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INTRINSIC PROOFS OF THE EXISTENCE OF GENERALIZED

FINSLER CONNECTIONS

JOSEPH SALOMON MBATAKOU

(Communicated by H. Hilmi HACISALİHOǦLU)

Abstract. Let (M,F,H) be a Finsler-Ehresmann manifold, where (M,F ) is

a Finsler manifold endowed with an arbitrary horizontal structure H . In

the present paper, we give an intrinsic proof of the existence of generalized
Chern connection on (M,F,H). Note that in [3], the author gave a local

coordinates proof of this existence which is very long and quite laborious.

Subsequently, we give an axiomatic formalism of generalized Cartan, Berwald
and Hashiguchi connections on (M,F,H) and establish some relations between

these connections and generalized Chern connections.

1. Introduction

The theory of connections is an important field of differential geometry. It was
initially developed to solve pure geometrical problems. Going back to the construc-
tion of Cartan, Berwald, Chern and Hashiguchi connections on the Finsler manifold
(M,F ), it easily follows that these connections are not related to the choice of a
particular Ehresmann connection i.e. a horizontal distribution H complementary
to V = ker dπ where, π : TM0 → M and TM0 := {(x, y) ∈ TM : y 6= 0} in the
sense that it defines a direct sum TTM0 = H ⊕ V. So by providing (M,F ) of
any choice of subbundle H ⊂ TTM0, we obtain the Finsler-Ehresmann manifold,
on which we extended the mentioned connections. In [3], the author introduced
and studied the case of generalized chern connection but using the local coordinate
system on an open subset of M , the existence proof of this connection which he
proposes was very long and quite tedious. We therefore propose an improvement
of this proof and we treat the case of the other important finslerian connections,
namely Cartan, Berwald and Hashiguchi connections. So the purpose of the paper
is to give an axiomatic formulation of generalized Cartan, Berwald and Hashiguchi
connections. We also provide an intrinsic (coordinate free) proof of the existence
and uniqueness theorem of these connections. Our proof have the advantages of
being simple, systematic and guided by the Riemannian case.
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If we restrict to the case of classical connections induced by the Finslerian struc-
ture, we obtain by using only the pull-back formalism, an intrinsic formulation of
these connections. This simplifies what is done in [5], where the study is made by
combining the pull-back approach and the one of Klein-Grifone. The paper consists
of four parts :
The first part is an introductory section (§2), which provides a brief account of the
basic definitions and concepts necessary for this work. For more details, we refer
to [1] and [3].

In the second part (§3), we propose an outcome (lemma 3.1) that we used to pro-
vide an intrinsic proof of the existence of generalized Chern connection and other
connections that we treat. The third part (§4) is devoted to an intrinsic proof of
the existence and uniqueness theorem of generalized Cartan connection. Moreover,
an intrinsic relationship between this connection and the generalized Chern con-
nection is obtained. The fifth and fourth part (§5, §6 ), provides an intrinsic proof
of the existence and uniqueness theorems of generalized Berwald and Hashiguchi
connections on (M,F,H). In the same manner as the others connections, we give an
intrinsic relationship between Berwald and chern connection, and Hashiguchi and
chern connections on (M,F,H). It is worth mentioning that, the local expressions
relating all these connections (Cartan, Berwald, Hashiguchi) to the Chern connec-
tion in the classical (M,F ) Finsler manifold, coincide with the existing classical
local results.

2. Preliminaries

2.1. Finsler-Ehresmann manifold. In this section we recall briefly the concept
of Finsler-Ehresmann manifold. For a detailed description, the reader may also
refer to [3].

Let (M,F ) be a Finsler manifold and Gi the spray coefficients of F .

By N i
j := ∂Gi

∂yj we define a vector form

(2.1) θc =
∂

∂xi
⊗ 1

F
(dyi +N i

jdx
j)

Then from θc and π∗, we can obtain the horizontal distribution Hc and the vertical
distribution V define by :

Hc := ker θc(2.2)

V := kerπ∗(2.3)

With the Riemannian metric of Sasaki type induced by F , Hc is orthogonal to V,
and we have the decomposition,

(2.4) TTM0 = Hc ⊕ V.
Therefore the manifold TM0 admits an Ehresmann connection directly related to
objects N i

j .

Definition 2.1. An Ehresmann connection associated with π : TM0 −→ M is
a smooth distribution H ⊂ TTM0 called horizontal subbundle of the connection
which is complementary to V in the sense that it defines the direct sum TTM0 =
H⊕ V.

The objects N i
j , play an important role in the construction of the connection on

π∗TM . However this construction does not depend either on a particular choice of
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N i
j . Which justifies the generalization made here.

