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ABSTRACT 

 

In this paper, we analyze the Nash equilibrium in a class of winner-takes-all stochastic contests among players with linear-

exponential (linex) utility functions. In this contest, players are required to make upfront investments, which collectively 

determine their winning probabilities. We first show that a Nash equilibrium for such a contest exists and is unique, then set the 

equilibrium conditions, and study the properties of these conditions to gain insights into the structure of equilibrium. We show 

that the total equilibrium investment is bounded below and above, that the equilibrium has a cut characterization with respect 

to wealth, and that wealthier players invest more. The latter implies that richer is likely to get richer. For the special case with 

identical players, we show that an increase in the wealth or a decrease in the weight on the nonlinear component of the linex  

utility function results in an increase in the equilibrium investment. 

Keywords: Game Theory, Stochastic Contests, Linear-Exponential Utility, Winner-Takes-All 

Doğrusal-Üstel (Linex) Yarar Fonksiyonları ile Rassal Yarışmalar 

ÖZ Bu çalışmada tercihleri doğrusal-üstel yarar fonksiyonları ile belirlenen oyuncular arasında gerçekleşen ve tek kazananın olduğu 

yarışmaları incelenmektedir. Modelde oyuncuların yarışmanın başında yatırımlarını belirledikleri ve bütün bu yatırımların beraberce  

her bir oyuncunun kazanma olasılığını belirlediği varsayılmaktadır. Öncelikle bu modelin tek bir Nash dengesinin olduğunu 

gösterilmekte, ardından denge koşullarını belirlenip bu koşulların özellikleri incelenerek dengenin yapısı hakkında çıkarımlarda 

bulunulmaktadır. Bu çıkarımlar arasında dengede toplam yatırımın alt ve üst sınırlarının bulunduğu, yatırımların oyuncuların 

başlangıçtaki zenginliklerine göre bir kesi şeklinde gösterilebileceği, zengin oyuncuların daha fazla yatırım yaptıkları, dolayısıyla 

zenginlerin yarışmanın sonunda büyük olasılıkla daha da zengin olacakları yer almaktadır. Bunlar dışında, oyuncuların eşit 

zenginliğe sahip olduğu özel durumlarda zenginlikte bir artışın veya yarar fonksiyonunun doğrusal olmayan kısmının ağırlığında 

bir azalmanın yatırımlarda artışa neden olduğu kanıtlanmaktadır. 
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1. Introduction 

Canbolat et al. [3] analyzed the Nash equilibrium in a class of stochastic contests that 
are used to model competition of firms in research and development. They proposed 
an efficient method to compute the equilibrium, which turns out to be unique, and 
derived several managerial insights by exploring the functional properties of the 
equilibrium investments and utilities. Following this paper, Canbolat and Rothblum 
[4] studied the same model (with undiscounted rewards) under the assumption that 
players are risk averse and their preferences are represented via exponential utility 
functions. They showed the existence and uniqueness of the Nash equilibrium, and 
obtained a characterization that led to an efficient computational method. Both 
linear and exponential utility functions assume that preferences remain unchanged 
when wealth changes; that is, the individual will prefer the same alternative whether 
she is poor or rich. This aspect of linear and exponential utility functions, while making 
the analysis tractable, is subject to the criticism that in practice, the degree of risk 
sensitivity of most individuals varies as their wealth changes. More specifically, many 
individuals tend to be more tolerant to risk as they get wealthier. This paper aims to 
explore the implications of decreasing risk aversion in the context of stochastic 
contests with players that have \emph{linex} (linear-plus-exponential) utility 
functions. 

Linex utility functions possess several properties that make them good candidates 
for representing preferences of individuals. Indeed, Bell [2] proved that if an 
individual's preferences over money can be represented by an increasing utility 
function, satisfy the axioms of expected utility, exhibit decreasing risk aversion, are 
close to risk neutral for small gambles for an extremely large wealth, and has one-
switch property, then the utility function must be of the linex family. One-switch 
property means that the preference between any two gambles changes at most once 
as wealth increases. Later, Denuit et al. [8] showed that linex utility functions are also 
the only risk-averse utility functions that exhibit decreasing risk aversion and 
decreasing prudence in the stronger sense of Ross [10]. These properties make the 
linex utility function attractive from both theoretical and practical standpoints, and 
for this reason, this paper assumes that the players involved in the contest have 
preferences that can be represented via a linex utility function.  

