(Z)X

+g(K 2) (=5 +a? +82) n(X)¢
(-5 + a2+ B) nOm2)Y,
where X,Y,Z € TM and r is the scalar curvature.

From (3.3), we also have

Proposition 3.2. Let M be a 3-dimensional normal almost paracontact metric
manifold. If o, B =constant, then M is either S-para-Sasakian, a-para-Kenmotsu
or paracosymplectic.

Note that g-para-Sasakian manifolds are quasi-para-Sasakian.
Now we shall give an example of 3-dimensional normal almost paracontact metric
manifold.

Example 3.1. Let M be the 3-dimensional real number space endowed with a
coordinate system (z,y, z) such that z # 0 and a semi-Riemannian metric of index
1 which is defined by

dx? — dy® + dz?
(3.9) e
We can define an orthonormal basis for the tangent space of M by
(3.10) el = z%, er = Z[“%’ e = z%

Now we consider
pe; = €z, pe2 = €1, pes = Oa
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E=e3, nN(Z)=g(Zes), forall ZeTM.
Then we have

and

9(0Z, W) = —g(Z, W) + n(Z)n(W),
for all Z,W € T'M, which imply that the set (¢,£,7,¢g) is an almost paracontact
metric structure on M.

The nonvanishing Christoffel symbols of M are
1

F%g = _F% = ng = F%za = Fga =~
Then for the covariant derivatives of the Levi-Civita connection of the metric g
defined by (3.9), we have

Ve e1=e3, Veer =0, Vges=—eq,
(311) v62€1 = O, v6262 = —€s3, ve263 = —€9g,
ve3€1 = 0, Ve3€2 = 0, ve363 = 0,

where {e1,e9,e3} is the orthonormal basis for the tangent space given by (3.10).
From (3.11) we see that the equation (2.9) is satisfied for « = —1 and g = 0.
Hence, M is a 3-dimensional normal almost paracontact metric manifold with
«, 3 =constant.

4. Riccl SOLITON

In this section, we consider a 3-dimensional normal almost paracontact metric
manifold M admitting a Ricci soliton defined by (1.1). Let V be a pointwise
collinear vector field with the structure vector field £, that is V = b€, where b is a
function on M. From (1.1) we write

(4.1) g(Vx b6, Y)+g(X,Vy b)) +25(X,Y) +2A9(X,Y) =0
for X, Y € TM. Then, we have
(4.2) (X0)n(Y) +bg(Vx £,Y) + (Yb)n(X)

+bg(X,Vy &) +25(X,Y) +2X9(X,Y) =0,

which implies

(4.3) (X0)n(Y) + (Yb)n(X) + 2abg(X,Y)
—2abn(X)n(Y) +2S(X,Y) 4+ 2xg9(X,Y) =0,

by virtue of (2.10). By putting ¥ = ¢ in (4.3) and using (3.6) we obtain

(4.4) Xb+ (Eb)n(X) +4(a” + B*)n(X) + 2xn(X) = 0.
Taking X = £ in the previous equation gives
(4.5) eb=—(2(a®+ 8% + ).

If we replace (4.5) in (4.4), we get

Xb=—(2(a” + B%) + Mn(X),
which yields
(4.6) db = —(2(® + ) + \)n.
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Applying d on both sides of the last equation, we have
(2(e® + B%) + A)dn = 0.

In a normal almost paracontact metric manifold, since dn # 0 we have
(4.7) 2(a® + B%) = =),
which implies

db = 0, that is, b = constant,
by virtue of (4.6). Thus, using constancy of b in (4.3) we obtain
(4.8) S(X,)Y)=-(A+ab)g(X,Y) + abn(X)n(Y),
for all X,Y € TM. Hence we have,

Theorem 4.1. Let M be a 3-dimensional non-paracosymplectic normal almost
paracontact metric manifold with o, =constant. If M admits a Ricci soliton
and V is pointwise collinear with the structure vector field &, then V is a constant
multiple of € and M is an n-Finstein manifold.

