ON RANDERS CHANGE OF m-TH ROOT FINSLER METRICS

A. TAYEBI, M. SHAHBAZI NIA, AND E. PEYGHAN

(Communicated by Levent KULA)

Abstract

In this paper, we consider Randers change of m-th root Finsler metrics. We find necessary and sufficient condition under which a Randers change of an m-th root metric be locally dually flat. Then we prove that the Rander change of an m-th root Finsler metric is locally projectively flat if and only if it is locally Minkowskian.

1. Introduction

A change of Finsler metric $F \rightarrow \bar{F}$ is called a Randers change of F, if

$$
\begin{equation*}
\bar{F}(x, y)=F(x, y)+\beta(x, y), \tag{1.1}
\end{equation*}
$$

where $\beta(x, y)=b_{i}(x) y^{i}$ is a 1 -form on a smooth manifold M. It is easy to see that, if $\sup _{F(x, y)=1}\left|b_{i}(x) y^{i}\right|<1$, then \bar{F} is again a Finsler metric. Hashiguchi-Ichijyo \bar{o} showed that if β is closed, then \bar{F} is pointwise projective to F. The notion of a Randers change has been proposed by Matsumoto, named by Hashiguchi-Ichijyō and studied in detail by Shibata [7][9][12]. If F reduces to a Riemannian metric then \bar{F} reduces to a Randers metric. Due to this reason the transformation (1.1) has been called the Randers change of Finsler metric. For other Finslerian transformations see [12][17].

The Randers change is projective if and only if $b_{i}(x)$ is locally a gradient vector field. According to Hashiguchi-Ichjyo, a Randers change is projective, if and only if $b_{i \mid j}=b_{j \mid i}$, that is $b_{i}(x)$ is locally a gradient vector field and symbols " \mid " mean the covariant derivatives in F with respect to Berwald connection [7]. It is remarkable that, if F is absolutely homogeneous then the necessary and sufficient condition for \bar{F} to have reversible geodesics is that β is closed and it is a first integral of the geodesic flow of $\bar{F}[6]$. Consider the Randers metric $F=\alpha+\beta$, where $\alpha=$ $\sqrt{a_{i j}(x) y^{i} y^{j}}$ and $\|\beta\|:=\left|a_{i j} b^{i} b^{j}\right|<1$. If β is a closed 1-form, then F has reversible geodesics and if it is parallel with respect to α (i.e., $b_{i \mid j}=0$) then F has strictly reversible geodesics.

[^0]In [2], Amari-Nagaoka introduced the notion of dually flat Riemannian metrics when they study the information geometry on Riemannian manifolds. Information geometry has emerged from investigating the geometrical structure of a family of probability distributions and has been applied successfully to various areas including statistical inference, control system theory and multi-terminal information theory [1]. In Finsler geometry, Shen extends the notion of locally dually flatness for Finsler metrics [11]. A Finsler metric F on a manifold M is said to be locally dually flat if at any point there is a coordinate system $\left(x^{i}\right)$ in which the spray coefficients are in the following form $G^{i}=-\frac{1}{2} g^{i j} H_{y^{j}}$ where $H=H(x, y)$ is a C^{∞} homogeneous scalar function on $T M_{0}$. Such a coordinate system is called an adapted coordinate system [14]. Indeed, a Finsler metric F on an open subset $U \subset \mathbb{R}^{n}$ is called dually flat if it satisfies

$$
\frac{\partial^{2} F^{2}}{\partial x^{k} \partial y^{l}} y^{k}=2 \frac{\partial F^{2}}{\partial x^{l}}
$$

Let (M, F) be a Finsler manifold of dimension $n, T M$ its tangent bundle and $\left(x^{i}, y^{i}\right)$ the coordinates in a local chart on $T M$. Let F be the following function on M, by $F=\sqrt[m]{A}$, where A is given by $A:=a_{i_{1} \ldots i_{m}}(x) y^{i_{1}} y^{i_{2}} \ldots y^{i_{m}}$ with $a_{i_{1} \ldots i_{m}}$ symmetric in all its indices (for example see $[3][4][5][10][13][14][15][16])$. Then F is called an m-th root Finsler metric. Suppose that $A_{i j}$ define a positive definite tensor and $A^{i j}$ denotes its inverse. For an m-th root metric F, put

$$
A_{i}=\frac{\partial A}{\partial y^{i}}, \quad A_{i j}=\frac{\partial^{2} A}{\partial y^{j} \partial y^{j}}, \quad A_{x^{i}}=\frac{\partial A}{\partial x^{i}}, \quad A_{0}=A_{x^{i}} y^{i}
$$

In this paper, we consider Randers change of an m-th root Finsler metric and find necessary and sufficient condition under which a Randers change of an m-th root metric be locally dually flat. More precisely, we prove the following.

