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(Communicated by Yusuf YAYLI)

Abstract. In this paper, we study lightlike hypersurfaces with parallel screen

shape operator. The main result is a characterization theorem for lightlike with
parallel screen shape of a Lorentzian space form.

1. Introduction

The theory of hypersurfaces, defined as submanifolds of codimension one, is
one of the fundamental theories of submanifolds. As it is known, the main differ-
ence between the geometry of hypersurface in Riemannian manifold and in semi-
Riemannian manifold is that in the latter case the induced metric tensor field by the
semi-Riemannian metric on the ambient space is not necessarily non-degenerate. If
the induced metric tensor field is degenerate, the classical theory of Riemannian
and semi-Riemannian hypersurfaces fails since the normal bundle and the tangent
bundle of the hypersurface have a non zero intersection.

The main purpose of the present paper is to give a characterization of lightlike
hypersurfaces with parallel screen shape of a Lorentzian space form. Section 2 cov-
ers useful preliminaries for study the geometry of lightlike hypersurfaces. In Section
3, we prove that lightlike hypersurface M with parallel screen shape operator is ei-
ther totally geodesic or totally umbilic and if the screen is conformal, then M is
locally a lightlike triple product manifold (Theorem 3.1). At the end of section, we
prove that results obtained in this paper are stable with any change of null section
ξ ∈ Rad(TM).

2. Preliminaries on Lightlike hypersurfaces

Let (M, g) be a (m+2)-dimensional semi-Riemannian manifold of index ν, (0 <
ν < m + 2). Consider a hypersurface M of M and denote by g the tensor field
induced by g on M . We say that M is a lightlike (degenerate, null) hypersurface if
rank(g) = m. Then the normal vector bundle TM⊥ intersects the tangent bundle
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along a nonzero differentiable distribution called the radical distribution of M and
denoted by Rad(TM):

(2.1) Rad(TM) : x 7→ Rad(TxM) = TxM ∩ TxM
⊥.

A screen distribution S(TM) onM is a non-degenerate vector bundle complemen-
tary to TM⊥. A lightlike hypersurface endowed with a specific screen distribution
is denoted by the triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the
following result has an important role in the study of the geometry of lightlike
hypersurfaces.

Theorem 2.1. ([9]) Let (M, g, S(TM)) be a lightlike hypersurface of (M, g). Then
there exists a unique vector bundle tr(TM) of rank 1 over M , such that for any
non zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a
unique section N of tr(TM) on U satisfying

(2.2) g(N, ξ) = 1 and g(N,N) = g(N,W ) = 0,

for all W ∈ Γ(S(TM)|U ).

With this theorem we may write the following decomposition

(2.3) TM |M = S(TM)⊥(TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM),

where ⊥ denotes an orthogonal direct sum and ⊕ a direct sum. Throughout the
paper, we denoted by Γ(E) the C∞(M)-module of smooth sections of a vector
bundle E over M, while C∞(M) represents the algebra of a smooth functions on
M . Also, all manifolds are supposed to be smooth, paracompact and connected.

Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold
(M, g), ∇ be the Levi-Civita connexion of M , ∇ the induced connection on (M, g).
Gauss and Weingarten formulas provide the following relations (see details in [9])

(2.4) ∇XY = ∇XY + h(X,Y ),

(2.5) ∇XV = −AV X +∇t
XV,

for all X,Y ∈ Γ(TM) and V ∈ tr(TM), where ∇XY and AV X belong to Γ(TM)
while h is a Γ(tr(TM))-valued symmetric C∞(M)-bilinear form on Γ(TM) and
∇t is a linear connection on tr(TM). It is easy to see that ∇ is a torsion-free
connection. Define a symmetric C∞(M)-bilinear form B and a 1-form τ on the
coordinate neighborhood U ⊂ M by

(2.6) B(X,Y ) = g(h(X,Y ), ξ),

(2.7) τ(X) = g(∇t
XN, ξ)

for all X,Y ∈ Γ(TMjU ). Then, on U , equations (2.4) and (2.5) become,

(2.8) ∇XY = ∇XY +B(X,Y )N,

(2.9) ∇XN = −ANX + τ(X)N,

respectively. It is important to stress the fact that the local second fundamental
form B in Eq.(2.8) does not depend on the choice of the screen distribution and
satisfies,