Let assume the converse, that is, let M be a 3-dimensional n-Einstein normal
almost paracontact metric manifold with «, f =constant and V' = £. Then we can
write

(4.9) S(XY) = ng(X,Y) + pn(X)n(Y),
where p, p are scalars and X, Y € TM. From (2.10) we have
(£eg) (X,Y) = g(Vx&Y) +9(X, Vy §)
(4.10) = 2a9(X,Y) —2an(X)n(Y),
which implies that
(4.11) (£e9) (X,Y)+25(X,Y)+2)g(X,)Y) = 2(a+p+N)gX,Y)
—2(a = p)n(X)n(Y).
From the previous equation it is obvious that M admits a Ricci soliton (g, §, A) if
a+pu+A=0

and

p = a = constant.
Equating the right hand sides of (3.6) and (4.9) and taking X =Y = ¢ gives
2(a® + B%) = p+p,
that is,
p = 2(a* + %) — a = constant.
Thus, we get

Theorem 4.2. Let M be a 3-dimensional non-paracosymplectic normal almost
paracontact metric manifold with o, B =constant. If M is an n-FEinstein manifold
with S = pg + pn ®n, then the manifold admits a Ricci soliton (g,&, —(u + p)).
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Now taking V = £, the equation (1.1) becomes
(4.12) (£eg) (X,Y) +25(X,Y) 4+ 2)\g(X,Y) =0,
for all X,Y € TM. By using (2.10) it is easy to see that
(4.13) (£e9) (X,Y) = 20 (g(X,Y) = n(X)n(¥)).
Using (4.13) and (3.6) we have
(4.14) (£e9) (X, Y)+2S(X,Y) = {r+2(a®+8%)}g(X,Y)

—{r—2(®+8%*—a)}n(X)nY).
Replacing the last equation in (4.12) we obtain
(4.15) {r+2(@®+ 8% +a+ AN} g(X,Y)—{r—2(a?+ 8% - a)} n(X)n(Y) =0.
Putting X =Y = ¢ in (4.15) gives
A= —(a? + 7).

Thus, we have

Theorem 4.3. If a 3-dimensional non-paracosymplectic normal almost paracontact
metric manifold with o, 8 =constant admits a Ricci soliton (g,&, \) then the Ricci
soliton is shrinking.

Now let us denote £¢ g +2S by B. Then from (4.14) we write
(4.16) B(X,Y)={r+2(a®+8%)}g(X,Y)—{r—2(a®+ %> —a) } n(X)n(Y),

for any X,Y € TM. Taking into account (4.12) it is obvious that B is a parallel
symmetric (0, 2)-tensor field. Thus using (4.16) we have

0 = (VyB)(X,Y)
dr(U) {9(X,Y) =n(X)n(Y)}
—{r—2(a®+ 52 =)} {(Von) (X)n(Y) +n(X) (Von) (V)}
Taking X =Y = ¢; in the last equation above we get
dr = 0.
Here {e;}, i = 1,2, 3, is an orthonormal basis of T,M, ¥p € M. So we have

Theorem 4.4. If a 3-dimensional non-paracosymplectic normal almost paracontact
metric manifold M with o, 8 =constant admits a Ricci soliton (g,&, \) then M s
of constant scalar curvature.

5. GRADIENT RICCI SOLITON

A Ricci soliton is said to be a gradient Ricci soliton if the generating vector field
V is the gradient of a potential function —f, that is V' = —V f. In this case (1.1)
takes the form

(5.1) VVf=5+Mg.

Let M be a 3-dimensional non-paracosymplectic normal almost paracontact metric
manifold with «, 8 =constant. From (5.1) for any Y € TM we write

(5.2) Vy gradf = QY + \Y,
which gives
(5.3) R(X,Y)gradf = (Vx Q)Y — (Vy Q) X,
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where @ is the Ricci operator of the manifold and X € TM. By using (3.7) we get

vex = " x e

(5.4) + (=5 + a2+ 82) {al(g(X,U) = n(X)n(U))E + U]
+B89(X, pU)§ +n(X)eUl},
for all U € TM. Taking U = ¢ in (5.4) we obtain

65 (Ve X =T (0 yx)e) (<L 10?4 82) an(x) 1)

If we put X =¢ in (5.4) we also get

(5.6) (Vo Q)€ =~ (5 +a*+ ) (a(n(U) — 1) - V).
So from (5.5) and (5.6) we have

(5.7) 9(VeQ) X — (Vx Q)§,¢) =0,

which implies

(5-8) g9 (R(§, X)gradf,§) = 0.

Using (3.5) in the last equation we obtain

(5.9) 0= (a®+ %) {~g(X, gradf) + n(X)n(gradf)}.
Since o + 82 # 0, we get

(5.10) 9(X, gradf) = n(X)n(gradf),

which implies

(5.11) gradf = £(f)e.

Now using (5.11) in (5.1) we write

g(Y (£) €+ (£f) Vv &, X).