Stochastic contests considered in this paper form a special class of Tullock contests, 
introduced by Tullock [13] to model rent seeking. Cornes and Hartley explored the 
existence and the uniqueness of Nash equilibrium in Tullock contests, and obtained 
some comparative-statistics results under the assumption of constant absolute risk 
aversion in [6] and for more general utility functions in [7]. Yamazaki [14] showed the 
existence of a unique Nash equilibrium for general utility functions with decreasing 
absolute risk aversion and under budget constraints on investments. Differently from 
existing literature on Tullock contests with general risk-averse utility functions, the 
current paper focuses on linex utility functions, allows players to have different initial 
wealth, elicits the effects of the initial wealth and the weight on the nonlinear utility 
term on the Nash equilibrium.  

The paper is organized as follows. Section 2 describes the model and introduces the 
notation. Section 3 defines and characterizes the Nash equilibrium. Section 4 explores 
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further properties of this equilibrium in the case where players have the same wealth 
level, and Section 5 reports the observations of a numerical experiment for the 
contest between two players endowed with different wealth levels. Section 6 
concludes the paper..  

2. Model 

Stochastic contests considered in this paper involve 2n   players, who are identical 
except that their initial wealth may be different. At the beginning of the contest, each 
player makes an upfront investment to achieve a goal, e.g., development of a new 
product or technology. We let iw  be the initial wealth of player i and 0ix   be her 
investment. Players can borrow money if necessary, so it is possible to have i ix w . 
The contest ends when a player reaches the goal. As in [3] and [4], we refer to a player 
with as an active player. We assume that the success probability of player is of the 
form 
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where 1( , , )nx x x   is an investment profile. This probability can result for instance 
from the assumption that the time to reach the goal for player i  follows exponential 
distribution with rate ix  and is independent of the completion times of other players, 
and the player that reaches the goal first wins the prize. This and more general 
contest success functions are discussed in [5] and [11]. 

We let the value of the contest prize be 0R   for all players. The characterization of 
Nash equilibrium can be easily extended to asymmetric valuations of the prize by 
replacing R  with iR  in the equilibrium condition of player i . Both [3] and [4] allow 
different iR values, but in this paper, we assume players value the prize identically. 
We also assume that the utility function of each player for money is of the form 

 ( ) (1 ) ,zu z z e        (2) 

where 0 1   and 0  . We note that  u z  is the linear (risk-neutral) utility 
function for 0   and the risk-averse exponential utility function with risk-sensitivity 
coefficient   for 1   . For any 0 1  , 
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The coefficient of absolute risk aversion ( )z  (as defined by Arrow [1] and Pratt [9]) 
is positive and decreasing in z , so u  represents risk-averse preferences with 
decreasing absolute risk aversion. For increasing utility functions, decreasing 
absolute risk aversion implies prudence, which corresponds to the positivity of the 
third derivative of the utility function. For linex utility function (2), 
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 3( ) 0.zu z e       

Additionally, the coefficient of absolute risk aversion ( )z  is increasing in  . As 
increases, more weight is placed to the risk-averse part of (2), so preferences become 
more risk averse. 

The expected utility of player i  depends on her own investment as well as the 
investments of other players. Player i  experiences the utility associated with terminal 
wealth i iw x R   if she wins the contests, and that of the terminal wealth i iw x  if 
she loses. With winning probability (1) and linex utility (2), the expected utility of 
player i under the investment profile x  is 
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and (0) ( ) (1 ) iw
i i iU u w w e         

For notational simplicity, we let 
1
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n

i
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S x x


  for any nx , and 

 1 1 1, , , , ,i i i nx x x x x     . We also define 1 Re     and note that 0 1   for
0and 0R    . With this notation, (3) can be written as 

 ( )( ) (1 ) 1 .
( ) ( )

i ii iw x
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Rx x
U x w x e

S x S x
 

      
     

      
  (4) 

To sum up, any instance of the stochastic contests considered in this paper can be 
described through the following data elements: number of players n , contest prize

0R  , player utility parameters 0   and (0,1)   , and player wealth levels 

1, , nw w  . All these parameters are commonly known by all the players involved in the 
contest. The main purpose of the following sections is to shed light into the effect of 
  and 1, , nw w  on the Nash equilibrium of these stochastic contests. 