(2.10) B(X, ξ) = 0,
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for all X ∈ Γ(TM |U ). Let P be the projection morphism of TM to S(TM) with
respect to the decomposition (2.2). We obtain: for all X,Y ∈ Γ(TM) and U ∈
Γ(TM⊥),

∇XPY =
∗
∇X PY+

∗
h (X,PY ),(2.11)

∇XU = −
∗
AU X +

∗
∇t

XU,(2.12)

where
∗
∇X PY and

∗
AU X belong to Γ(S(TM)),

∗
∇ and

∗
∇t are linear connections

on Γ(S(TM)) and Γ(TM⊥) respectively,
∗
h is a Γ(TM⊥)-valued C∞(M)-bilinear

form on Γ(TM) × Γ(S(TM)),
∗
AU is a Γ(S(TM))-valued C∞(M)-linear operator

on Γ(S(TM)).
∗
h and

∗
AU are the second fundamental form and the shape operator

of the screen distribution S(TM) respectively. Define on U the following relations

C(X,PY ) = g(
∗
h (X,PY ), N),(2.13)

ϵ(X) = g(
∗
∇t

X ξ,N).(2.14)

One shows that ϵ(X) = −τ(X). Thus, locally (2.11) and (2.12) become

(2.15) ∇XPY =
∗
∇X PY + C(X,PY )ξ,

(2.16) ∇Xξ = −
∗
Aξ X − τ(X)ξ,

respectively. The linear connection
∗
∇ is a metric connection on Γ(S(TM)). But, in

general, the induced connection ∇ on M is not compatible with the induced metric
g. Indeed, we have:

(2.17) (∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),

for all X,Y ∈ Γ(TM |U ), where

(2.18) η(X) = g(X,N),

for all Y ∈ Γ(TM |U ). Finally, it is straightforward to verify that

B(X,Y ) = g(
∗
Aξ X,Y ), g(ANY,N) = 0,(2.19)

C(X,PY ) = g(ANX,Y ),
∗
Aξ ξ = 0,(2.20)

for X,Y ∈ Γ(TM |U ).
We denote the curvature tensor associated with ∇ and ∇ by R and R, respec-

tively. Then we have ([9]): for all X,Y ∈ Γ(TM |U )
(2.21)
R(X,Y )Z = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X + (∇Xh)(Y, Z)− (∇Y h)(X,Z),

g
(
R(X,Y )PZ,PW

)
= g

( ∗
R (X,Y )PZ, PW

)
+ C(X,PZ)B(Y, PW )

−C(Y, PZ)B(X,PW ),(2.22)

(2.23) g
(
R(X,Y )ξ,N

)
= C(Y,

∗
Aξ X)− C(X,

∗
Aξ Y )− 2dτ(X,Y ).
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3. Lightlike hypersurfaces with parallel screen shape operator

In this section, we consider a lightlike hypersurface M of a semi-Riemannian
manifold (M(k), g) of constant curvature k. We need the following proposition.

Proposition 3.1. [2] Let (M(k), g) be a semi-Riemannian manifold of constant
curvature k and M be a lightlike hypersurface of M(k). Let R the curvature ten-
sor of the induced connection ∇ on M by the Levi-civita connection ∇. For any
X,Y, Z ∈ Γ(TM), we have:

(a) R(X,Y )Z = k{g(Y, Z)X − g(X,Z)Y } −B(X,Z)ANY +B(Y,Z)ANX;
(b) (∇XB)(Y,Z)− (∇Y B)(X,Z) = B(X,Z)τ(Y )−B(Y, Z)τ(X);
(c) B(ANY,X)−B(ANX,Y ) = 2dτ(X,Y );
(d) (∇Y AN )(X)−(∇XAN )(Y )+k{η(X)Y −η(Y )X} = τ(Y )ANX−τ(X)ANY ;

(e) (∇X

∗
Aξ)(Y )− (∇Y

∗
Aξ)(X) = τ(Y )

∗
Aξ X − τ(X)

∗
Aξ Y − 2dτ(X,Y )ξ;

(f) ∇XPZ = ∇XZ −X · η(Z)ξ + η(Z)
∗
Aξ +η(Z)τ(X)ξ.

Now, we recall the definition of a screen conformal lightlike hypersurface of a
semi-Riemannian manifold M .

Definition 3.1. ([1]). A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian
manifold M is said to be screen globally) conformal if the shape operators AN and
∗
Aξ of M and its screen distribution S(TM) are related by

(3.1) AN = φ
∗
Aξ,

where φ is a non-vanishing smooth function on a neighborhood U in M . In case
U = M , the screen conformality is said to be global.

