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CURVATURE PROPERTIES OF RIEMANNIAN METRICS OF
THE FORM “g; + ¢ ON THE TANGENT BUNDLE OVER A
RIEMANNIAN MANIFOLD (M, g)

AYDIN GEZER, LOKMAN BILEN, CAGRI KARAMAN, AND MURAT ALTUNBAS

(Communicated by Levent KULA )

ABSTRACT. In this paper, we define a special new family of metrics which
rescale the horizontal part by a nonzero differentiable function on the tangent
bundle over a Riemannian manifold. We investigate curvature properties of the
Levi-Civita connection and another metric connection of the new Riemannian
metric.

1. INTRODUCTION

The research in the topic of differential geometry of tangent bundles over Rie-
mannian manifolds has begun with S. Sasaki. In his original paper [17] of 1958,
he constructed a Riemannian metric ©g on the tangent bundle TM of a Riemann-
ian manifold (M, g), which depends closely on the base metric g. Although the
Sasaki metric is naturally defined, it was shown in many papers that the Sasaki
metric presents a kind of rigidity. In [10], O. Kowalski proved that if the Sasaki
metric ®¢ is locally symmetric, then the base metric ¢ is flat and therefore °g is
also flat. In [12], E. Musso and F. Tricerri demonstrated an extreme rigidity of
Sg in the following sense: if (T'M,g) is of constant scalar curvature, then (M, g)
is flat. They also defined a new Riemannian metric gog on the tangent bundle
T M which they called the Cheeger Gromoll metric. Given a Riemannian metric g
on a differentiable manifold M, there are well known classical examples of metrics
on the tangent bundle TM which can be constructed from a Riemannian metric
g, namely the Sasaki metric, the horizontal lift and the vertical lift. The three
classical constructions of metrics on tangent bundles are given as follows:

(a) The Sasaki metric “g is a (positive definite) Riemannian metric on the tan-
gent bundle T'M which is derived from the given Riemannian metric on M as
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follows:
(P X7Y) = g(X,Y)
Sg(Hx,Vy) _ Sg(VX7HY):0
Sg(VXVY) = g(XY)

for all XY € S¢(M).
(b) The horizontal lift ¥ g of g is a pseudo-Riemannian metric on the tangent
bundle TM with signature (n,n) which is given by

Hg(HX,HY) _ 07
Tg(x)VY) = Hg(VX1Y)=9(X,Y),
Hg(VX,VY) = 0

for all X, Y € S¢(M).
(c) The vertical lift Vg of g is a degenerate metric of rank n on the tangent
bundle T'M which is given by

Vg(HX,VY) — Vg(VX,HY):O
Yg(VXVY) = g(X)Y)

for all X,Y € S¢(M).

Another classical construction is the complete lift of a tensor field to the tangent
bundle. It is well known that the complete lift ¢ g of a Riemannian metric ¢ coincides
with the horizontal lift # ¢ given above. A "nonclassical” example is the Cheeger-
Gromoll metric gog on the tangent bundle M. Other metrics on the tangent
bundle TM can be constructed by using the three classical lifts ®g, g and Vg of
the metric g (for example, see [7, 19]).

V. Oproiu and his collaborators constructed natural metrics on the tangent bun-
dles of Riemannian manifolds possessing interesting geometric properties ([13, 14,
15, 16]). All the preceding metrics belong to a wide class of the so-called g-natural
metrics on the tangent bundle, initially classified by O. Kowalski and M. Sekizawa
[11] and fully characterized by M.T.K Abbassi and M. Sarih [1, 2, 3] (see also [9]
for other presentation of the basic result from [11] and for more details about the
concept of naturality).

In [20](see also [21, 22], B. V. Zayatuev introduced a Riemannian metric ©g on
the tangent bundle T'M given by

oy (AXAY) = fg(X,Y),
Sgr ("XVY) = g (VXTY) =0,
S9r (VXVY) = g(X.Y),

where f > 0, f € C°°(M) (see also, [5, 18]). For f = 1, it follows that Sg; =9 g,
i.e. the metric © gr is a generalization of the Sasaki metric Sg. For the rescaled
Sasaki type metric on the cotangent bundle, see [6].