Indeed the projection π being natural, the vertical subbundle V is determined in the
unique way. In contrary, the choice of a complementary of V namely the horizontal
subbundle H is not determined in such a way as canonical. Thanks to the chosen
of an Ehresmann connection, we selecte the subbundle H.

Let PH a projection on vertical bundle V along of H. So

PH : TTM0 −→ V such that PH ◦ PH = PH and Im (PH) = V

H = kerPH is the subbundle of the Erhesmann connection.
Recall that locally, once the projector PH is chooses, it acts on the basis { ∂

∂xi ,
∂
∂yi }

of TTM0, in the following way :

PH(
∂

∂xi
) = Nj

i

∂

∂yj
,(2.5)

PH(
∂

∂yi
) =

∂

∂yi
(2.6)

Where the coefficients Ni
j correspond to the choice of the connection H.

It is easy to verify that the vector fields

(2.7)
δ

δxi
:=

∂

∂xi
−Nj

i

∂

∂yj
,

form a basis of H = kerPH. Similary we have the covector

(2.8) δyi = dyi + Ni
jdx

j .

For the sake of computations let us introduce the morphism θ̄ : TTM0 −→ π∗TM
define by : θ̄ = ν ◦ PH where ν is the canonical map ν : V −→ π∗TM .

Therefore each subbundle is defined as

(2.9) H := ker θ̄.

Definition 2.2. A Finsler-Ehresmann manifold which we denote by (M,F,H) is
a finslerian structure equipped with the Ehresmann connection H.

Remark 2.1. In order to be coherent with the conventions of working with objects

invariant under the transformation (y −→ λy) we will used θ := θ̄
F instead of θ̄.

And locally we have

θ

(
F

∂

∂yi

)
=

∂

∂xi
,

θ

(
δ

δxi

)
= 0,

3. Generalized Chern connection.

In this section we improve the result in [3] by providing an intrinsic proof of the
existence theorem of generalized Chern connection.
But before set out this proof, recall that a finslerian structure F on the manifold
M defines a fundamental tensor g. This tensor is defined on TM0 and is a metric
on the pulled-back bundle π∗TM [1].

As in the riemannian case we have the following result:
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Lemma 3.1. Let (M,F ) be a Finsler manifold, g the fundamental tensor of F and
π∗TM the pulled-back bundle on TM0 . Let ξ ∈ Γ(π∗TM) there exists precisely
one section ξ[ ∈ Γ(π∗T ∗M) such that for all η ∈ Γ(π∗TM), ξ[(η) = g(ξ, η).
And conversely, let α ∈ Γ(π∗T ∗M) there exists precisely one section α] ∈ Γ(π∗TM)
such that for all η ∈ Γ(π∗TM), g(α], η) = α(η).

Proof. Note that, the space Γ(π∗TM) is the module on C∞(TM0). So the metric
g defined a C∞(TM0)-linear product on Γ(π∗TM) with values in C∞(TM0):

(3.1) g : Γ(π∗TM)× Γ(π∗TM) −→ C∞(TM0).

By posing, for all (x, y) ∈ TM0,

(3.2) g(ξ, η)(x, y) = g(x, y)(ξ(x,y), η(x,y)).

As g is nondegenerate, the C∞(TM0)-linear map

(3.3)
g[ : Γ(π∗TM) −→ Γ(π∗T ∗M)

ξ 7−→ g[(ξ)

such that g[(ξ)(x, y) = g(x, y)(ξ(x,y), •), for all (x, y) ∈ TM0, is an isomorphism
and, the C∞(TM0)-linear map:

(3.4)
g] : Γ(π∗T ∗M) −→ Γ(π∗TM)

α 7−→ g](α)

such that α(x,y) = g(x, y)((g](α))(x,y), •) for all (x, y) ∈ TM0 is the reciprocal
isomorphism. The result follows from these isomorphisms. �

Note that the pullback bundle π∗TM , is the quotient of the tangent bundle
TTM0 and we have the following short sequence of vectors bundle, relating the
tangent bundle TTM0 and the pullback bundle π∗TM :

0 −→ V i−→ TTM0
π∗−→ π∗TM −→ 0

Where π∗ : TTM0 −→ π∗TM is the derivative of the map π : TM0 −→M .
The purpose is to build on our Finsler-Ehresmann manifold (M,F,H), a Koszu-

lian formulation of Finsler connection ∇:

(3.5)
∇ : Γ(TTM0)× Γ(π∗TM) −→ Γ(π∗TM)

(X, ξ) 7−→ ∇Xξ
This is a connection on π∗TM associated to an arbitrary choice of H = ker θ. It is
called a generalized Chern connection.