It is easy to see that (3.1) is equivalent to

(3.2) C(Y, PZ) = φB(Y,Z),

for all X,Y ∈ Γ(TM).
We note that there are many examples of screen conformal lightlike hypersurfaces

of semi-Riemannian manifolds see [1]

Next, a screen shape operator
∗
Aξ is said to be parallel if ∇

∗
Aξ = 0 i.e.

∇X
∗
Aξ Y =

∗
Aξ (∇XY ), (∇ and

∗
Aξ commute)

for all X,Y ∈ Γ(TM).
In the sequel, we consider a lightlike hypersurface M of (m + 2)-dimensional

Lorentz manifold (M(k), ḡ) of constant curvature k and we suppose that the screen

shape operator
∗
Aξ is parallel. Then we get

R(X,Y )(
∗
AξZ) = ∇X∇Y (

∗
Aξ Z)−∇Y ∇X(

∗
Aξ Z)−∇[X,Y ](

∗
Aξ Z)

= ∇X

∗
Aξ (∇Y Z)−∇Y

∗
Aξ (∇XZ)−

∗
Aξ (∇[X,Y ]Z)

=
∗
Aξ (∇X∇Y Z)−

∗
Aξ (∇Y ∇XZ)−

∗
Aξ (∇[X,Y ]Z)

=
∗
Aξ R(X,Y )Z,(3.3)

Thus, we have

(3.4) R(X,Y )(
∗
AξZ) =

∗
Aξ R(X,Y )Z.
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Using (1) in Proposition 3.1, we have

R(X,Y )(
∗
Aξ Z) = k{g(Y,

∗
Aξ Z)X − g(X,

∗
Aξ Z)Y }

− B(X,
∗
Aξ Z)ANY +B(Y,

∗
Aξ Z)ANX

(2.19)
= k{g(Y,

∗
Aξ Z)X − g(X,

∗
Aξ Z)Y }

− g(
∗
AξX,

∗
AξZ)ANY +g(

∗
Aξ Y,

∗
AξZ)ANX.(3.5)

On the other hand, we have by using (1) in Proposition 3.1

∗
Aξ (R(X,Y )Z) = k{g(Y,Z)

∗
Aξ X − g(X,Z)

∗
Aξ Y }

− g(
∗
Aξ X,Z)

∗
Aξ ANY +g(

∗
Aξ Y,Z)

∗
Aξ ANX.(3.6)

Then, using (3.4), (3.5) and (3.6), we obtain

k{g(Y,
∗
Aξ Z)X − g(X,

∗
Aξ Z)Y } − g(

∗
Aξ X,

∗
Aξ Z)ANY

+g(
∗
Aξ Y,

∗
Aξ Z)ANX

= k{g(Y, Z)
∗
Aξ X − g(X,Z)

∗
Aξ Y } − g(

∗
Aξ X,Z)

∗
Aξ ANY

+g(
∗
Aξ Y, Z)

∗
Aξ ANX.(3.7)

Note that for a class of screen conformal lightlike hypersurface M of a Lorentzian
manifold, the screen distribution S(TM) is Riemannian, integrable and the induced
Ricci tensor on M is symmetric ([1]). Then, according to Proposition 3.4 in [9],
there exists a canonical null pair {ξ,N} satisfying (2.2) such that the corresponding

1-form τ from (2.9) vanishes. Since ξ is an eigenvector field of
∗
Aξ corresponding to

the eigenvalue 0 and
∗
Aξ is Γ(S(TM))-valued real symmetric,

∗
Aξ has m orthonor-

mal eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of

eigenvectors {ξ, E1, . . . , Em} of
∗
Aξ such that {E1, . . . , Em} is an orthonormal frame

field of S(TM). Then,
∗
Aξ Ei = λiEi, 1 ≤ i ≤ m. We call the eigenvalues λi the

screen principal curvatures for all i.
Using (3.4), we have for 1 ≤ i, j ≤ m and i ̸= j

R(Ei, Ej)(
∗
Aξ Ej) =

∗
Aξ R(Ei, Ej)Ej .