Our purpose is to study some properties of a special new family of metrics on
the tangent bundle constructed from the base metric, and generated by positive
functions on M, which the metric is in the form /G = ng+ Hgy. The paper can
be considered as a contribution in the topic, considering for study a special new
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family of metrics on the tangent bundle. It is worth mentioning that a metric from
this new family is g-natural only if the generating function is constant. So the
considered family is far from being a subfamily of the class of g-natural metrics,
and its study could be of interest in some sense.

The present paper is organized as follows: In section 2, we review some intro-
ductory materials concerning with the tangent bundle T'M over an n-dimensional
Riemannian manifold M and also introduce the adapted frame in the tangent bun-
dle TM. In section 3, we present a Riemannian metric of the form f G="5 gr+ Hg
defined by

'TGEX"Y) = f9(X.Y)
IGEXYY) = 1G("X17Y)=g(X.,Y)
G (Vx,Vy) g(X,Y)

for all X|Y € S§(M), where f > 1, f € C°®°(M) and compute the Christoffel
symbols of the Levi-Civita connection V of /G with respect to the adapted frame.
In section 4 and 5, we compute all kinds of curvatures of the metric / G with respect
to the adapted frame and give some geometric results concerning them. In section
5, we give conditions for which the metric / G is locally conformally flat. Section 6
deals with another metric connection with torsion of the metric /G.

Throughout this paper, all manifolds, tensor fields and connections are always
assumed to be differentiable of class C*°. Also, we denote by 3%(M) the set of
all tensor fields of type (p,q) on M, and by S5(T'M) the corresponding set on the
tangent bundle TM.

2. PRELIMINARIES

2.1. The tangent bundle. Let TM be the tangent bundle over an n-dimensional
Riemannian manifold (M, g), and 7 be the natural projection 7 : TM — M. Let
the manifold M be covered by a system of coordinate neighborhoods (U, z%), where
(x%), i = 1,...,n is a local coordinate system defined in the neighborhood U. Let
(y*) be the Cartesian coordinates in each tangent space TpM at P € M with
respect to the natural basis {% |p }, where P is an arbitrary point in U with
coordinates (z%). Then we can introduce local coordinates (z%,%) on the open set
7~ (U) € TM. We call such coordinates as induced coordinates on w—* (U) from
(U,z"). The projection 7 is represented by (z%,y") — (x%). The indices I, J, ... run
from 1 to 2n, while ¢, 7, ... Tun from n + 1 to 2n. Summation over repeated indices
is always implied.

Let X = X* a.axi be the local expression in U of a vector field X on M. Then
the vertical lift V' X and the horizontal lift 7 X of X are given, with respect to the
induced coordinates, by

(2.1) VX = X',
and
(2.2) IX = X0, —y' Tl X" o,

where 0; = %, 0= a?ﬁ and F§ i are the coefficients of the Levi-Civita connection
V of g.
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Explicit expressions for the Lie bracket [,] of TM are given by Dombrowski in
[4]. The bracket operation of vertical and horizontal vector fields is given by the
formulas

(2.3) HX VY] =V (VxY)

for all vector fields X and Y on M, where R is the Riemannian curvature of g
defined by R(X,Y) = [Vx, Vy]| = V(x,y] (for details, see [19]).

2.2. The adapted frame. We insert the adapted frame which allows the tensor
calculus to be efficiently done in T'M. With the connection V of g on M, we can
introduce adapted frames on each induced coordinate neighborhood 7 ~1(U) of T M.

In each local chart U C M, we write X(;) = W’j =1,...,n. Then from (2.1) and
z
(2.2), we see that these vector fields have, respectively, local expressions
TX(j) = 600+ (—y'T5;)05
v h
X(j) =00
with respect to the natural frame {ah, aﬁ}, where 6§L denotes the Kronecker delta.