Proposition 3.1. [3] Let (M,F,H) be a Finsler-Ehresmann manifold and g, a
fundamental tensor of F . There exist a unique linear connection ∇ on π∗TM such
that for all X,Y ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM) we have the following :

(a) Symmetry

(3.6) ∇Xπ∗Y −∇Y π∗X = π∗[X,Y ],

(b) Almost g-compatibility

(3.7) (∇Xg)(ξ, η) = 2A(θ(X), ξ, η),

where A is the Cartan tensor.
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A proof of the above proposition is given in [3] but the author has done in a local
approach through a local coordinates system on an open set of M . What makes
the proof very long and laborious. Thus hiding the intrinsic aspect which we would
expect.

So we propose an intrinsic proof of the existence of this connection, with the
advantage that it is short, simple and similar to what is done in the Riemannian
case for the Levi-Civita connection.

Proof. Existence. Consider the equation of almost g-compatibility (3.7) for the
two sections π∗Y, π∗Z ∈ Γ(π∗TM), then :

(3.8) X.g(π∗Y, π∗Z) = g(∇Xπ∗Y, π∗Z) + g(π∗Y,∇Xπ∗Z) + 2A(θ(X), π∗Y, π∗Z).

Cyclic permutation on (X,Y, Z) in the above formula yields three equations. Adding
two of these equations and subtracting the third, gives by the condition (a) the fol-
lowing equation :

2g(∇Xπ∗Y, π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y,Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z),(3.9)

where
(3.10)
A(X,Y, Z) = A(θ(X), π∗Y, π∗Z)) +A(θ(Y ), π∗Z, π∗X))−A(θ(Z), π∗X,π∗Y )).

For fixed X,Y ∈ Γ(TTM0), we consider the 1-form 1
2ω ∈ Γ(π∗T ∗M) assigning the

right hand side of (3.9) to each π∗Z ∈ Γ(π∗TM) i.e

1

2
ω(π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y,Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z), ∀Z ∈ Γ(TTM0).(3.11)

Then 1
2ω is tensorial in π∗Z. In fact, for f ∈ C∞(TM0)

1

2
ω(fπ∗Z) = Xg(π∗Y, fπ∗Z) + Y g(fπ∗Z, π∗X)− fZg(π∗X,π∗Y )

+ g(π∗[X,Y ], fπ∗Z)− g(π∗[Y, fZ], π∗X) + g(π∗[fZ,X], π∗Y )

− 2A(X,Y, fZ)

= (Xf)g(π∗Y, π∗Z) + fXg(π∗Y, π∗Z) + (Y f)g(π∗Z, π∗X)

+ fY g(π∗Z, π∗X)− fZg(π∗X,π∗Y ) + fg(π∗[X,Y ], π∗Z)

− (Y f)g(π∗Z, π∗X)− fg(π∗[Y, Z], π∗X))− (Xf)g(π∗Z, π∗Y ))

+ fg(π∗[X,Z], π∗Y ))− 2fA(X,Y, Z)

=
1

2
fω(π∗Z),(3.12)

and the additivity in π∗Z is obvious.
Therefore, by lemma 2.1, there exists precisely one section ξ ∈ Γ(π∗TM) such that

ω(π∗Z) = 2g(ξ, π∗Z)

We thus put ∇Xπ∗Y := ξ. It remains to show that this defines a connection
verifying the conditions (a) and (b) of the theorem : The additivity with respect
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to X and Y is clear, the tensorial behavior with respect to X follows as in (3.12)
and the derivative property

∇Xπ∗fY = f∇Xπ∗Y + ((π∗X)f)π∗Y

in the same manner. For the condition (a) , we have by (3.9) ,

2g(∇Xπ∗Y −∇Y π∗X,π∗Z) = 2g(∇Xπ∗Y, π∗Z)− 2g(∇Y π∗X,π∗Z)

= X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y, Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z)− Y g(π∗X,π∗Z)−Xg(π∗Z, π∗Y )

+ Z.g(π∗X,π∗Y )− g(π∗[Y,X], π∗Z) + g(π∗[X,Z], π∗Y )

− g(π∗[Z, Y ], π∗X) + 2A(X,Y, Z)

= 2g(π∗[X,Y ], π∗Z)

(3.13)

Therefore

∇Xπ∗Y −∇Y π∗X = π∗[X,Y ]

Since g is nondegenerate. Likewise we deduce (b) from (3.9), in the same manner.
For the uniqueness, the proof is the same as in [3]. �

4. Generalized Cartan connection

The aim of the present section is to build firstly an axiomatic formulation of
generalized Cartan connection ∇̄ and secondly to provide an intrinsic proof of the
existence and uniqueness theorem for this connection. More over we give an intrin-
sic relationship between Cartan and chern connection and, we show that the local
expressions of this relation in the canonical case coincide with the existing classical
local results.