Thus, from (3.7) we have

kλjEi + λ2
jANEi = kλiEi + λj

∗
Aξ ANEi,

and then,

g(kλjEi + λ2
jANEi, Ei) = g(kλiEi + λj

∗
Aξ ANEi, Ei)

kλjg(Ei, Ei) + λ2
jg(ANEi, Ei) = kλig(Ei, Ei) + λjg(

∗
Aξ ANEi, Ei)

kλj + λ2
jg(ANEi, Ei) = kλi + λjg(ANEi,

∗
Aξ Ei)

kλj + λ2
jg(ANEi, Ei) = kλi + λjλig(ANEi, Ei).

We conclude,

(3.8) (λj − λi)(k + λjg(ANEi, Ei)) = 0.
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If the screen is conformal, we have ANEi = φ
∗
Aξ Ei = φλiEi, then (3.8) becomes

(3.9) (λj − λi)(k + φλjλi) = 0.

Under the conditions of the equation (3.9), we now prove several Lemmas.

Lemma 3.1. Either rank
∗
Aξ=0 or rank

∗
Aξ=m.

Proof. Since
∗
Aξ ξ = 0, then rank

∗
Aξ< m + 1. Assume that rank

∗
Aξ ̸= m. Then for

some i we have λi = 0 and using (3.9) it follows that λj = 0. Thus all eigenvalues

of
∗
Aξ are zero and rank

∗
Aξ= 0. �

Lemma 3.2. If rank
∗
Aξ ̸= 0, then

∗
Aξ has at most two distinct screen principal

curvatures.

Proof. For i = i0, equation (3.9) becomes (λj − λi0)(k + φλi0λj) = 0. If λj ̸= λi0 ,

then λj = − k
φλi0

. Then
∗
Aξ has at most two distinct screen principal curvatures. �

By the Lemma 3.2 it follows that
∗
Aξ has at most two distinct screen principal

curvatures, λ and µ = − k
φλ .

Define two distributions:

Tλ = {X ∈ Γ(TM)|
∗
Aξ X = λPX},

Tµ = {X ∈ Γ(TM)|
∗
Aξ X = µPX}.

Lemma 3.3. The distributions Tλ and Tµ are both involutive.
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Proof. Let choose X,Y ∈ Γ(Tλ), then

∗
Aξ [X,Y ] =

∗
Aξ ∇XY−

∗
Aξ ∇Y X

= ∇X

∗
Aξ Y − (∇X

∗
Aξ)Y −∇Y

∗
Aξ X + (∇Y

∗
Aξ)X

= ∇X

∗
Aξ Y −∇Y

∗
Aξ X

= ∇X(λPY )−∇Y (λPX)

= (X · λ)PY + λ∇XPY − (Y · λ)PX − λ∇Y PX

= (X · λ)PY+λ∇X [Y−η(Y )ξ]−(Y · λ)PX−λ∇Y [X − η(X)ξ]

= (X · λ)PY + λ[∇XY −X · η(Y )ξ − η(Y )∇Xξ]− (Y · λ)PX

−λ[∇Y X − Y · η(X)ξ − η(X)∇Y ξ]

= (X · λ)PY + λ[∇XY −X · η(Y )ξ − η(Y )(−
∗
Aξ X − τ(X)ξ)]

−(Y · λ)PX − λ[∇Y X − Y · η(X)ξ − η(X)(−
∗
Aξ Y − τ(Y )ξ)]

= (X · λ)PY + λ[∇XY −X · η(Y )ξ − η(Y )(−λPX − τ(X)ξ)]

−(Y · λ)PX − λ[∇Y X − Y · η(X)ξ − η(X)(−λPY − τ(Y )ξ)]

= (X · λ)PY − (Y · λ)PX + λ(∇XY −∇Y X) + λ2(η(Y )PX

− η(X)PY )+λ [−X · η(Y )+Y · η(X)+τ(X)η(Y )−τ(Y )η(X)] ξ

= (X · λ)PY − (Y · λ)PX + λ[X,Y ] + λ2(η(Y )PX − η(X)PY )

λ [−X · η(Y ) + Y · η(X) + τ(X)η(Y )− τ(Y )η(X)] ξ

= (X · λ)PY − (Y · λ)PX + λP [X,Y ] + λη([X,Y ])ξ

+λ2(η(Y )PX − η(X)PY ) + λ [−X · η(Y ) + Y · η(X)

+τ(X)η(Y )− τ(Y )η(X)] ξ(3.10)

Now, we compute:

η([X,Y ]) = η(∇XY −∇Y X) = ḡ
(
∇XY −∇Y X,N

)
= ḡ(∇XY,N)− ḡ(∇Y X,N)

= X · ḡ(Y,N)− ḡ(Y,∇XN)− Y · ḡ(X,N) + ḡ(X,∇Y N)

= X · ḡ(Y,N)− ḡ
(
Y,−AN (X) + τ(X)N

)
− Y · ḡ(X,N)

+ḡ
(
X,−AN + τ(Y )N

)
= X · ḡ(Y,N)− ḡ

(
Y,−AN (X)

)
− τ(X)ḡ(Y,N)

− Y · ḡ(X,N) + ḡ
(
X,−AN (Y )

)
+ τ(Y )ḡ(X,N)

= X · ḡ(Y,N)− ḡ
(
Y,−AN (X)

)
− Y · ḡ(X,N)

+ ḡ
(
X,−AN (Y )

)
− τ(X)η(Y ) + τ(Y )η(X)

= X · η(Y )− φḡ
(
Y,−

∗
Aξ (X)

)
− Y · η(X)

+ φḡ
(
X,−

∗
Aξ (Y )

)
− τ(X)η(Y ) + τ(Y )η(X).
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Then,

η([X,Y ]) = X · η(Y ) + φλḡ(Y, PX)− Y · η(X)− φλḡ(X,PY )

−τ(X)η(Y ) + τ(Y )η(X)

= X · η(Y ) + φλḡ(Y,X)− Y · η(X)− φλḡ(X,Y )

−τ(X)η(Y ) + τ(Y )η(X)

= X · η(Y )− Y · η(N)− τ(X)η(Y ) + τ(Y )η(X).(3.11)

Using (3.10) and (3.11) we get,
∗
Aξ [X,Y ]=(X · λ)PY −(Y · λ)PX+λP [X,Y ]+λ2

(
η(Y )PX−η(X)PY

)
.

Then

(3.12) (
∗
Aξ −λP )[X,Y ] = (X · λ)PY − (Y · λ)PX + λ2

(
η(Y )PX − η(X)PY

)
.

However, the left-hand member of (3.12) belongs to Tλ. In fact,

[X,Y ] = [X,Y ]λ + [X,Y ]µ + η([X,Y ])ξ

implies that

(
∗
Aξ −λP )[X,Y ] = (

∗
Aξ −λP )

(
[X,Y ]λ + [X,Y ]µ + η([X,Y ])ξ

)
=

∗
Aξ [X,Y ]λ − λP [X,Y ]λ+

∗
Aξ [X,Y ]µ

−λP [X,Y ]µ + η([X,Y ])
∗
Aξ ξ

= (µ− λ)[X,Y ]µ.

On the other hand, the right-hand member of (3.12) belongs to Tλ and therefore

(
∗
Aξ −λP )[X,Y ] = 0,

(X · λ)PY − (Y · λ)PX + λ2
(
η(Y )PX − η(X)PY

)
= 0.(3.13)

Hence (
∗
Aξ −λP )[X,Y ] = 0, thus [X,Y ] ∈ Γ(Tλ). This shows that the distribution

Tλ is involutive. Using the same way, we can see that the distribution Tµ is also
involutive. �

Define two distributions T s
λ = Tλ ∩ S(TM) and T s

µ = Tµ ∩ S(TM). Since
η(X) = 0 for all X,Y ∈ Γ(T s

λ), equations (3.13) become

(3.14) (
∗
Aξ −λ)[X,Y ] = 0, (X · λ)Y − (Y · λ)X = 0

We have the following Lemma.

Lemma 3.4. If dimT s
λ > 1, then X · λ = 0, τ(X) = 0, X · φ = 0 and X · µ = 0,

for all X ∈ Γ(T s
λ).

Proof. Let X,Y ∈ Γ(T s
λ). If dimT s

λ > 1, we can choose X, Y to be linearly inde-
pendent. Thus, using the right equation in (3.14) we have X · λ.
Since

∗
Aξ is parallel, by using (5) in Proposition 3.1, we have the following: λτ(Y )X−

λτ(X)Y − 2dτ(X,Y )ξ = 0. Then λτ(Y )X −λτ(X)Y = 0 and dτ(X,Y ) = 0. Since
λ ̸= 0, we can again choose X, Y to be linearly independent, then τ(X) = 0. Using
(4) in Proposition 3.1, (3.1 ) and τ = 0, we have (Y · φ)X − (X · φ)Y = 0, by
linearly independent we have X · φ = 0.
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Since µ = − k
φλ , it follows that X · µ = −k

(X · φ)λ+ (X · λ)φ
(φλ)2

, and this completes

the proof. �

Lemma 3.5. For X ∈ Γ(T s
λ), Y ∈ Γ(T s

µ), we have ∇XY ∈ Γ(T s
µ) and ∇Y X ∈

Γ(T s
λ).