These 2n vector fields are linearly independent and they generate the horizontal
distribution of V, and the vertical distribution of T'M, respectively. We call the

set {#X;),Y X(;)} the frame adapted to the connection V of g in 7= (U) C TM.
By denoting
(2.4) E; = "Xy,

v
B o= T X(),

we can write the adapted frame as {Eg} = {Ej, Ef-}.
Using (2.1), (2.2) and (2.4), we have

0 0 (0 ;
(2.5) VX:(Xh):(Xj(sh):X]((Sh):X]Ej’
J J
and
Xigh A )
(2.6) HX:< 7 S):XJ< J S>:XJE.
—XTGy _ngy !

with respect to the adapted frame {E3} (see [19]).

3. THE RIEMANNIAN METRIC AND ITS LEVI-CIVITA CONNECTION

Let (M, g) be a Riemannian manifold. A Riemannian metric G is defined on
TM by the following three equations

(3.1) TGIX 1Y) = fg(X,Y),
IGEX,VY) = 1G(VX,HY)=g(X,Y),
IGVX,VY) = g(X,Y)

for all X, Y € S}(M), where f > 1 and f € C°(M).
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From the equations (3.1), by virtue of (2.5) and (2.6), The metric /G and its in-
verse /G~ respectively have the following components with respect to the adapted
frame {Ej3}:

3.2 G =(a, :(fgij g“)
(3.2) ('Gap) P
and
N N Logii L gii
(3.3) et =daf) = 7 )
97 7Y

We now consider local 1-forms w* in 7= (U) defined by w* = A* pdz®, where

- Ah . AM sh0
(3.4) AT =Ap = 0 ( sph h)
Ahj Ahj vl 5j
is the inverse matrix of the matrix
3.5 A=A,A At A o 0
(3.5) -0 T Ajh A;h o *ysffjj 65?

of the transformation Eg = Ag 404. We easily see that the set {w”} is the coframe
dual to the adapted frame {Es}, e.i. w*(Eg) = A gAY = 7.
Since the adapted frame field {Eg} is non-holonomic, we put

[Ba, Es) = Q. E,

from which we have

Q,Yﬁa - (E’YAB A - EI@AA,y A)AQA.
According to (2.4), (3.4) and (3.5), the components of non-holonomic object 2.5
are given by

ij
T T S
k_ k _ k
Qij = *jS =Y Rijs

Q-F=—Q FkF=rk
(3.6) { ij Ji Je

all the others being zero, where R, k¥ are local components of the Riemannian

curvature tensor R of the Riemannian manifold (M, g).
Let 7V be the Levi-Civita connection of the Riemannian metric /G. Putting

IVp Eg = ffZBE'w from the equation f@)sz 1 69)? = [5(:,}7], VX,Y €
ST M), we have

(3.7) e, —IT5, = Q"

The equation (ﬁg FG)Y,Z)=0,YX,Y,Z € S}(TM) has the form

(3.8) By Gy — IT5 TGy — 1T55 7GLe =0

with respect to the adapted frame {Ez}. Thus we have from (3.7) and (3.8)

~Oé ]' ~D¢€ ~ ~ ~ 1 « « a
(3.9) '3, = 5 TG (B 1 Gey + By 1Gpe — B: 1Gy) + (0,7 +0°%, +9%),
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where Q*_; =/ Goe fé(;ng‘;, FGe= are the contravariant components of the metric

F G with respect to the adapted frame.
Taking account of (3.3), (3.6) and (3.9), for various types of indices, we find the
following relations

ITH = T8 + oy Ry * + Ryji ) + oy Al

fE%j - 2(f71—1)ypR i "

fEZ = 2(f1 1)y PRyt

(3.10) ;12%_ 2(f o’ Al — 9 Ry — sy By © + Ryji ©)

I = a0~ 217 i

T =14 — a7V R

fr% =0

Tk =0

with respect to the adapted frame, where Afj is a tensor field of type (1,2) defined
by AN = (fi6% + f;0F — fFgz0), fi = 0if