3. Nash Equilibrium 

In the Nash equilibrium, each player makes an investment with the objective of 
maximizing her own expected utility. The investment ix  of player i  is a best response 
of player i  to ix  if    , ,i i i i i iU x x U x x   for all 0ix  . An investment profile *x  is 
a Nash equilibrium if *

ix  is a best response to *
ix  for every 1, ,i n  . As shown in [3] 

and [4] for the special cases of linear and risk-averse exponential utilities, player i  has 
no best response to 0ix   under the linex utility function. To see why, suppose other 
players are not investing at all in the contest, then player i  can guarantee winning by 
investing a very small amount, but since investment is a sunk cost, she will enjoy a 
greater utility by minimizing her investment without making it zero. By reducing her 
investment, her utility approaches ( )( ) (1 )( ) iw R

i iu w R w R e         , but never 
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attains this maximum, since when she invests zero, her probability of winning drops 
down to zero. 

Cornes and Hartley [7] show the existence of a Nash equilibrium in general contests 
with contest success functions 

 

1

(
( ) ,

( )

i i
i n

j j

j

f x
p x

f x





  

where if  is continuous and twice continuously differentiable in 0ix  , (0) 0if  , 
( ) 0i if x   for 0ix  , and ( ) 0if x   for 0ix  , and general increasing concave 

continuously differentiable utility functions ( )iu z . In our model, ( )i i if x x  and 
( ) (1 ) z

iu z z e      , and these satisfy the conditions assuring the existence of a 
Nash equilibrium, so we conclude that the stochastic contests described in Section 2 
have at least one Nash equilibrium. The following results are instrumental in the 
characterization of Nash equilibrium under linex utility function. 

Lemma 1. Given 0ix  , the expected utility ( )iU x  of player i  is differentiable and 
strictly concave in 0ix  , and it converges to   as ix  converges to infinity. 

Proof. Given 0ix  , differentiating (2) with respect to ix  gives 
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The second derivative with respect to ix  is 
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where the inequality follows from the assumptions 0  , 0R   (so 0 1  ), and
0 1  . Also, as ix  converges to infinity, ( ) / ( )i ip x x S x  converges to 1, so the 
bracketed expressions in (4) converge to   and 1   respectively. The exponential 
term before the second bracketed expression converges to ; therefore, (4) 
converges to  . 

To simplify the notation and the proofs in the sequel, we define three functions and 
note their relevant properties as observations below. 

Observation 1. The function    1 /f x e x x    is decreasing in x >0 and 
converges down to 1 as x  decreases to zero. The monotonicity follows from its first 
derivative 

 2( ) ( 1) / 0 forall 0,x xf x e x e x x        

Since 1xe x  , and the limit as x  converges down to zero is 

 
2 3

0 0 0

( 1) ( / 2 / 6 )
lim ( ) lim lim 1.

x x

x x x

e e x x x
f x

x x



  

   
     



Canbolat Stochastic Contests with Linex Utility Functions 118 

 

 
 

Alphanumeric Journal 
Volume 7, Issue 1, 2019 

 

These two properties imply that 

 ( ) 1 forall 0.f x x    (6) 

Observation 2. The function ( ) (1 )g x F Fx x       is increasing in x  if 1F   
and otherwise, for all 0 1x  , 
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where the first inequality holds because (0,1)  , and the last one holds because the 
bracketed expression is a convex combination of F  and 1, and 1F  , so the 
bracketed expression is less than or equal to F . 