Theorem 1.1. Let $F=\sqrt[m]{A}$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^{n}$, where A is irreducible. Suppose that $\bar{F}=F+\beta$ be Randers change of F where $\beta=b_{i}(x) y^{i}$. Then \bar{F} is locally dually flat if and only if there exists a 1-form $\theta=\theta_{l}(x) y^{l}$ on U such that the following hold

$$
\begin{align*}
& \beta_{0 l} \beta+\beta_{l} \beta_{0}=2 \beta \beta_{x^{l}} \tag{1.2}\\
& A_{x^{l}}=\frac{1}{3 m}\left[m A \theta_{l}+2 \theta A_{l}\right] \tag{1.3}\\
& \left(\frac{1}{m}-1\right) A_{l} A^{-1} A_{0} \beta+\left(A_{0} \beta\right)_{l}-3 A_{x^{l}} \beta+A_{l} \beta_{0}=A\left(2 \beta_{x^{l}}-\beta_{0 l}\right) \tag{1.4}
\end{align*}
$$

where $\beta_{0 l}=\beta_{x^{k} y^{l}} y^{k}, \beta_{x^{l}}=\left(b_{i}\right)_{x^{l}} y^{i}, \beta_{0}=\beta_{x^{l}} y^{i}$ and $\beta_{0 l}=\left(b_{l}\right)_{0}$.

A Finsler metric is said to be locally projectively flat if at any point there is a local coordinate system in which the geodesics are straight lines as point sets. It is known that a Finsler metric $F(x, y)$ on an open domain $U \subset \mathbb{R}^{n}$ is locally projectively flat if and only if

$$
G^{i}=P y^{i},
$$

where $P(x, \lambda y)=\lambda P(x, y), \lambda>0[8]$. Projectively flat Finsler metrics on a convex domain in \mathbb{R}^{n} are regular solutions to Hilbert's Fourth Problem: determine the metrics on an open subset in \mathbb{R}^{n}, whose geodesics are straight lines.

Theorem 1.2. Let $F=\sqrt[m]{A}$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^{n}$, where A is irreducible. Suppose that $\bar{F}=F+\beta$ be Randers change of F where $\beta=b_{i}(x) y^{i}$. Then \bar{F} is locally projectively flat if and only if it is locally Minkowskian.

2. Proof of the Theorem 1.1

In this section, we will prove a generalized version of Theorem 1.1. Indeed we find necessary and sufficient condition under which a Randers change of an generalized m-th root metric be locally dually flat. Let F be a scalar function on $T M$ defined by following

$$
F=\sqrt{A^{2 / m}+B}
$$

where A and B are given by

$$
\begin{equation*}
A:=a_{i_{1} \cdots i_{m}}(x) y^{i_{1}} \ldots y^{i_{m}}, \quad B:=b_{i j}(x) y^{i} y^{j} \tag{2.1}
\end{equation*}
$$

Then F is called generalized m-th root Finsler metric. Suppose that the matrix $\left(A_{i j}\right)$ defines a positive definite tensor and $\left(A^{i j}\right)$ denotes its inverse. Then the following hold

$$
\begin{aligned}
& g_{i j}=\frac{A^{\frac{2}{m}-2}}{m^{2}}\left[m A A_{i j}+(2-m) A_{i} A_{j}\right]+b_{i j} \\
& A_{i}=\frac{\partial A}{\partial y^{i}}, \quad A_{i j}=\frac{\partial^{2} A}{\partial y^{j} \partial y^{j}}, \quad B_{i}=\frac{\partial B}{\partial y^{i}}, \quad B_{i j}=\frac{\partial^{2} B}{\partial y^{j} \partial y^{j}} \\
& A_{x^{i}}=\frac{\partial A}{\partial x^{i}}, \quad A_{0}=A_{x^{i}} y^{i}, \quad B_{x^{i}}=\frac{\partial B}{\partial x^{i}}, \quad B_{0}=B_{x^{i}} y^{i} .
\end{aligned}
$$