Theorem 4.1. Let (M,F,H) be a Finsler-Ehresmann manifold and g be a funda-
mental tensor of F . There exist a unique linear connection ∇̄ on π∗TM such that
for all X,Y ∈ Γ(TTM0) :

(a) Symmetry

(4.1) ∇̄Xπ∗Y − ∇̄Y π∗X = π∗[X,Y ] +
(
A](θ(X), π∗Y, •)−A](θ(Y ), π∗X, •)

)
,

(b) Metric-compatibility

(4.2) ∇̄g = 0,

where, A](ξ, η, •) is the section of π∗TM define by :

(4.3) g(A](ξ, η, •), µ) = A(ξ, η, µ) ∀ξ, η, µ ∈ Γ(π∗TM)

Proof. Uniqueness . Since ∇̄ is metric with respect to fundamental tensor g, we
have for all X,Y, Z ∈ Γ(TTM0) :

(4.4) X.g(π∗Y, π∗Z) = g(∇̄Xπ∗Y, π∗Z) + g(π∗Y, ∇̄Xπ∗Z).
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Cyclic permutation on (X,Y, Z) in the above formula yields three equations. Adding
two of these equations and subtracting the third, it follows from condition a) :

2g(∇̄Xπ∗Y, π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y, Z], π∗X) + g(π∗[Z,X], π∗Y )

+ g
(
A](θ(X), π∗Y, •)−A](θ(Y ), π∗X, •), π∗Z)

)
− g

(
A](θ(Y ), π∗Z, •)−A](θ(Z), π∗Y, •), π∗X)

)
+ g

(
A](θ(Z), π∗X, •)−A](θ(X), π∗Z, •), π∗Y )

)
(3.3)
= X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y, Z], π∗X) + g(π∗[Z,X], π∗Y )

+ 2A(θ(Z), π∗X,π∗Y )− 2A(θ(Y ), π∗X,π∗Z).

Then,

2g(∇̄Xπ∗Y, π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y,Z], π∗X) + g(π∗[Z,X], π∗Y )

+ 2A(θ(Z), π∗X,π∗Y )− 2A(θ(Y ), π∗X,π∗Z).(4.5)

Now if there are two connections ∇̄1 and ∇̄2 satisfying the conditions (a) and (b)
then the relation (4.5) implies that

(4.6) g(∇̄1
Xξ − ∇̄2

Xξ, η) = 0, ∀X ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM)

And the uniqueness follows.
Existence. For fixed X,Y ∈ Γ(TTM0), we consider the 1-form 1

2 ω̄ ∈ Γ(π∗T ∗M)

assigning the right hand side of (4.5) to each π∗Z ∈ Γ(π∗TM). Then 1
2 ω̄ is tensorial

in π∗Z. In fact, for f ∈ C∞(TM0)

1

2
ω̄(fπ∗Z) = X.g(π∗Y, fπ∗Z) + Y.g(fπ∗Z, π∗X)− fZ.g(π∗X,π∗Y )

+ g(π∗[X,Y ], fπ∗Z)− g(π∗[Y, fZ], π∗X) + g(π∗[fZ,X], π∗Y )

+ 2A(fθ(Z), π∗X,π∗Y )− 2A(θ(Y ), π∗X, fπ∗Z)

= (Xf)g(π∗Y, fπ∗Z) + fX.g(π∗Y, fπ∗Z) + (Y f).g(π∗Z, π∗X) + fY.g(π∗Z, π∗X)

− fZ.g(π∗X,π∗Y ) + fg(π∗[X,Y ], π∗Z))− (Y f).g(π∗Z, π∗X)− fg(π∗[Y, Z], π∗X)

+ fg(π∗[Z,X], π∗Y )− (Xf)g(π∗Y, fπ∗Z) + 2f (A(θ(Z), π∗X,π∗Y )

−A(θ(Y ), π∗X,π∗Z))

=
1

2
fω̄(π∗Z) + (Xf)g(π∗Y, π∗Z) + (Y f)g(π∗Z, π∗X)

− (Xf)g(π∗Y, π∗Z)− (Y f)g(π∗Z, π∗X)

=
1

2
fω̄(π∗Z),

(4.7)

and the additivity in π∗Z is obvious. Therefore, by lemma 2.1 there exists precisely
one section ξ ∈ Γ(π∗T ∗M) such that