Observation 3. The function ( ) ( 1) x x
mh x m x xe m me       with 2m   is 

increasing in 0x  , since 
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 ( ) (0) 0 forall 0.m mh x h x     (8) 

Lemma 2. Suppose 0ix   . 

i. If ( )iS x R  , then the best response of player i  to ix  is zero. 

ii. If ( )iS x R     and 

  1 1 ( )
ln ,

( )
i

i

i

R S x
w

S x



   




   
    

  
  

then the best response of player i  to ix  is zero. 

iii. Otherwise, the best response of player i  to ix  is positive and it is the unique 
solution i ix x  of the nonlinear equation 

    2 ( ) 2(1 ) ( ) ( ) ( ) ( ) ( ) .i iw x
i i iRS x S x e S x x S x S x     

        (9) 

Proof. By Lemma 1., given 0ix  , ( )iU x  is strictly concave in 0ix   and converges to 
  as ix  converges to   , so it must have a finite maximizer 0ix  . Specifically, if 
the derivative of ( )iU x  with respect to ix  evaluated at 0ix   is nonpositive, the 
unique maximizer is zero; otherwise, it is positive and is the unique stationary point 
of ( )iU x . For 0ix  , ( ) ( )iS x S x   and the derivative (5) is 
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Based on Observation 1, / ( )Rf R    and by (6), R  . Accordingly, if ( )iS x R 

, then ( )iS x R     , (10) is nonpositive. This is true also when ( )iS x R     
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In both cases, the unique maximizer is zero. 

On the other hand, if ( )iS x   , then ( )iS x R  , so (10) is positive. Also if 
( )iS x    and  

  1 1 ( )
ln ,

( )
i

i

i

R S x
w
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(10) is positive. In both cases, the unique maximizer of ( )iU x  is the value 0i ix x   
that makes (5) zero. Equating (5) to zero and rearranging yields (9). 

Proposition 1. The stochastic contest among players with linex utility functions has 
a unique Nash equilibrium. 

Proof. The existence of a Nash equilibrium follows from Theorem 3.1 in [7] with 
( )i i if x x  and ( ) (1 ) z

iu z z e      . We obtain the uniqueness from Theorem 4.2 
in [7] by writing the derivative of ( )iU x  in terms of the total investment ( ) 0F S x   
and /iz x F  as  

      ( )( , ) 1 (1 ) (1 ) ,iw Fz
i F z F R z F e F Fz z                

and showing that for each i  and 0F  , there exists a unique 0 1z   such that 
( , ) 0i F z   and ( , ) 0iz F z  . 

If F R , then the first bracketed expression is nonpositive, and the second one is 
nonnegative, since 

 (1 ) ( )(1 ) ( )(1 ) 0,F Fz z F z R z                  

where the last equality follows from / ( )Rf R    and (6). Accordingly, ( , ) 0i F z   
for all 0 1z  . Also if 0 1z  , the first inequality is strict, so ( , ) 0i F z  . Hence the 
unique 0 1z   such that ( , ) 0i F z   and ( , ) 0iz F z   is 0z   in this case.  

Suppose now F R  and 1F  . Then  

     ( ) 2( , )
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And ( )( ,1) (1 ) (1 ) 0iw F
i F F e F           , so either there exists a unique 

0 1z   such that ( , ) 0i F z  , in which case ( ,0) 0i F  , or ( , ) 0i F z   and 0z   is 
the only 0 1z   such that ( , ) 0i F z   and ( , ) 0iz F z   . 

Finally, consider the case where F R  and 1F  . In this case, (1 )F Fz z      
is decreasing in z , so is minimized at 1z  , implying 

(1 ) (1 ) 0F Fz z F          . The equation ( , ) 0i F z   is then equivalent to 
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Differentiating the left-hand side with respect to z  gives 

 
 

2

( )
0,

(1 )

F F R R

F Fz z

   

  

   


  
  

so the left-hand side is decreasing in z  whereas the right-hand side is increasing in z

. Accordingly, there can be at most one solution 0 1z   that satisfies this equality. 
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If there is no such solution, then 0z   is the only 0 1z   such that ( , ) 0i F z   and
( , ) 0iz F z  ; otherwise, 
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which completes the proof. 