Now, we are going to prove the following.
Theorem 2.1. Let $F=\sqrt{A^{2 / m}+B}$ be an generalized m-th root Finsler metric on an open subset $U \subset \mathbb{R}^{n}$, where A is irreducible. Suppose that $\bar{F}=F+\beta$ be Randers change of F where $\beta=b_{i}(x) y^{i}$. Then \bar{F} is locally dually flat if and only if there exists a 1-form $\theta=\theta_{l}(x) y^{l}$ on U such that the following holds

$$
\begin{align*}
& \beta_{0 l} \beta+\beta_{l} \beta_{0}+B_{0 l}=2\left[\beta \beta_{x^{l}}+B_{x^{l}}\right] \tag{2.2}\\
& A_{x^{l}}=\frac{1}{3 m}\left[m A \theta_{l}+2 \theta A_{l}\right] \tag{2.3}\\
& \Upsilon_{l} \Upsilon_{0} \beta=2 \Upsilon\left[\left(\Upsilon_{0 l} \beta+\Upsilon_{0} \beta_{l}+\Upsilon_{l} \beta_{0}-2 \Upsilon_{x^{l}} \beta\right)+2 \Upsilon\left(\beta_{0 l}-2 \beta_{x^{l}}\right)\right] \tag{2.4}
\end{align*}
$$

where $\beta_{0 l}=\beta_{x^{k} y^{l}} y^{k}, \beta_{x^{l}}=\left(b_{i}\right)_{x^{l}} y^{i}, \beta_{0}=\left(b_{i}\right)_{0} y^{i}, \beta_{0 l}=\left(b_{l}\right)_{0}, \Upsilon:=A^{\frac{2}{m}}+B$ and

$$
\begin{aligned}
\Upsilon_{p} & :=\frac{2}{m} A^{\frac{2}{m}-1} A_{p}+B_{p} \\
\Upsilon_{0 p} & :=\frac{2}{m} A^{\frac{2}{m}-2}\left[\left(\frac{2}{m}-1\right) A_{p} A_{0}+A A_{0 p}\right]+B_{0 p}
\end{aligned}
$$

To prove Theorem 2.1, we need the following.
Lemma 2.1. Suppose that the equation $\Phi A^{\frac{2}{m}-2}+\Psi A^{\frac{1}{m}-1}+\Theta=0$ holds, where Φ, Ψ, Θ are polynomials in y and $m>2$. Then $\Phi=\Psi=\Theta=0$.

Proof of Theorem 2.1: Let \bar{F} be a locally dually flat metric. We have

$$
\begin{aligned}
\bar{F}^{2} & =A^{\frac{2}{m}}+B+2 \beta\left(A^{\frac{2}{m}}+B\right)^{1 / 2}+\beta^{2} \\
\left(\bar{F}^{2}\right)_{x^{k}} & =\frac{2}{m} A^{\frac{2}{m}-1} A_{x^{k}}+B_{x^{k}}+\left(A^{\frac{2}{m}}+B\right)^{-1 / 2}\left(\frac{2}{m} A^{\frac{2}{m}-1} A_{x^{k}}+B_{x^{k}}\right) \beta \\
& +2\left(A^{\frac{2}{m}}+B\right)^{1 / 2} \beta_{x^{k}}+2 \beta_{x^{k}} \beta
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\bar{F}^{2}\right]_{x^{k} y^{l}} y^{k}=} & \frac{2}{m} A^{\frac{2}{m}-2}\left[\left(\frac{2}{m}-1\right) A_{l} A_{0}+A A_{0 l}\right]+2\left(\beta_{0 l} \beta+\beta_{l} \beta_{0}\right)+B_{0 l} \\
& -\frac{1}{2}\left(A^{\frac{2}{m}}+B\right)^{-3 / 2} \Upsilon_{l} \Upsilon_{0} \beta+\left(A^{\frac{2}{m}}+B\right)^{-1 / 2} \Upsilon_{0} \beta_{l} \\
& +\left(A^{\frac{2}{m}}+B\right)^{-1 / 2} \Upsilon_{0 l} \beta+\left(A^{\frac{2}{m}}+B\right)^{-1 / 2} \Upsilon_{l} \beta_{0}+2\left(A^{\frac{2}{m}}+B\right)^{1 / 2} \beta_{0 l} .
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
& \frac{1}{m} A^{\frac{2}{m}-2}\left[\left(\frac{2}{m}-1\right) A_{l} A_{0}+A A_{0 l}-2 A A_{x^{k}}\right] \\
& +\left(A^{\frac{2}{m}}+B\right)^{-3 / 2}\left[\frac{-1}{2} \Upsilon_{l} \Upsilon_{0} \beta+\left(A^{\frac{2}{m}}+B\right)\left(\Upsilon_{0 l} \beta+\Upsilon_{0} \beta_{l}+\Upsilon_{l} \beta_{0}-2 \Upsilon_{x^{l}} \beta\right)\right. \\
& \left.+2\left(A^{\frac{2}{m}}+B\right)^{2}\left(\beta_{0 l}-2 \beta_{x^{l} l}\right)\right]+2\left(\beta_{0 l} \beta+\beta_{l} \beta_{0}-2 \beta_{x^{l}} \beta\right)+B_{0 l}-2 B_{x^{l}}=0
\end{aligned}
$$