ω̄(π∗Z) = 2g(ξ, π∗Z)
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We thus put ∇̄Xπ∗Y := ξ. It remains to show that ∇̄ define a connection verifying
the conditions (a) and (b) of theorem : The additivity with respect to X and Y is
clear, the tensorial behavior with respect X follows as in (4.7) and the derivative
property

∇̄Xπ∗fY = f∇̄Xπ∗Y + (Xf)π∗Y

in the same manner. Indeed, we have :

2g(∇̄Xfπ∗Y, π∗Z) = X.g(fπ∗Y, π∗Z) + fY.g(π∗Z, π∗X)− Z.g(π∗X, fπ∗Y )

+ g(π∗[X, fY ], π∗Z)− g(π∗[fY, Z], π∗X) + g(π∗[Z,X], fπ∗Y )

+ 2A(θ(Z), π∗X, fπ∗Y )− 2A(θ(fY ), π∗X,π∗Z)

= (Xf)g(π∗Y, fπ∗Z) + fX.g(π∗Y, fπ∗Z) + fY.g(π∗Z, π∗X)− (Zf).g(π∗Y, π∗X)

− fZ.g(π∗Y, π∗X) + (Xf)g(π∗Y, π∗Z) + fg(π∗[X,Y ], π∗Z) + (Zf).g(π∗Y, π∗X)

− fg(π∗[Y, Z], π∗X) + fg(π∗[Z,X], π∗Y ) + 2fA(θ(Z), π∗X,π∗Y )

− 2fA(θ(Y ), π∗X,π∗Z)

(3.5)
= 2fg(∇̄Xπ∗Y, π∗Z) + 2(Xf)g(π∗Y, π∗Z)

= 2g(f∇̄Xπ∗Y + (Xf)π∗Y, π∗Z),

(4.8)

where

∇̄Xπ∗fY = f∇̄Xπ∗Y + (Xf)π∗Y

For the condition a), setting

(4.9) T (X,Y ) = ∇̄Xπ∗Y − ∇̄Y π∗X − π∗[X,Y ].

We obtain :

2g(T (X,Y ), π∗Z) = 2g(∇̄Xπ∗Y, π∗Z)− 2g(∇̄Y π∗X,π∗Z)− 2g(π∗[X,Y ], π∗Z)

(3.5)
= A(θ(X), π∗Y, π∗Z))−A(θ(Y ), π∗X,π∗Z))

(3.3)
= 2g

(
A](θ(X), π∗Y, •)−A](θ(Y ), π∗X, •), π∗Z

)
,

for any π∗Z ∈ Γ(π∗TM). It follows that,

(4.10) T (X,Y ) = A](θ(X), π∗Y, •)−A](θ(Y ), π∗X, •).

Since g is nondegenerate.
In the same manner, the condition b) follows from (4.2). In fact

2(∇̄Xg)(π∗Y, π∗Z) = 2X.g(π∗Y, π∗Z)− 2g(∇̄Xπ∗Y, π∗Z)− 2g(∇̄Xπ∗Z, π∗Y )

= 2X.g(π∗Y, π∗Z)−X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

− g(π∗[X,Y ], π∗Z) + g(π∗[Y, Z], π∗X)− g(π∗[Z,X], π∗Y )

− 2A(θ(Z), π∗X,π∗Y )− 2A(θ(Y ), π∗X,π∗Z)−X.g(π∗Y, π∗Z)− Y.g(π∗Z, π∗X)

+ Z.g(π∗X,π∗Y )− g(π∗[X,Y ], π∗Z) + g(π∗[Y,Z], π∗X)− g(π∗[Z,X], π∗Y )

+ 2A(θ(Z), π∗X,π∗Y ) + 2A(θ(Y ), π∗X,π∗Z) = 0

(4.11)

for any X,Y, Z ∈ Γ(TTM0), where the existence and unicity of ∇̄. �
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Corollary 4.1. The generalized Cartan connection ∇̄ is explicitly expressed in
terms of the generalized Chern connection ∇ in the form :

(4.12) ∇̄Xπ∗Y = ∇Xπ∗Y +A](θ(X), π∗Y, •).

Proof. Replacing X,Y, Z ∈ Γ(TTM0) by XH , Y H , ZH in (3.9) and (4.5), we get

2g(∇̄XHπ∗Y
H , π∗Z

H) = 2g(∇XHπ∗Y
H , π∗Z

H)

It follow that ∇̄XHπ∗Y
H = ∇XHπ∗Y

H . Similary, replacing X,Y by XV , Y H in
(4.1) we obtain

∇̄XV π∗Y
H = A](θ(XV ), π∗Y

H , •)
From wich ∇̄Xπ∗Y = ∇Xπ∗Y +A](θ(X), π∗Y, •). �

Remark 4.1. In the classical Finsler manifold ie for H = Hc and θ = θc, we find
locally the well-known relation between Cartan and Chern connection [1].