Theorem 1. In the unique Nash equilibrium *x  of the stochastic contest with 
parameters , , ,n R   , and 1, , nw w , at least two players are active, the total 
equilibrium investment *( )F S x  is in the interval (0, )R , and the investment of each 
active player i  is the unique solution *

i ix x  of the equation 

    2 ( ) 2(1 ) ( ) ( ) .i iw x
i i iR F x F e F x F F x              (11) 

Furthermore, 

i. If F  , then all players are active. 

ii. If F  , then only players with wealth 

  1 1
lni

R F
w
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are active. 

Proof. By Proposition 1., there exists a unique Nash equilibrium, and as argued at the 
beginning of this section, player i  does not have a best response to 0ix  , so an 
investment profile with no or only one active player cannot be a Nash equilibrium. 
Hence at least two players must be active in the unique Nash equilibrium *x , so

*( ) 0F S x  . We obtain (11) by replacing *( )S x  with F  and *( )iS x  with *
iF x  in 

(9). Now suppose F R , then the left-hand side of (11) is nonpositive since
* 2( ) ( ) 0iR F x F F R F     . However, if also 1F  , then 
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else, 1R F    and R   (by Observation 1) lead to 
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These together with 
*( ) 0i iw xe      imply that when F R  , the right-hand side of 

(11) is positive, which gives a contradiction. 
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Now suppose F  . Then *( )iS x   , so (iii) of Lemma 2 applies without any 
additional condition on iw , so all players must be active. If F  , then (iii) of 
Lemma 2 applies with the additional condition on iw . 

Theorem 1 sets the equations to compute the unique Nash equilibrium under linex 
utility function, and gives a characterization of the set of active players. Statements 
(i) and (ii) suggest that either all players are active or the active ones are the ones with 
large wealth levels. The following is an immediate corollary of Theorem 1. 

Corollary 1. In the unique Nash equilibrium *x  of the stochastic contest with 
parameters , , ,n R   , and 1 nw w  , the set of active players is of the form 
{1, , }m  for some 2 m n  . 

Another implication of Theorem 1 concerns the ratio of the total investment *( )S x  to 
the contest prize R , which is referred to as the dissipation ratio in rent-seeking 
literature. Theorem 1 suggests that under-dissipation occurs in stochastic contests 
with linex utility functions. Proposition 2 provides a smaller upper bound and a lower 
bound on the total equilibrium investment. 

Proposition 2. In the unique Nash equilibrium *x  of the stochastic contest with 
parameters , , ,n R   , and 1 nw w  , the total investment *( )S x  satisfies 
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where m  is the number of active players. 

Proof. Dividing (11) by *( ) 0F S x  , letting * /i iz x F  and 
( ) (1 )g t F Ft t       gives 
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where ( )mh x  is defined in Observation 3 and positivity follows from (8). Consequently, 

1

( ) 0
m

i

i

g z


 , which contradicts ( ) 0ig z   for all1 i m  . Hence ( 1) /F m R m   is 
not possible, and since $ $( 1) /m n and m m   is increasing in m ,
( 1) / ( 1) /m R m n R n R    . 

As shown above, if 1F  , each ( ) 0ig z  . On the other hand, if 1F   and ( ) 0kg z   
for some1 k m  , then (1 )kR z F  , implying (1 )jR z F   for 1 argmax i m ij z   
and so ( ) 0jg z  . Since 1F   implies that ( )g t  is increasing in t , ( ) 0ig z   for all
1 i m  . The latter cannot be true since the left-hand side of (13) is 
(1 )[ ( 1) ] 0R m mF     as shown in the first part of this proof. Hence ( ) 0ig z   for 
all 1 i m   must hold also when 1F  . Consequently, 

 
1

( ) ( ) ( 1) 0,
m

i

i

g z m F m  


       

implying ( 1) / ( )F m m     . We obtain the leftmost bound by observing that 
2m   and ( 1) / ( )m m    is increasing in m , replacing 1 Re    , and multiplying 

both the numerator and the denominator by Re .   

In order to see the implications of these bounds on the dissipation ratio, we divide all 
by R  and get 

 
*1 ( ) ( 1)

1.
( 1)

R

R

e S x n

R nR e





 
  


  

The lower bound converges to zero as R  increases, since the function 
( 1) / [ ( 1)]x xe x e   has derivative 

 
2 2 2 2 2 2 4

2 2 2 2 2 2 2 2

2 1 ( ) 1 (1 / 2) 1
0.