4. THE RIEMANNIAN CURVATURE TENSOR

The Riemannian curvature tensor R of the connection V is obtained from the
well-known formula

R(X,Y)Z=VxVyZ—-VyVxZ -V xyZ

forall X, Y € S3(M). With respect to the adapted frame {3}, we write 'V, Ejz =
f ry sEy, where f Flﬁ denote the Levi-Civita connection constructed by /G. Then

the Riemannian curvature tensor /R has the components
'R,4,° =B, 'T%, — Es 'TS,, + 'T7, /TG, — /T T5, — Q.5 T2,

From (3.6) and (3.10), we obtain the components of the Riemannian curvature
tensor /R of the metric /G as follows:

fR k=

g ’
FR_k =0

g ’

1 1 <
fRﬁijl‘i: flleJk + Wypys(RthkRsijh — Ryin kRst );
TR =~ R — Wypys(RpmhkRsijh = Ry "Ry ),
k _ 1 k

TRy = s st a0 By "

SR k
me;— 2(f—1)iji 4(f_1)2ypy ot Rsji"s
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nl;

(4.1)
f]imgli: _ﬁRijm,k - ﬁy ystzh RS]m)
meéc = 2(f1 5 Rijm + 15z VY Ryin R
Mg = =3 R = a7 B + Rousl) + 557 00"Vl
SV T R+ B ) — e (= 1, )
k fA Rpm? fA

4(f11 =y [2f; me; + Rpmh
27-1Y PV,R

fémuk 207~ 1)(lef+Rmﬂ) 2(f 1
4(f 1)29 Y [Rpmlfcz(RsUh +ngz ) —

4(f 1)2y [2fl pm’;"_RpmlfCL fA Rpm] A ]
;T R”m) (f 2(7-1Y vk Rpw
(R + Roj)]

PmJ

R szh ]

TR o = 3Pt + a7y (i
I 1)2.7J Yy [Rsz] ((f - ]‘)Rmhp+Rpmh) szh
i R fm Ryt — Ry A =Ry 145,
megJ’? = —ﬁ(Rmf+R”m) (f 1)y v RW
17 1)22/[ 2fm pijk+Rp13h Amh szh A ;]
N _ﬁypys[Rpihk(Rsm? + ngm) - R thmh]
fR,m-J *ﬁyp(v Rpﬂ = ViRym) + 175 1)2y Y (RSJZthmh Ryjo Rpir)
+ae Y iRyl = 2fm mzk+R M A= Ryt A,
fR,m] = 3y°(ViR,;k =V R”p ) + Q(f_l)y PIVi(Ryms + Ryl
—Vm (Rp’L]k+Rp]7, )]+ 17— 1)2y P2 fm( ngkJergz )
—2fz( pm’;+Rmm) (Rl + Byt Ay = (R + Ry A
pzhk A pmh A (= D(R 7,hpka mh]; A;;)]
+a= 1)27»’ y [Rpih (Rsm? JFngm) *RmeZ(Rsmh +RSJ@ )
+(f = ]')(thp (Rsm;l + ngm) - RmhI;(Rsz]h + Ry;,")
+Rphle]§ Rk R, —2Rm“Rph] )]
2flfAmj+ f Ak fAf;U — fAk, AL
—2fiR,; ¥

1 k
(f 12y [2fm pﬂ
h R, FR N

4(f_1)2 [Qfm ;_7 .
= VA Dl
)R Re]m

+2(f = (Vs fA
=R, + 2(f 1)y P(V; Rp]m V mRy;") +
thk] 4(f 1)2y Y [(f

'Rk =
mij
—R,; M AR, R
" 7(f7 I)RmhpRSJZ kahstZ ]
k _ k k k
meZ] - Rm” + 2(f_1)y [Vk (szj +Rpjl )7 Z-(Rpmj +Rp]m)] b RNF Ak
2fm( pij + Rp]z )+ 2f’£( pmj + Rp]m ) (szj + Rp]z ) Amh
ijh ]
Rpihk (Rsmjh + ngm )