(4.13) ᾱij = αij +Aijk
δyk

F
,

where ᾱ and α are respectively the Cartan and Chern connection 1-forms.

5. Generalized Berwald connection

In this section we provide an intrinsic proof of an intrinsic version of the existence
and uniqueness theorem for the generalized Berwald connection ∇̃. Moreover, we
deduce an explicit expression relating this connection and Chern connection.

Theorem 5.1. Let (M,F,H) be a Finsler-Ehresmann manifold and g be a funda-

mental tensor of F . There exist a unique linear connection ∇̃ on π∗TM such that
for all X,Y ∈ Γ(TTM0), ξ, η ∈ Γ(π∗TM) :

(a) Symmetry

(5.1) ∇̃Xπ∗Y − ∇̃Y π∗X = π∗[X,Y ],

(b) Almost g-compatibility

(5.2) (∇̃Xg)(ξ, η) = 2A(θ(X), ξ, η)− 2L(π∗X, ξ, η),

where L is the Landsberg tensor associated with the Ehresmann connection.

Proof. Uniqueness . As in the proof of theorem 2.1, for all X,Y, Z ∈ Γ(TTM0) :
(5.3)
X.g(π∗Y, π∗Z) = g(∇̄Xπ∗Y, π∗Z)+g(π∗Y, ∇̄Xπ∗Z)+2A(θ(X), ξ, η)−2L(π∗X, ξ, η).

Cyclic permutation on (X,Y, Z) in the above formula yields three equations. Adding
two of these equations and subtracting the third, gives by the condition a) the fol-
lowing relation : we have.

2g(∇̃Xπ∗Y, π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y,Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z) + 2L(X,Y, Z),(5.4)
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where

A(X,Y, Z) = A(θ(X), π∗Y, π∗Z) +A(θ(Y ), π∗Z, π∗X)−A(θ(Z), π∗X,π∗Y )

L(X,Y, Z) = L(π∗X,π∗Y, π∗Z) + L(π∗Y, π∗Z, π∗X)− L(π∗Z, π∗X,π∗Y )

= L(π∗X,π∗Y, π∗Z)(5.5)

Then, if there are two connections ∇̃1 and ∇̃2 satisfying the conditions (a) and (b)
then the relation (3.4) implies that

(5.6) g(∇̃1
Xξ − ∇̃2

Xξ, η) = 0, ∀X ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM),

and the uniqueness follows. Existence. Fixing X,Y ∈ Γ(TTM0), we consider as for
the proof of proposition 2.1 the 1-form 1

2 ω̃ ∈ Γ(π∗T ∗M) assigning the right hand

side of (3.4) to each π∗Z ∈ Γ(π∗TM). Then 1
2 ω̃ is tensorial in π∗Z. In fact, for

f ∈ C∞(TM0),

1

2
ω̃(fπ∗Z) = X.g(π∗Y, fπ∗Z) + Y.g(fπ∗Z, π∗X)− fZ.g(π∗X,π∗Y )

+ g(π∗[X,Y ], fπ∗Z)− g(π∗[Y, fZ], π∗X) + g(π∗[fZ,X], π∗Y )

− 2fA(X,Y, Z) + 2fL(π∗X,π∗Y, π∗Z)

= (Xf)g(π∗Y, fπ∗Z) + fX.g(π∗Y, fπ∗Z) + (Y f).g(π∗Z, π∗X) + fY.g(π∗Z, π∗X)

− fZ.g(π∗X,π∗Y ) + fg(π∗[X,Y ], π∗Z))− (Y f).g(π∗Z, π∗X)− fg(π∗[Y, Z], π∗X)

+ fg(π∗[Z,X], π∗Y )− (Xf)g(π∗Y, fπ∗Z)− 2fA(X,Y, Z) + 2fL(π∗X,π∗Y, π∗Z)

=
1

2
fω̃(π∗Z) + (Xf)g(π∗Y, π∗Z) + (Y f)g(π∗Z, π∗X)

− (Xf)g(π∗Y, π∗Z)− (Y f)g(π∗Z, π∗X)

=
1

2
fω̃(π∗Z),

(5.7)

The additivity in π∗Z is obvious. It follows by lemma 2.1 that there exists precisely
one section ξ ∈ Γ(π∗T ∗M) such that

ω̃(π∗Z) = 2g(ξ, π∗Z).