( 1) ( 1) ( 1) 4 ( 1)

x x x

x x x x

xe e e x x x x x

x e x e x e x e

          
   

   
  

Proposition 3. In the unique Nash equilibrium *x  of the stochastic contest with 
parameters , , ,n R   , and 1 2 nw w w   , if i jw w , then * *

i jx x . 

Proof. The proof of Proposition 2 showed that ( ) 0ig z  , so *(1 ) ( )iR z F S x    for 
each 1, ,i m  . Then (12) can be reorganized as follows 

 
( )

.
1 (1 )

i i iw Fz

i

g z
e e

R z F
 


  

         
  

The left-hand side of this equality is increasing in iw . The derivative of the ratio on 
the right-hand side with respect to iz  is 

 

2

2 2

2

( ) ( / (2 ) )

[ (1 ) ] [ (1 ) ]

(1 ) ( (2 ) 2 )
0,

(2 )[ (1 ) ]

i i

i

F F R R F R R

R z F R z F

F R

R z F

        

   



      


   

  
 

  

  

where the first inequality uses the lower bound in Proposition 2, and positivity follows 
from (8) with 2m  . Hence the right-hand side of the reorganized equilibrium 
condition above is increasing in iz , and therefore, for any F , larger iz  should be 
allocated to the player with larger wealth iw . 
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Proposition 3 states that wealthier players invest more in the contest. This in turn 
implies that the probability *( )ip x  of winning the contest for a wealthier player is 
higher, so we come across yet another instance of the rich being more likely to get 
richer. 

The next two sections explore further properties of the Nash equilibrium in the special 
cases involving arbitrarily many identical players and two players with different 
wealth levels respectively. 

4. Contests with Identical Players 

This section restricts attention to contests among players with equal initial wealth
0iw w  . Corollary 2 applies Proposition 2 to this special case, which is then used 

to refine Theorem 1. 

Corollary 2. In the unique Nash equilibrium *x  of the stochastic contest with 
parameters , , ,n R    and 1 nw w w  , all players are active and the total 
investment *( )S x  satisfies 

 *( 1) ( 1)
( ) .

( )

n n R
S x R

n n



 

 
  


  

Proof. By Theorem 1, if *( )F S x    , all players must be active; otherwise, 
players with wealth violating the additional condition in (ii) are active, but when

iw w forall i , the condition holds either for all or none of the players. As stated at 
the beginning of the same theorem, there are always at least two active players, so 
with identical players, all must be active, or equivalently m n . Plugging this in the 
inequalities in Proposition 2 completes the proof. 

Theorem 2. In the unique Nash equilibrium of the stochastic contest with parameters 
, , ,n R    and 1 nw w w  , all players invest equally and the total investment F  

is the unique solution of the equation 

    ( / )(1 ) ( 1) ( ) ( 1) .w F nR n nF e n F n              (14) 

Proof. As shown in the proof of Proposition 2 ( ) 0ig z   , so *(1 ) ( )iR z F S x    for 
each 1, ,i m n    , and (12) is equivalent to  

 
( )

.
1 (1 )

i iw Fz

i

g z
e e

R z F
 


  

         
  

The proof of Proposition 3 showed that the right-hand side of this equality is 
increasing in iz , so for any given *( )F S x , iz  is unique, assuring iz z  for all 

1, ,i n   and since * */ ( )$,$ 1/i i iz x S x z n  . Letting /ix F n  and canceling F  
from both sides reduces (11) to (14), which has a unique solution, since its left-hand 
side is decreasing in F , and the right-hand side is increasing in F . A solution 
satisfying the bounds in Corollary 2 exists because at 0F  , 

  (1 ) ( 1) (1 ) ( 1) 0,R n nF R n          

  ( / ) ( ) ( 1) ( 1) 0,w F n we n F n e n                 

and at ( 1) /F n R n    
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  (1 ) ( 1) 0,R n nF      

  
2( / ) ( ( 1) / ) 1

( ) ( 1) ( ) 0,w F n w n R n
n

n
e n F n e h R

n
            

      
 

  

where ( )nh x  is defined and shown to be positive for 0x   in Observation 3. 