By Lemma 2.1, we have

$$
\begin{align*}
& \left(\frac{2}{m}-1\right) A_{l} A_{0}+A A_{0 l}=2 A A_{x^{k}} \tag{2.5}\\
& \frac{-1}{2} \Upsilon_{l} \Upsilon_{0} \beta+C\left[\Upsilon_{0 l} \beta+\Upsilon_{0} \beta_{l}+\Upsilon_{l} \beta_{0}-2 \Upsilon_{x^{l}} \beta\right]=2 C^{2}\left(2 \beta_{x^{l}}-\beta_{0 l}\right) \tag{2.6}\\
& 2\left(\beta_{0 l} \beta+\beta_{l} \beta_{0}-2 \beta_{x^{l}} \beta\right)=2 B_{x^{l}}-B_{0 l} \tag{2.7}
\end{align*}
$$

One can rewrite (2.5) as follows

$$
\begin{equation*}
A\left(2 A_{x^{l}}-A_{0 l}\right)=\left(\frac{2}{m}-1\right) A_{l} A_{0} \tag{2.8}
\end{equation*}
$$

Irreducibility of A and

$$
\operatorname{deg}\left(A_{l}\right)=m-1
$$

imply that there exists a 1 -form $\theta=\theta_{l} y^{l}$ on U such that

$$
\begin{equation*}
A_{0}=\theta A \tag{2.9}
\end{equation*}
$$

Plugging (2.9) into (2.8), we get

$$
\begin{equation*}
A_{0 l}=A \theta_{l}+\theta A_{l}-A_{x^{l}} \tag{2.10}
\end{equation*}
$$

Substituting (2.9) and (2.10) into (2.8) yields (2.3). The converse is a direct computation. This completes the proof.

3. Proof of the Theorem 1.2

In this section, we will prove a generalized version of Theorem 1.2. Indeed we study the Randers change of an generalized m-th root metric

$$
F=\sqrt{A^{\frac{2}{m}}+B},
$$

where A and B are given by

$$
A:=a_{i_{1} \cdots i_{m}}(x) y^{i_{1}} \ldots y^{i_{m}}, \quad B:=b_{i j}(x) y^{i} y^{j}
$$

and A is irreducible. More precisely, we prove the following.
Theorem 3.1. Let $F=\sqrt{A^{\frac{2}{m}}+B}$ be an generalized m-th root Finsler metric on an open subset $U \subset \mathbb{R}^{n}$, where A is irreducible. Suppose that $\bar{F}=F+\beta$ be Randers change of F where $\beta=b_{i}(x) y^{i}$. Then \bar{F} is locally projectively flat if and only if it is locally Minkowskian.

To prove Theorem 3.1, we need the following.
Lemma 3.1. Let (M, F) be a Finsler manifold. Suppose that $\bar{F}=F+\beta$ be a Randers change of F. Then \bar{F} is a projectively flat Finsler metric if and only if the following holds

$$
\begin{equation*}
F_{0 l}-F_{x^{l}}=\left(b_{i}\right)_{x^{l}} y^{i}-\left(b_{l}\right)_{0} . \tag{3.1}
\end{equation*}
$$