We thus put ∇̃Xπ∗Y := ξ. It remains to show that ∇̃ define a connection verifying
the conditions (a) and (b). ∇̃ satisfies condition (a): we have,

2g(∇̃Xπ∗Y − ∇̃Y π∗X,π∗Z) = 2g(∇̃Xπ∗Y, π∗Z)− 2g(∇̃Y π∗X,π∗Z)

(4.4)
= X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y, Z], π∗X) + g(π∗[Z,X], π∗Y )

− 2A(X,Y, Z) + 2L(X,Y, Z)− Y.g(π∗X,π∗Z)

−X.g(π∗Z, π∗Y ) + Z.g(π∗Y, π∗X)− g(π∗[Y,X], π∗Z)

+ g(π∗[X,Z], π∗Y )− g(π∗[Z, Y ], π∗X) + 2A(X,Y, Z)− 2L(X,Y, Z)

= 2g(π∗[X,Y ], π∗Z)(5.8)

From which,

∇̃Xπ∗Y − ∇̃Y π∗X = π∗[X,Y ].
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∇̃ satisfies condition (b): setting ξ = π∗Y and η = π∗Z for Y, Z ∈ Γ(TTM0), we
obtain:

2(∇̃Xg)(ξ, η) = 2(∇̃Xg)(π∗Y, π∗Z)

= 2X.g(π∗Y, π∗Z)− 2g(∇̃Xπ∗Y, π∗Z)− 2g(∇̃Xπ∗Z, π∗Y )

= 2X.g(π∗Y, π∗Z)−X.g(π∗Y, π∗Z)− Y.g(π∗Z, π∗X)

+ Z.g(π∗X,π∗Y )− g(π∗[X,Y ], π∗Z) + g(π∗[Y,Z], π∗X)

− g(π∗[Z,X], π∗Y ) + 2A(X,Y, Z)− 2L(X,Y, Z)

−X.g(π∗Z, π∗Y )− Z.g(π∗Y, π∗X)

+ Y.g(π∗X,π∗Z)− g(π∗[X,Z], π∗Y ) + g(π∗[Z, Y ], π∗X)

− g(π∗[Y,X], π∗Z) + 2A(X,Z, Y )− 2L(X,Y, Z)

= 2A(X,Y, Z) + 2A(X,Z, Y )− 4L(X,Y, Z)

= 4A(θ(X), π∗Y, π∗Z)− 4L(π∗X,π∗Y, π∗Z)

= 4A(θ(X), ξ, η)− 4L(π∗X, ξ, η).(5.9)

2(∇̃Xg)(ξ, η) = 2(∇̃Xg)(π∗Y, π∗Z)

= 2X.g(π∗Y, π∗Z)− 2g(∇̃Xπ∗Y, π∗Z)− 2g(∇̃Xπ∗Z, π∗Y )

= 2X.g(π∗Y, π∗Z)−X.g(π∗Y, π∗Z)− Y.g(π∗Z, π∗X)

+ Z.g(π∗X,π∗Y )− g(π∗[X,Y ], π∗Z) + g(π∗[Y, Z], π∗X)

− g(π∗[Z,X], π∗Y ) + 2A(X,Y, Z)− 2L(X,Y, Z)

−X.g(π∗Z, π∗Y )− Z.g(π∗Y, π∗X)

+ Y.g(π∗X,π∗Z)− g(π∗[X,Z], π∗Y ) + g(π∗[Z, Y ], π∗X)

− g(π∗[Y,X], π∗Z) + 2A(X,Z, Y )− 2L(X,Y, Z)

= 2A(X,Y, Z) + 2A(X,Z, Y )− 4L(X,Y, Z)

= 4A(θ(X), π∗Y, π∗Z)− 4L(π∗X,π∗Y, π∗Z)

= 4A(θ(X), ξ, η)− 4L(π∗X, ξ, η).(5.10)

where (∇̃Xg)(ξ, η) = 2A(θ(X), ξ, η)− 2L(π∗X, ξ, η). This completes the proof. �

Corollary 5.1. The generalized Berwald connection ∇̃ is explicitly expressed in
terms of the generalized Chern connection ∇ in the form :

(5.11) ∇̃Xπ∗Y = ∇Xπ∗Y + L](π∗X,π∗Y, •),

where L] is define by: g(L](π∗X,π∗Y, •), ξ) = L(π∗X,π∗Y, ξ) ∀ξ ∈ Γ(π∗TM)

Proof. Likewise in the proof of Corollary 3.2, after Replacing X,Y, Z ∈ Γ(TTM0)
by XH , Y H , ZH in (5.4), we obtain,

2g(∇̃XHπ∗Y
H , π∗Z

H) = 2g(∇XHπ∗Y
H , π∗Z

H) + 2L(π∗X
H , π∗Y

H , π∗Z
H).