Theorem 2 reduces the problem of finding the Nash equilibrium to solving the 
nonlinear equation (14) in the special case with identical players. 

Proposition 4. In the stochastic contest among players endowed with equal wealth, 
the equilibrium investment of players increases as the initial wealth w  increases and 
decreases as the utility parameter   increases. 

Proof. The condition (14) can be reorganized as follows: 

 /1 ( ) ( 1)
1 .

( 1)
w F n n F n

e e
R n nF

    



    
        

  

The left-hand side of this equality is increasing in w  and decreasing in  . In the right-
hand side, /F ne  and ( ) ( 1)n F n      are increasing in F , ( 1)R n nF   is 
decreasing in F , and each of these expressions is positive as suggested by Corollary 
2; therefore, the right-hand side is increasing in F . Consequently, F  and so /F n  
must be increasing in w  and decreasing in  . 

As the wealth w  increases or the utility parameter   decreases, players become less 
risk averse, since the coefficient of absolute risk aversion decreases. Proposition 4 
states that as a consequence of any of these changes, players invest more in the 
contest as they become more tolerant to taking risks. We proved this result directly 
using the equilibrium conditions for the linex utility functions; it can be recovered also 
by using Proposition 2 in [12]. 

The following example illustrates the results of this section. 

Example 1. Consider a contest with four players, prize 20R  , and utility parameter
0.5  . Figure 1. shows the effects of varying the wealth w  and the utility parameter 

  on the equilibrium investment of players. Consistently with Proposition 4, we 
observe that equilibrium increases as wealth increases, and decreases as the weight 
  on the nonlinear (exponential) component of the utility function increases. This 
example also illustrates that players can choose to invest more than their initial 
wealth in the Nash equilibrium, e.g., * 2.365ix   for 0.5   and 1w  . 

 
 

a) Effect of increasing w  (b) Effect of increasing   

Figure 1. Effects of increasing w and   on equilibrium investment *
ix  in contests with identical player 
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5. Two-Player Contests 

This section is devoted primarily to a numerical experiment involving two players. As 
the previous section solved the problem for arbitrarily many identical players, here we 
focus on the case where two players initially have different amounts of wealth, 

1 2,w w w w   , and 0  . The following corollary applies Theorem 1 to this case. 

Corollary 3. In the unique Nash equilibrium of the two-player stochastic contest with 
parameters , ,R   , 1w w   , 2w w , and 0  , both players invest a positive 
amount and their equilibrium investments *

1x  and *
2x  uniquely solve the following 

system of nonlinear equations 

    12 ( ) 2
2 1 2 1 2 1 1 2 2(1 ) ( ) ( ) ( ) ,w xRx x x e x x x x x x                 (15) 

    22 ( ) 2
1 1 2 1 2 2 1 2 1(1 ) ( ) ( ) ( ) .w xRx x x e x x x x x x               (16) 

Letting 1 2F x x   and 1 /z x F  (so that 21 /z x F  ) in (15)-(16) reduces the 
problem of computing the Nash equilibrium of a two-player contest to finding 0F   
and [0,1]z  that satisfy the following two nonlinear equations 

    ( )(1 ) (1 ) (1 ) ,w FzR z F e F Fz z                (17) 

    ( (1 ))(1 ) (1 ) .w F zRz F e F F z z              (18) 

We illustrate the sensitivity of the Nash equilibrium to changes in parameters , w , 
and   through a numerical experiment. We recall that an increase in   corresponds 
to an increase in the risk-sensitivity of the two players (but at different degrees since 
they have different wealth), an increase in w  represents an equal increase in their 
wealth, and an increase in   means an increase only in the wealth of player 1. The 
latter two have also implications on the degree at which players are risk averse; 
specifically, an increase in w  makes both players less risk averse whereas an increase 
in   makes only player 1 less risk averse. Independently of whether the effect is on 
only one or both of the players' risk sensitivity, both players' investments are affected 
by these changes because of the game theoretical nature of the problem. 