Thus, we have

S(XY)+M(XY) = Y (Ef)n(X)
(5.12) + () {alg(X,Y) =n(X)n(Y)) + Bg(X, ¢Y)},
by virtue of (2.10). Taking X = ¢ in the last equation and using (3.6) we have
(5.13) Y (€f) = (=2 (a® + %) + An(Y).
Interchanging the roles of X and Y in (5.12) gives

SY,X)+ MY, X) = X(Ef)n(Y)
(5.14) + (€N){alg(Y, X) —n(Y)n(X)) + Bg(Y, X))} .

Since the Ricci tensor and the metric is symmetric from (2.4), (3.1) and (3.3) we
obtain

25(X,Y) +20(X,Y) = X(Ef)n(Y)+Y (£f)n(X)
(5.15) 2 (&f) (9(X,Y) = n(X)n(Y)),
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which implies

9(RQX,)Y)+ X g(X.Y) = a(éf)g(X.Y)
(5.16) +(=2(a” + %) + A = a (£f)) n(X)n(Y),
by virtue of (5.13). Then from (5.2) and (5.16) we get
(5.17) Vy gradf = a(§f)Y + (A—2(a® + 8%) — a (£f)) n(Y)E.

By using the last equation one obtains

R(X,Y)gradf = aof{X (/)Y -V (£f) X — (X (&f)n(Y) =Y (£f)n(X)) &}
(5.18) H(=2(a®+8%) + A —a €NV Y = (Vyn) X)€

+n(Y)Vx & —n(X)Vy ¢}

and from (5.11) we get
(5.19) 0= g(R(X,Y)gradf,&) =28(=2(a® + %) + A — a (£/)g(¢X,Y),
for all X,Y € T'M. Hence, we conclude
(5.20) B(=2 (e + %) + A —a(&f) =0,
which implies following three cases:

Case I : If p = 0 then the manifold is a a-para-Kenmotsu manifold.
Case II : If =2 (a? + 8%) + XA — a ({f) = 0, then from (5.13) we have

(5.21) Y (f) = —a(&f)n(Y).
Using the last expression, equation (5.13) reduces to
(5.22) SX,Y)+Mg(X)Y) =a(lf)g(X,Y).

Putting X =Y = ¢;, where {e;}, i = 1,2,3, is an orthonormal basis of T,M,
Vp € M in (5.22) and then taking a sum gives

r 4+ 3\ =3a(&f),

which implies that r = —3A\, that is, r is a constant.
Case IIT : If B = 0 and —2 (a? 4+ 5%) + X — a ({f) = 0 then we get
A
(ff) = 2« + K]
Q@

which implies that (f) = ¢ =constant. Then from (5.11) we have
4f(X) = en(X).
Applying d to the both sides of the last equation we get
cdn = 0.

Since dn # 0 then we see that ¢ = 0 and so f is a constant function. Hence, (5.1)
reduces to

S =—\g = —2a’%g.
According to three cases given above, we have

Theorem 5.1. If a 3-dimensional non-paracosymplectic normal almost paracon-
tact metric manifold with o, 8 =constant admits a gradient Ricci soliton then the
manifold is an a-para-Kenmotsu manifold , or of constant scalar curvature or Ein-
stein.



44

(12]
(13]

[14]
(15]

(16]

[17]
(18]

(19]
20]

21]
22]
23]
24]
[25]
[26]
27]
28]

29]

(30]

SELCEN YUKSEL PERKTAS AND SADIK KELES

REFERENCES

Akbar, M.M., Woolgar, E., Ricci solitons and Einstein-scalar field theory , Class. Quantum
Grav., 26, 055015 (14pp), 2009, doi:10.1088,/0264-9381/26/5/055015.

Alekseevski, D. V., Cortés, V., Galaev, A. S., Leistner, T. , Cones over pseudo-Riemannian
manifolds and their holonomy, J. Reine Angew. Math., 635 (2009), 23-69.

Alekseevski, D. V., Medori, C., Tomassini, A., Maximally homogeneous para-CR manifolds,
Ann. Global Anal. Geom., 30 (2006), 1-27.

Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S., Three-dimensional
Lorentzian Homogenous Ricci Solitons, Israel J Math 188 (2012), 385-403.

Case, J. S., Singularity theorems and the Lorentzian splitting theorem for the Bakry Emery
Ricci Tensor, Journal of Geometry and Physics 60 (2010), 477-490.

Chow, B., Knopf, D., The Ricci flow: an introduction, volume 110 of Mathematical Surveys
and Monographs, American Mathematical Society, Providence, RI, 2004.

Cortés, V., Mayer, C., Mohaupt, T., Saueressing, F., Special geometry of Euclidean super-
symmetry 1. Vector multiplets, J. High Energy Phys., 0403 (2004), 028, 73 pp.