)fAfh—l-R kah—
- (.} - 1)1zph7’nlz7/]8
k k
[2f fAij—infAmj

4(f 12
—(R + Rmm
k(RSZ]h + RSJz )

pm]
air Y ;
+(f - 1)Rphi ijs + 2(f )Rmzs Rphg ] W
+I AL TAR - —TAR TAL +2(F — 1)(ViT AL — Vi T AR

with respect to the adapted frame {Eg}
We now compare the geometries of the Riemannian manifold (M, g) and its

tangent bundle TM equipped with the Riemannian metric /G
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Theorem 4.1. Let (M, g) be a Riemannian manifold and T M be its tangent bundle
with the Riemannian metric fG. Then TM is flat if M is flat and

21, Ay — 2 A+ AT Al AT 2~ (VI A, — VT4l =
Proof. It follows from the equations (4.1) that if

2f AL —2fF AR 4T AR TAR T AR TAL £ 2(f — 1)(V AL — VT AL =

m mj

then R = 0 implies 'R=0. O

Corollary 4.1. Let (M, g) be a Riemannian manifold and T M be its tangent bundle

with the Riemannian metric {G. Assume that f = C(const.). In the case, TM is
flat if and only if M is flat.

5. THE SCALAR CURVATURE
We now turn our attention to the Ricci tensor and scalar curvature of the Rie-
mannian metric /G. Let TR B = fR o and 77 =f G fRag denote the Ricci
tensor and scalar curvature of the Rlemanman metric G, respectively. From (4.1),
the components of the Ricci tensor R.p are characterized by
(5.1)
53 1
TR = — V" Ryin™ Ry
B 1 1 1 h
fREj - — s i + 2(f—1)yp(vaij — ViRy;) — 1712 VY Bpin Rjm
+3(J“T>2yp(” — ) fmBpi;™,

fR fl 1) Rji + ﬁyp(vaji - ijpi) - ﬁypysR”m R;mhm
+4(,\ 1)2 y2( 4) fmBRyi™,
fR = = Rz] + 2(/:71):9 (QVPRij - ViRPj - ijPi)

+4(f_1)2y [( )fﬂ’L( p”m + R m)} + 4(f11)2y ys[ szh ngm
+(f - I)Rphim mj? + Z(f mzs }J f )R mR
_ﬁ[zfmf - 2flfAZi mh Ah + fAm fAh j
+2(f - 1)(Vz‘fA%j - meAZ-L)]

with respect to the adapted frame {Eg}. From (3.3) and (5.1), the scalar curvature

of the Riemannian metric /G is given by

fF= Lo — 2(,‘;1)2ypystfkRsh b g 2 AT — 205 AT,
—FAm, FAL 4+ TARTAR 4+ 2(f = 1)(Vil A — VT AT

Thus we have the result as follows.

sm]]

Theorem 5.1. Let (M, g) be a Riemannian manifold and T M be its tangent bundle
with the metric FG. Letr be the scalar curvature of g and I7 be the scalar curvature
of TG. Then the following equation holds:

1 1 ,
fe_ o P, ) hik __ fL
r f—lr Q(f_1)2nyp}”kRs ,

where ) .
L= a7-199" [QfmfA?j —2ff A — AT, AL
+fAmfAh +2(f — 1)(VifAﬁj _ meAZ'L)]'

From the Theorem 5.1, we have the following conclusion.
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Corollary 5.1. Let (M, g) be a Riemannian manifold and T M be its tangent bundle
with the metric TG. If T'r= 0, then L = 0 implies r = 0.

Let (M,g), n > 2, be a Riemannian manifold of constant curvature &, i.e.

Rphim = “(@T%i — 01" 9pi)

and
r=n(n—1)k
where § is the Kronecker’s. By virtue of Theorem 5.1, we have
~ 1 1 s 7
T T gt Fe R L
1 1 s m i f
= T oYY e B 99" Ry = L

= filn(n—l)n—fL

1 .
_mypys G (K0T ghs — 7 gpi))g" " (K (5 gus — ¥ gor)
1
= — _f
1 2 l . .
_mm Y2y (Grp0s — 9pidy) (856) — 676L)
1 1 2

_ p,s_ [
= 7 1n(n -1k — WQ(TL -1k gpsy?y°*—'L
= R MR

Hence we have the theorem below.