Proof. Let X ∈ Γ(TS
λ ), Y ∈ Γ(T s

µ). We have

(∇X

∗
Aξ)Y = ∇X(

∗
Aξ Y )−

∗
Aξ (∇XY )

= ∇X(µY )−
∗
Aξ (∇XY )

= (X · µ)Y + µ∇XY−
∗
Aξ ∇XY

= µ∇XY−
∗
Aξ (∇XY )

Since ∇X

∗
Aξ= 0, we have

∗
Aξ (∇XY ) = µ∇XY which proves that ∇XY belongs to

Γ(T s
µ). Using the same argument, we see that ∇Y X belongs to Γ(T s

λ). �

Lemma 3.6. T s
λ and T s

µ are totally geodesic and parallel distributions.

Proof. By Lemma 3.5, if X ∈ Γ(T s
λ), Y ∈ Γ(T s

µ), we have ∇XY ∈ Γ(T s
µ) and

∇Y X ∈ Γ(T s
λ) which shows that T s

λ and Tµ are parallel. Let X,Z ∈ Γ(T s
λ), Y ∈

Γ(T s
µ). Since η(Y ) = η(Z) = 0,

g(∇ZX,Y ) + g(X,∇ZY ) = Z · g(X,Y ) = 0.

By Lemma 3.5, ∇ZY ∈ Γ(T s
µ) implies that g(Y,∇ZX) = 0. Then g(Y,∇ZX) =

g(Y,
∗
∇Z X + C(X,Z)ξ) = g(Y,

∗
∇Z X) = 0. It follows

∗
∇Z X ∈ Γ(T s

λ) for all Z and
X in Γ(T s

λ) which shows that T s
λ is totally geodesic. By the same way, we can see

that Tµ is totally geodesic. �

Next, we say that M is totally umbilical if there exists a smooth function ρ such
that

(3.15) B(X,Y ) = ρg(X,Y ),

for all X,Y ∈ Γ(TM), or equivalently,

(3.16)
∗
Aξ X = ρPX,

for all X ∈ Γ(TM).
M is said to be a totally geodesic lightlike hypersurface if the second fundamental

form B = 0 or equivalently
∗
Aξ= 0. Now we prove the following theorem.

Theorem 3.1. Let (M, g, S(TM)) be a lightlike hypersurface of (m+2)-dimensional
Lorentz manifold (M(k), ḡ) of constant curvature k such that the screen shape op-
erator is parallel. Then,

(a) M is either totally geodesic or totally umbilic;
(b) if the screen is conformal, M is a locally lightlike triple product manifold

C × (M ′ = Mλ ×Mµ), where C is a null curve, M ′ is an integral manifold
of S(TM), Mλ and Mµ are leaves of some distributions of M such that
they are totally geodesic (in S(TM)) Riemannian manifolds of constant
curvature (k + 2φλ2) and (k + 2φµ2) respectively.
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Proof. (a) From (3.8), we have (λj − λi) = 0 or (k + λjg(ANEi, Ei)) = 0.
If (λj − λi) = 0, then, λi = λj for any i, j. This means that all eigenfuntions are
equal. We note it by λ. Let X ∈ Γ(TM), we have

∗
Aξ X =

∗
Aξ

(
m∑
i=1

XiEi + η(X)ξ

)
=

m∑
i=1

Xi

∗
Aξ Ei + η(X)

∗
Aξ ξ

=
m∑
i=1

XiλiEi = λ
m∑
i=1

XiEi.

Then
∗
Aξ X = λPX. If λ = 0, M is totally geodesic and if not M is totally

umbilic.
(b)From ([1]) a conformal lightlike hypersurface M is locally a product manifold
C ×M ′, where C is a null curve and M ′ is a leaf of S(TM). Since the leaf M ′ of
S(TM) is Riemannian and S(TM) = T s

λ ⊕orth T s
µ, where T s

λ and T s
µ are parallel

distributions with respect to the induced connection
∗
∇ of M ′, by the decomposition

theorem of de Rham ([8]) we have M ′ = Mλ × Mµ, where Mλ and Mµ are some
leaves of T s

λ and T s
µ, respectively. It follows that M = C ×M ′ = C ×Mλ ×Mµ.