In local coordinates $\left(x^{i}, y^{i}\right)$, the vector filed

$$
\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{i}}
$$

is a global vector field on $T M_{0}$, where $G^{i}=G^{i}(x, y)$ are local functions on $T M_{0}$ given by following

$$
G^{i}:=\frac{1}{4} g^{i l}\left\{\frac{\partial^{2} F^{2}}{\partial x^{k} \partial y^{l}} y^{k}-\frac{\partial F^{2}}{\partial x^{l}}\right\}, \quad y \in T_{x} M
$$

A Finsler metric F is called a Berwald metric if

$$
G^{i}=\frac{1}{2} \Gamma_{j k}^{i}(x) y^{j} y^{k}
$$

is quadratic in $y \in T_{x} M$ for any $x \in M$. The projection of an integral curve of \mathbf{G} is called a geodesic in M. In local coordinates, a curve $c(t)$ is a geodesic if and only if its coordinates $\left(c^{i}(t)\right)$ satisfy $\ddot{c}^{i}+2 G^{i}(\dot{c})=0[18]$.

Now, by using Lemma 3.1, we are going to prove the following.
Proposition 3.1. Let $F=\sqrt{A^{\frac{2}{m}}+B}$ be an generalized m-th root Finsler metric on an open subset $U \subset \mathbb{R}^{n}$, where A is irreducible, $m>4$ and $B \neq 0$. Suppose that $\bar{F}=F+\beta$ be Randers change of F where $\beta=b_{i}(x) y^{i}$. In that case, if \bar{F} is projectively flat metric then F reduces to a Berwald metric.

Proof. By Lemma 3.1, we get

$$
F_{x^{l}}=\frac{2 A^{2 / m} A_{x^{l}}+m A B_{x^{l}}}{2 m A \sqrt{A^{\frac{2}{m}}+B}}
$$

and

$$
\begin{aligned}
F_{x^{k} y^{l}} y^{k}= & -\frac{1}{4}\left(A^{\frac{2}{m}}+B\right)^{-1 / 2}\left[\left(\frac{2 A^{2 / m} A_{0}}{m A}+B_{0}\right)\left(\frac{2 A^{2 / m} A_{l}}{m A}+B_{l}\right)\left(A^{\frac{2}{m}}+B\right)^{-1}\right] \\
& +\frac{1}{2}\left(A^{\frac{2}{m}}+B\right)^{-1 / 2}\left[\left(\frac{4 A^{2 / m} A_{0} A_{l}}{m^{2} A^{2}}+\frac{2 A^{2 / m} A_{0 l}}{m A}-\frac{2 A^{2 / m} A_{0} A_{l}}{m A^{2}}+B_{0 l}\right)\right] .
\end{aligned}
$$

By (3.1), we obtain the following

$$
\Phi A^{\frac{2}{m}}+\Psi A^{\frac{4}{m}}+\Theta=0,
$$

where

$$
\begin{aligned}
& \Phi=-\frac{1}{2} m A\left[A_{0} B_{l}+B_{o} A_{l}+2 B\left(A_{x^{l}}-A_{0 l}\right)+m A\left(B_{x^{l}}-B_{0 l}\right)\right]-(m-2) A_{0} A_{l} B, \\
& \Psi=m A\left(A_{0 l}-A_{x^{l}}\right)-(m-1) A_{0} A_{l}, \\
& \Theta=\frac{1}{4} m^{2} A^{2}\left[-2 B_{0 l} B+B_{0} B_{l}+2 B_{x^{l}} B\right]+\left(b_{l}\right)_{0}-\left(b_{i}\right)_{x^{l}} y^{i} .
\end{aligned}
$$

By Lemma 2.1, we have

$$
\begin{align*}
& \Phi=0, \tag{3.2}\\
& \Psi=0, \tag{3.3}\\
& \Theta=0 . \tag{3.4}
\end{align*}
$$

By (3.3), we result that

$$
\begin{equation*}
m A\left(A_{0 l}-A_{x^{l}}\right)=(m-1) A_{0} A_{l} . \tag{3.5}
\end{equation*}
$$

Then irreducibility of A and $\operatorname{deg}\left(A_{l}\right)=m-1<\operatorname{deg}(A)$ implies that A_{0} is divisible by A. This means that, there is a 1 -form $\theta=\theta_{l} y^{l}$ on U such that,

$$
\begin{equation*}
A_{0}=2 m A \theta \tag{3.6}
\end{equation*}
$$

Substituting (3.6) into (3.5), yields

$$
\begin{equation*}
A_{0 l}=A_{x^{l}}+2(m-1) \theta A_{l} . \tag{3.7}
\end{equation*}
$$