Example 2. Consider the contest between two players with prize 20R  , and utility 
parameter 0.5   . Figure 2 displays the changes in the equilibrium investments and 
winning probabilities of players as  , w , and  increases. 

  
(a) Effect of   on equilibrium investments (b) Effect of   on winning probabilities 
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(c) Effect of w  on equilibrium investments (d) Effect of w  on winning probabilities 

  
(e) Effect of   on equilibrium investments (f) Effect of   on winning probabilities 

Figure 2. Effects of increasing  , w , and   on equilibrium investments and winning probabilities in two-player contests 

An increase in  , which is the weight of the nonlinear component of the utility 
function, increases the coefficient of absolute risk aversion of both players; however, 
since their initial wealth is different, two players experience different levels of 
increase in their risk aversion. For  close to zero, the coefficient of absolute risk 
aversion is very small, so players are close to risk neutral and their choices are 
minimally affected by the discrepancy between their wealth. Figure 2 (a) shows that 
as  increases, their investments decrease while the gap between their investments 
increases. On the other hand, Figure 2 (b) shows that the decreases in *

1x  and *
2x  are 

such that the winning probability * * *
1 1 2/ ( )z x x x   of player 1 increases whereas the 

winning probability 1 z  of player 2 decreases. 

Given  and   constant, an increase in w represents an equal increase in the wealth 
of two players, which, in turn, affects the degree of risk aversion exhibited by each 
player. We observe in Figure 2 (c) that such a change occurs, both players invest more 
in the Nash equilibrium, which can be explained by decreasing absolute risk aversion. 
As w  gets larger, the difference between their investments appears to be vanishing, 
since the effect of the constant gap between their wealth on their preferences 
decreases. Figure 2 (d) suggests that an equal increase in wealth affects the winning 
probability of player 1 adversely and that of player 2 favorably, even though the latter 
always remains below the former. 

Finally, for fixed   and w , the effects of increasing the gap   between the wealth 
of two players affects the equilibrium investments in opposite directions. Specifically, 
as   increases, the equilibrium investment of player 1 increases whereas the 
investment of player 2 decreases. The increase in *

1x  overweighs the decrease in *
2x , 

so the total investment * *
1 2x x  increases. These changes are displayed in Figure 2 (e). 

The changes in winning probabilities follow straightforwardly from the changes in 
equilibrium investments. Since *

1x  increases and *
2x  decreases, the ratio 

* * *
1 1 2/ ( )z x x x   increases and 1 z  decreases, meaning the winning probability of 

player 1 increases while the winning probability of player 2 decreases, as shown in 
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Figure 2 (f). This makes intuitive sense, since the gap between the wealth levels of 
players increases, player 1 enjoys a more advantageous status, she is wealthier and 
so by decreasing absolute risk aversion, much more tolerant to risk than her 
competitor. Consequently, she invests more in the risky contest, further improving 
her chance of winning. 

6. Conclusion 

In this paper, we explored the Nash equilibrium in a class of winner-takes-all 
stochastic contests among players with linex utility functions. We derived the 
equilibrium conditions and by delving into these conditions, obtained bounds on the 
total equilibrium investment, and elicited the effects of wealth and that of the weight 
on the nonlinear (so risk-sensitive) part of the utility function on the equilibrium. In 
particular, for the general case, we showed that there is a cut characterization of the 
players that invest a positive amount with respect to wealth, and wealthier players 
invest more, making them more likely to win the contest. For the case with identical 
players, we showed that a larger wealth and a smaller weight on the nonlinear utility 
term implies a larger equilibrium investment, which is also intuitive since both these 
changes entail higher risk tolerance. 

Potential future research directions include employing different types of utility 
functions or even alternative risk-sensitive criteria such as those based on mean and 
variance, and conditional value at risk, considering various forms of winning 
probability or contest mechanisms other than winner-takes-all, and exploring the 
dynamic versions where players get involved in successive contests and the outcome 
of these contests affect their future decisions by increasing or decreasing their 
wealth and consequently their attitude toward risk. 
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