Theorem 5.2. Let (M, g), n > 2, be a Riemannian manifold of constant curvature
k. Then the scalar curvature I7 of (TM, G) is

fa— (n—1k kK 2y f
P ) - UL
where ||y||2 = gpsyPy* and
L= ﬁgij[QfmfA?; — infAmj _ fAmth;zj
+fA;’}lLfAfnj +2(f — 1)(V¢fA%» _ meA?;.)],

6. LOCALLY CONFORMALLY FLAT TANGENT BUNDLES

In this section we investigate locally conformally flatness property of T'M equipped
with the Riemannian metric 7G.

Theorem 6.1. Let M be an n-dimensional Riemannian manifold with the Rie-
mannian metric g and let TM be its tangent bundle with the Riemannian metric
fG. The tangent bundle TM is locally conformally flat if and only if M is locally
flat and f = C(constant).
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Proof. The tangent bundle T'M with the Riemannian metric / G is locally confor-
mally flat if and only if the components of the curvature tensor of TM satisfy the
following equation:

- . - -
"Ravpo = s Don {fGaﬁ G = 1Gao wa}

(6.1) ey L ~ ~ e e ~
+ ﬁ(wa TRap—!Goo T Rypt T Gap T Ryo— 1 Gyp T Rao),

where fﬁawgg = FGoe f]A%'Mﬁ €.
From (6.1), we have the following special cases:

~ g 1 ~
62) 'R_— = ———————(gmiGik — 9mrGij) + = (gix TR~
—Gmk fﬁrj + Imj fﬁgk = 9ij ! R
and
~ e 1 ~
I A O TSR >
(63) Rﬁzjk 2(2n . 1)(Tl _ 1) (gmjgzk gmkgz]) + 2(n — 1) (gzk RmJ
—Gmk fﬁrj + gmj | R — 915 T Rop).

By the first and second equation in (4.1) and (3.2), from fﬁawgg = 1Ge fﬁa%@, ‘

0 and fﬁﬁm = 0. Hence from (6.2) and (6.3), we obtain

we obtain f R_

mijk =
7 B I = I
(6.4) m(gmjgik = 9mk9ij) = Gik * Bz — gmk ' Bz + Gmj ' Ry, — 915 7 R
and
7 B B = B
(6.5) m(gmjgik — mk9ij) = Gik * Bz — gmk ' Rz + Gmj ' Ry — 915 ' R

it follows that I?E;k =1 Eﬁ. By means of the first and second equations in (5.1),
we get

R;; =0, fm =0, 1e. f=C(constant)
and

m h

~ 1
fp_ — s
(6.6) Ry = —mypy pih Alsjm -

Transvecting (6.5) by ¢g'*, we obtain

(n —1)/7

(6.7) BT

Gmj = (n— Q)mej + gikgmj me.

Transvecting (6.7) by g™/, we get

(6.8) 7(12(2 — i)) 17 =2(n—1)g* ' Ry
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On the other hand, from (6.6), we have

o 1 4
ik fp_ s ik m h
(6.9) 9" 'Ry = —my”y 9" Ry Ropm
1 .
_ P, S . ilh
4(f _ 1)2y y Rp’LlhRs
1 .
= —5 f’/‘.
Thus by (6.8) and (6.9), we obtain /7 = 0, then it follows R,y R, " =0 by using
f = C(constant). This shows Ry, = 0. This completes the proof. O