Let X,Y, Z,W ∈ Γ(T s
λ). Using (1) in Proposition (3.1) and equations (2.19) and

(3.1) we have

g(R(X,Y )Z,W ) = k{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

− φg(
∗
Aξ X,Z)g(

∗
Aξ Y,W )+φg(

∗
Aξ Y,Z)g(

∗
Aξ X,W )

= k{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}
−φλ2g(X,Z)g(Y,W ) + φλ2g(Y,Z)g(X,W )

= (k + φλ2)g
(
g(Y, Z)X − g(X,Z)Y,W

)
.(3.17)

Again, by using (3.1), (3.2), (2.19), (2.20), (2.22) and (3.17), we have

(k + φλ2)g
(
g(Y, Z)X − g(X,Z)Y,W

)
=

g(
∗
R
(
X,Y )Z,W

)
− φλ2g

(
g(Y, Z)X − g(X,Z)Y,W

)
.

Then,
∗
R (X,Y )Z = (k + 2φλ2){g(Y, Z)X − g(X,Z)Y }, for all X,Y, Z in Γ(T s

λ).
Thus Mλ is a Riemannian manifold of constant curvature (k+ 2φλ2). In the same
way we obtain that Mµ is a Riemannian manifold of constant curvature (k+2φµ2).

�

Theorem 3.2. Let Mλ and Mµ be as in the theorem 3.1 and dim(Mλ) = r. Then

Mλ and Mµ are totally umbilical submanifolds of M(k) of codimension (m− r+2)
and (r + 2), respectively.

Proof. Let i be the immersion of Mλ in M and M ′ be a leaf of S(TM). Consider
in the normal bundle TM ′⊥, the vector fields

ζ1 =
φ√
2|φ|

ξ +
1√
2|φ|

N and ζ2 =
φ√
2|φ|

ξ − 1√
2|φ|

N.
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Clearly, {ζ1, ζ2} is an orthonormal basis, where ζ1 and ζ2 are spacelike and timelike
respectively. Then, for any X, Y ∈ Γ(TMλ), we have

∇XY = ∇λ
XY + hλ(X,Y )

= ∇λ
XY +

m+2∑
a=r+1

gλ(Aξλa
X,Y )ξλa ,(3.18)

where gλ, ∇λ are the induced metric and induced connection of Mλ respectively, ξλa
are orthonormal normal to Mλ in M(k) such that ξλm+1 = ζ1 and ξλm+2 = ζ2, Aξλa

are corresponding shape operators of ξλa and hλ is the second fundamental form of
Mλ in M(k). On the other hand, we have

∇XY = ∇XY +B(X,Y )N = ∇XY + g(
∗
Aξ X,Y )N

=
∗
∇X Y + C(X,Y )ξ + g(

∗
Aξ X,Y )N

=
∗
∇X Y + g(ANX,Y )ξ + g(

∗
Aξ X,Y )N

=
∗
∇X Y + φg(

∗
Aξ X,Y )ξ + g(

∗
Aξ X,Y )N

= ∇λ
XY + hλ

M ′(X,Y ) + g(
∗
Aξ X,Y )(φξ +N)

= ∇λ
XY + hλ

M ′(X,Y ) + λg(X,Y )(φξ +N),

where hλ
M ′ is the second fundamental form of Mλ is S(TM). By Lemma 3.6, Mλ

is totally geodesic in S(TM), and consequently the last equation can be written as

(3.19) ∇XY = ∇λ
XY + λg(X,Y )(φξ +N) = ∇λ

XY +
√
2|φ|λg(X,Y )ζ1.

Comparing (3.18) and (3.19), we have Aξλa
X = 0 for all a ̸= m+ 1 and Aξλm+1

X =

Aζ1X =
√
2|φ|λX. Thus, Mλ is a totally umbilical submanifold ofM(k). Similarly,

we can prove that Mµ is a totally umbilical submanifold in M(k). �

Let us change
∼
ξ= αξ, then

∗
A∼

ξ
= α

∗
Aξ, where α is a non-zero smooth function.