Plugging (3.6) and (3.7) into (3.2), we get

$$
\begin{equation*}
m A\left(2 \theta B_{l}-B_{0 l}+B_{x^{l}}\right)=A_{l}\left(4 B \theta-B_{0}\right) \tag{3.8}
\end{equation*}
$$

Clearly, the right side of (3.8) is divisible by A. Since A is irreducible, $\operatorname{deg}\left(A_{l}\right)$ and $\operatorname{deg}\left(2 \theta B-\frac{1}{2} B\right)$ are both less than $\operatorname{deg}(A)$, then we have have

$$
\begin{equation*}
B_{0}=4 B \theta . \tag{3.9}
\end{equation*}
$$

By (3.6) and (3.9), we get the spray coefficients $G^{i}=P y^{i}$ with $P=\theta$. Then F is a Berwald metric.

Proof of Theorem 3.1: By Proposition 3.1, if F is projectively flat then it reduces to a Berwald metric. Now, if $m>4$ then by Numata's Theorem every Berwald metric of non-zero scalar flag curvature \mathbf{K} must be Riemaniann. This is contradicts with our assumption. Then $\mathbf{K}=0$, and in this case F reduces to a locally Minkowskian metric.

References

[1] Amari, S.-I., Differential-Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, Springer-Verlag, 1985.
[2] Amari, S.-I., and Nagaoka, H., Methods of Information Geometry, AMS Translation of Math. Monographs, Oxford University Press, 2000.
[3] Balan, V. Brinzei, N. and S. Lebedev., Geodesics, paths and Jacobi fields for Berwald-Moór quartic metrics, Hypercomplex Numbers. Geom. Phys., 2(6), vol. 3, (2006), 113-122.
[4] Balan, V. and Brinzei, N., Einstein equations for (h, v)-Berwald-Moór relativistic models, Balkan. J. Geom. Appl., 11(2)(2006), 20-26.
[5] Balan, V., Spectra of symmetric tensors and m-root Finsler models, Linear Algebra Appl., 436(1) (2012), 152-162.
[6] Crampin, M., Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67(2005), 401-409.
[7] Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.)., 13(1980), 33-40.
[8] Li, B. and Shen, Z., On projectively flat fourth root metrics, Canad. Math. Bull., 55(2012), 138-145.
[9] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14(1975), 477-498.
[10] Matsumoto, M. and Shimada, H., On Finsler spaces with 1-form metric. II. Berwald-Moór's metric $L=\left(y^{1} y^{2} \ldots y^{n}\right)^{1 / n}$, Tensor N. S., 32(1978), 275-278.
[11] Shen, Z., Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
[12] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163-188.
[13] Shimada, H., On Finsler spaces with metric $L=\sqrt[m]{a_{i_{1} i_{2} \ldots i_{m}} y^{i_{1}} y^{i_{2}} \ldots y^{i_{m}}}$, Tensor, N.S., 33(1979), 365-372.
[14] Tayebi, A. and Najafi, B., On m-th root Finsler metrics, J. Geom. Phys., 61(2011), 1479-1484.
[15] Tayebi, A. and Najafi, B., On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I., 349(2011), 691-693.
[16] Tayebi, A. Peyghan, E. and Shahbazi, M., On generalized m-th root Finsler metrics, Linear Algebra. Appl., 437(2012), 675-683.
[17] Tayebi, A. Tabatabaei Far, T. and Peyghan, E., On Kropina-change of m-th root Finsler metrics, Ukrainian. J. Math, 66(1) (2014), 140-144.
[18] Tayebi, A. and Peyghan, E., On Douglas spaces with vanishing \bar{E}-curvature, Inter. Elec. J. Geom. 5(1) (2012), 36-41.

Department of Mathematics, University of Qom, Qom. Iran
E-mail address: akbar.tayebi@gmail.com
Department of Mathematics, University of Qom, Qom. Iran
E-mail address: m.shahbazinia@gmail.com
Department of Mathematics, Arak University, Arak 38156-8-8349, Iran
E-mail address: epeyghan@gmail.com

[^0]: Date: Received: January 3, 2012 and Accepted: August 2, 2014.
 2010 Mathematics Subject Classification. 53C60, 53C25.
 Key words and phrases. Locally dually flat metric, projectively flat metric, m-th root metric.