Cortés, V., Lawn, M. A., Schéfer, L., Affine hyperspheres associated to special para-Kéhler
manifolds, Int. J. Geom. Methods Mod. Phys., 3 (2006), 995-1009.

Dacko, P., On almost paracosymplectic manifolds, Tsukuba J. Math. 28 (2004), no.1, 193-213.
Das, S., Prabhu, K., Sayan K., Int. J. Geom. Methods Mod. Phys. 07, 837 (2010).
DOI:10.1142/50219887810004579.

De, U.C., Turan, M., Yildiz, A., De, A., Ricci solitons and gradient Ricci solitons on 3-
dimensional normal almost contact metric manifolds, Publ. Math. Debrecen, Ref. no.: 4947,
(2012), 1-16.

Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (¢, ¢’)-
holomorphic maps between them, Houston J. Math., 28 (2002), 21-45.

Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (¢, ¢’)-
holomorphic maps between them, Houston J. Math., 28 (2002), 21-45.

Friedan, D., Nonlinear models in 2 + € dimensions, Ann. Phys., 163(2), 318-419, 1985.
Ghosh, A., Kenmotsu 3-metric as a Ricci soliton, Chaos, Solitons & Fractals 44 (8), 2011,
647-650.

Ghosh, A., Sharma, R., Cho, J.T., Contact metric manifolds with n-parallel torsion tensor,
Annals of Global Analysis and Geometry, 34, 287-299, 2008.

Hamilton, R. S., Three-manifolds with positive Ricci curvature. J. Di . Geo., 17:255-306,1982
Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (SantaCruz,
CA,1986), Contemp. Math. 71, A.M.S., 237-262, 1988.

Ivey, T., Ricci solitons on compact 3-manifolds, Differential Geo. Appl. 3, 301-307, 1993.
Kaneyuki, S., Konzai, M., Paracomplex structure and affine symmetric spaces, Tokyo J.
Math., 8 (1985), 301-308.

Kaneyuki, S., Willams, F. L., Almost paracontact and parahodge structure on manifolds,
Nagoya Math. J., 99, 173-187, 1985.

Kholodenko, A. L., Towards physically motivated proofs of the Poincaré and the geometriza-
tion conjectures, Journal of Geometry and Physics 58, 259-290, 2008.

Nagaraja, H.G., Premalatha, C.R., Ricci solitons in Kenmotsu manifolds, Journal of Mathe-
matical Analysis, vol. 3, no. 2, pp. 18-24, 2012.

Payne, T. L., The existence of soliton metrics for nilponent Lie Groups, Geometriae Dedicate
145 (2010), 71-88.

Perelman, G., The entropy formula for the Ricci flow and its geometric applications,
ArXiv:math.DG/0211159

Sharma, R., Certain Results on K-Contact and (k, u)-Contact Manifolds, J. Geom. 89 (2008),
138-147.

Sharma, R., Ghosh, A., Sasakian 3-manifolds as a Ricci soliton represents the Heisenberg
group, International Journal of Geometric Methods in Modern Physics, 2011 08:01, 149-154
Tripathi, M.M., Ricci solitons in contact metric manifolds, arXiv:0801.4222, 2008.

Turan, M., De, U.C., Yildiz, A. Ricci solitons and gradient Ricci solitons in three-
dimensional trans-Sasakian manifolds, Filomat, Volume 26, Issue 2, Pages: 363-370, 2012,
doi:10.2298 /F1L1202363T.

Willmore, T.J., Differential Geometry, Clarendon Press, Oxford, 1958.



RICCI SOLITONS IN 3-DIMENSIONAL NORMAL ALMOST PARACONTACT... 45

[31] Woolgar, E., Some applications of Ricci flow in physics, Canadian Journal of Physics, 2008,
86(4): 645-651, 10.1139/p07-146.

[32] Welyczko, J., Legendre curves in 3-dimensional Normal almost paracontact metric manifolds,
Result. Mth. 54 (2009), 377-387.

[33] Welyczko, J., Slant curves in 3-dimensional normal almost paracontact metric manifolds,
Mediterr. J. Math. 11 (2014), no. 3, 965978.

[34] Zamkovoy, S.,Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geo., 36
(2009), 37-60.

ADIYAMAN UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS,
02040, ApiyAMAN/TURKEY.
E-mail address: sperktas@adiyaman.edu.tr

INONT UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS, 44280,
MaLaTYA/TURKEY.
E-mail address: sadik.keles@inonu.edu.tr