Hence, ∇̃XHπ∗Y
H = ∇XHπ∗Y

H + L](π∗X,π∗Y
H). Moreover, replacing X,Y by

XV , Y H in (4.1) gives

∇̃XV π∗Y
H = 0 = ∇XV π∗Y

H ,

which implies ∇̃Xπ∗Y = ∇Xπ∗Y + L](π∗X,π∗Y, •). �
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Remark 5.1. The same manner as the remark 2.3, in the classical Finsler manifold
ie for H = Hc and θ = θc, we find locally the well-know relation between Berwald
and Chern connection[1].

(5.12) α̃ij = αij + Ȧijkdx
k,

where α̃ and α are respectively the Berwald and Chern connection 1-forms. And
Ȧ = ∇lA is the horizontal covariant derivative of Cartan tensor A along the distin-
guished (horizontal) direction[1].

6. Generalized Hashiguchi connection

In this section, we establish an intrinsic proof of the existence and uniqueness
theorem of the generalized Hashiguchi connection. Moreover, the relationship be-
tween this connection and the Chern connection ∇ is obtained.

Theorem 6.1. Let (M,F,H) be a Finsler-Ehresmann manifold and g be a funda-

mental tensor of F . There exist a unique linear connection ∇̂ on π∗TM such that
for all X,Y ∈ Γ(TTM0) :

(a) Symmetry

(6.1) ∇̂Xπ∗Y − ∇̂Y π∗X = π∗[X,Y ] +A](θ(X), π∗Y, •)−A](θ(Y ), π∗X, •)
(b) Metric-compatibility

(6.2) (∇̂Xg)(ξ, η) = −2L(π∗X, ξ, η),

where, A](ξ, η, •) is the section of π∗TM define by:

(6.3) g(A](ξ, η, •), µ) = A(ξ, η, µ) ∀ξ, η, µ ∈ Γ(π∗TM)

Proof. As in the case of Chern, Cartan and Berwald, we have :

2g(∇̂Xπ∗Y, π∗Z) = X.g(π∗Y, π∗Z) + Y.g(π∗Z, π∗X)− Z.g(π∗X,π∗Y )

+ g(π∗[X,Y ], π∗Z)− g(π∗[Y,Z], π∗X) + g(π∗[Z,X], π∗Y )

+ 2A(θ(Z), π∗X,π∗Y )− 2A(θ(Y ), π∗X,π∗Z)

+ 2L(π∗X,π∗Y, π∗Z),(6.4)

and the proof of the existence an unicity follows in the same manner as the previous
case. �

Corollary 6.1. The generalized Hashiguchi connection ∇̂ is explicitly expressed in
terms of the generalized Chern connection ∇ in the form :

(6.5) ∇̂Xπ∗Y = ∇Xπ∗Y +A](θ(X), π∗Y, •) + L](π∗X,π∗Y, •),
where L] is define by: g(L](π∗X,π∗Y, •), ξ) = L(π∗X,π∗Y, ξ) ∀ξ ∈ Γ(π∗TM) and
A] by, g(A](θ(X), π∗Y, •), µ) = A(θ(X), π∗Y, µ) ∀µ ∈ Γ(π∗TM)

Proof. Replacing X,Y, Z ∈ Γ(TTM0) by XH , Y H , ZH in (6.4), we obtain,

2g(∇̂XHπ∗Y
H , π∗Z

H) = 2g(∇XHπ∗Y
H , π∗Z

H) + 2L(π∗X
H , π∗Y

H , π∗Z
H).

It follow that ∇̃XHπ∗Y
H = ∇XHπ∗Y

H + L](π∗X,π∗Y
H).

In addition, replacing X,Y by XV , Y H in (6.1) we obtain

(6.6) ∇̂XV π∗Y
H = A](θ(X), π∗Y, •).

From wich ∇̂Xπ∗Y = ∇Xπ∗Y +A](θ(X), π∗Y, •) + L](π∗X,π∗Y, •) �



INTRINSIC PROOFS OF THE EXISTENCE OF... 13

Remark 6.1. Similarly to the previous case, we have, in the classical Finsler man-
ifold ie for H = Hc and θ = θc, the well-know relation between Hashiguchi and
Chern connection[1].

(6.7) α̂ij = αij + Ȧijkdx
k +Aijk

δyk

F
.
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