By direct calculation we have,

(3.20) (∇X

∗
A∼

ξ
)Y = (X · α)

∗
Aξ Y + α(∇X

∗
Aξ)Y.

We prove the following

Proposition 3.2. Let M be a lightlike hypersurface of a semi-Riemannian manifold

(M, ḡ). Let ξ ∈ Γ(Rad(TM)) and make a change
∼
ξ= αξ. If

∗
Aξ is parallel, then

(3.21) R(X,Y )
∗
A∼

ξ
Z =

∗
A∼

ξ
R(X,Y )Z.

for any X, Y Z ∈ Γ(TM). Moreover,
∗
A∼

ξ
is parallel if and only if α is constant.
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Proof. From the definition of curvature tensor, it follows

R(X,Y )
∗
A∼

ξ
Z = ∇X∇Y

∗
A∼

ξ
Z −∇Y ∇X

∗
A∼

ξ
Z −∇[X,Y ]

∗
A∼

ξ
Z

= ∇X

( ∗
A∼

ξ
(∇Y Z)+(∇Y

∗
A∼

ξ
)Z
)
−∇Y

( ∗
A∼

ξ
(∇XZ)

+ (∇X

∗
A∼

ξ
)Z
)
−

∗
A∼

ξ
(∇[X,Y ]Z)− (∇[X,Y ]

∗
A∼

ξ
)Z

(3.20)
= ∇X

( ∗
A∼

ξ
(∇Y Z)

)
+(XY · α)

∗
Aξ Z +(Y · α)∇X

∗
Aξ Z

+ ∇X

(
α(∇Y Aξ)Z

)
−∇X

( ∗
A∼

ξ
(∇XZ)

)
−(Y X · α)

∗
Aξ Z

− (X · α)∇Y

∗
Aξ Z −∇Y

(
α(∇XAξ)Z

)
−

∗
A∼

ξ
(∇[X,Y ]Z)

− ([X,Y ] · α)
∗
Aξ Z − (∇[X,Y ]

∗
Aξ)Z

= ∇X

( ∗
A∼

ξ
(∇Y Z)

)
−∇X

( ∗
A∼

ξ
(∇XZ)

)
−

∗
A∼

ξ
(∇[X,Y ]Z)

+(Y · α)∇X

∗
Aξ Z − (X · α)∇Y

∗
Aξ Z

=
∗
A∼

ξ
(∇X∇Y Z) + (∇X

∗
A∼

ξ
)∇Y Z−

∗
A∼

ξ
(∇Y ∇XZ)

−(∇Y

∗
A∼

ξ
)∇XZ−

∗
A∼

ξ
(∇[X,Y ]Z)

+(Y · α)
∗
Aξ ∇XZ − (X · α)

∗
Aξ ∇Y Z

(3.20)
=

∗
A∼

ξ
(∇X∇Y Z) + (X · α)

∗
Aξ ∇Y Z−

∗
A∼

ξ
(∇Y ∇XZ)

−(Y · α)
∗
Aξ ∇XZ−

∗
A∼

ξ
(∇[X,Y ]Z)

+(Y · α)
∗
Aξ ∇XZ − (X · α)

∗
Aξ ∇Y Z

=
∗
A∼

ξ

(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
=

∗
A∼

ξ
R(X,Y )Z.

From equation (3.20), it is obvious that if
∗
Aξ is parallel, then

∗
A∼

ξ
is parallel if and

only if X · α = 0 for all X ∈ Γ(TM), that is if and only if α is constant. �

Remark 3.1. Consider a frame field of eigenvectors {ξ, E1, . . . , Em} of
∗
A∼

ξ
such that

{E1, . . . , Em} is an orthonormal frame field of S(TM). If λi is an eigenfuntion of
∗
Aξ, then

∼
λi= αλi is an eigenfuntion of

∗
A∼

ξ
. Thus, by using (1) in Proposition 3.1

and equation (3.21), we get

(
∼
λj −

∼
λi)
[
k+

∼
λj g

( 1
α
ANEi, Ei

)]
=

α(λj − λi)
[
k + λjg

(
ANEi, Ei

)]
= 0.

Then Eq.(3.8) does not depend on the choice of the null section ξ of Rad(TM).
Since results in theorem 3.1 and Theorem 3.2 are based on this equation, then
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Proposition 3.2 prove that these results are stable with any change of null section
ξ ∈ Rad(TM).
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