7. CURVATURE PROPERTIES OF ANOTHER METRIC CONNECTION OF THE
RIEMANNIAN METRIC fG

Let V be a linear connection on an n—dimensional differentiable manifold M.
The connection V is symmetric if its torsion tensor vanishes, otherwise it is non-
symmetric. If there is a Riemannian metric g on M such that Vg = 0, then the
connection V is a metric connection, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-
Civita connection. In section 4, we have considered the Levi-Civita connection
fV of the Riemannian metric fG on the tangent bundle TM over (M,g). The
connection is the unique connection which satisfies / 6af CNJﬁ,Y = 0 and has a zero
torsion. H. A.Hayden [8] introduced a metric connection with a non-zero torsion
on a Riemannian manifold. Now we are interested in a metric connection (M) Vof
the Riemannian metric /G whose torsion tensor (M)VT% is skew-symmetric in the
indices 7 and 3. We denote components of the connection v, by (M )T. The
metric connection M)V satisfies

(7.1) MG, IGgy =0 and MTY, — ODTy = "'V,

On the equation (7.1) is solved with respect to (M )flﬁ, one finds the following
solution [8]

(7.2) MO, =TT, + Ul

where fl 5 1s components of the Levi-Civita connection of the Riemannian metric
e

-~ ]. (M) (M) (M)

(7.3) Uapy = 5( vTaﬁv + vaB + VTW&)
and

~ i On .

Uoéﬁ’y = UozﬁfGé’Y? VTOéﬁ’Y - Toz,BfGé’Y'

If we put
(M) 7 i o r

(7.4) Tij = y" Ry

all other (M)VT(Zﬁ not related to (M)VTZ being assumed to be zero. We choose this

(M)VT(Zﬁ in TM which is skew-symmetric in the indices v and S as torsion tensor
and determine a metric connection in T'M with respect to the Riemannian metric
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fCNv‘N(see also, [16, p.151-155]. By using (7.3) and (7.4), we get non-zero components
of Uj 5 as follows:

ﬁfj = ﬂf;il)yp(ijk"‘Rpjik)?

[75 = . pRlJP ﬁyp(]%m] + Rpji )’
~ 1

Uy, = 571 yPR,i;

- 1

e

U5 = Q(J%l)y”Rm‘“

75 = e

with respect to the adapted frame. From (7.2) and (3.10), we have components of
the metric connection MV with respect to /G as follows:

M k _ k k
)Fij:_2(f i) Aw

(MTk — e

i ure_
Mk =, Mk —
1] 1]

(MTE — o MOTk — o MTE —
¥ () ¥

with respect to the adapted frame, where R, ;i ° are the local coordinate components
of the curvature tensor field R of g.

Remark 7.1. The metric connection (M) and he Levi-Civita connection /V on
TM of the Riemannian metric /G coincide if and only if the base manifold M is
flat.

The non-zero components of the curvature tensor (M )R of the metric connection
(M) are given as follows:

(M)Eml] _Rmz] - ﬁ[ QfmfAfj - 2f7‘fAfn‘]
+IAE AR —TAR TAL £ o(f — 1) (VAR — Vi T AR)]

O0F, F oL 2f, FAY — 25 Ak

mij 4

_|_f Ak fAh ) _kaffﬂth?j + 2(f - 1)(vifA7l§”_ - vmfA?j)]
M k _
( )Rmif *Rmij

with respect to the adapted frame.
The non-zero component of the contracted curvature tensor field (Ricci tensor
field) MR 5 = (M)Raﬁj of the metric connection M)V is as follows:

WORy=Rij — g 2f i Alj = 217 AT
SEARI AL~ TR LA (] — 1)V A, — VT AT
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For the scalar curvature M7 of the metric connection M)V with respect to /G ,
we obtain
M)z ! r-7L
f-1

where

1 N
fr— Z fAm fAm fAam f ph fAmf ph
L= 4(f—1)39][2fm Al = 2fi Ay — T Ay Aiy + T AR Ay

+2(f = D)V AR = Vi AT
Thus we have the following theorem.

Theorem 7.1. Let M be an n-dimensional Riemannian manifold with the Rie-
mannian metric g and let TM be its tangent bundle with the Riemannian metric
fG. Then the tangent bundle T M with the metric connection MY has a vanishing
scalar curvature with respect to the Riemannian metric el if the scalar curvature
r of the Levi-Civita connection of g is zero and fL = 0.
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