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ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE

WITH g− NATURAL METRIC.

PART II

STANIS LAW EWERT-KRZEMIENIEWSKI

(Communicated by Kazım İLARSLAN)

Abstract. The tangent bundle of a Riemannian manifold (M, g) with non-

degenerate g− natural metric G that admits a Killing vector field decomposes
into four classes. Properties of these classes are investigated. A complete

structure of the Lie algebra of Killing vector fields for some subclasses is given.

1. Introduction

In the first part of the paper ([9], see also [10]) we have developed the method
by Tanno ([18]) to investigate Killing vector fields on TM with an arbitrary, non-
degenerate g− natural metric. The method applied Taylor’s formula to components
of the vector field that was supposed to be an infinitesimal isometry. It is known
that an infinitesimal affine transformation, in particular an infinitesimal isometry,
is determined by the values of its components and their first partial derivatives at a
point ([14], p. 232). It appears by applying the Taylor’s formula there are at most
four generators of the infinitesimal isometry: two vectors and two tensors of type
(1, 1).

We have proved the following

Theorem 1.1. ([9], [10]) Let (TM, G) be a tangent bundle of a Riemannian mani-
fold (M, g), dimM > 2, with g− natural non-degenerate metric G. Let Z be a Killing
vector field on TM with its Taylor series expansion around a point (x, 0) ∈ TM
given by (3.2) and (3.3). Then for each such a point there exists a neighbourhood
U ⊂M, x ∈ U , that one of the following cases occurs:

(1) 2ba2 − a1b2 6= 0. Then

∇kXl +∇lXk = 0, ∇kYl +∇lYk = 0,(1.1)

Pkl + Plk = 0, Kkl +Klk = 0.(1.2)
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(2) 2ba2 − a1b2 = 0 and either a1a2b2 6= 0 or a2 6= 0 and b2 = 0. Then

Pkl + Plk + 2 (∇kXl +∇lXk) = 0,(1.3)

a2 (∇kYl +∇lYk) +A (∇kXl +∇lXk) = 0,(1.4)

a2 (Kkl +Klk)− a1 (∇kXl +∇lXk) = 0.(1.5)

(3) a2b2 6= 0 and a1 = b1 − a′1 = 0. Then

Pkl + Plk + 2 (∇kXl +∇lXk) = 0,(1.6)

a2 (∇kYl +∇lYk) +A (∇kXl +∇lXk) = 0,(1.7)

Kkl +Klk = 0.(1.8)

(4) a2 = b2 = 0. Then

(1.9) ∇kXl +∇lXk = 0, Pkl + Plk = 0, AKlk + a1∇lYk = 0.

In the above theorem we have put aj = aj(r
2)|(x,0)∈TM , bj = bj(r

2)|(x,0)∈TM ,

a′j = a′j(r
2)|(x,0)∈TM , A = a1 + a3 and b = b1 − a′1.

Above theorem splits (TM,G) into four classes. In section 4 of the paper for each
such class further properties are proved separately. Some restrictions on a number
of generators are found (cf. for example 3.5 and Corollary after it). Moreover,
a complete structure of Killing vector fields on TM for some subclasses is given
(Theorems 4.3 and 4.7). In the next section some classical lifts of some tensor fields
from (M, g) to (TM,G) are discussed.

Finally, in the Appendix we collect some known facts and theorems that we use
throughout the paper.

Throughout the paper all manifolds under consideration are smooth and Haus-
dorff ones. The metric g of the base manifold M is always assumed to be Riemann-
ian one.

The computations in local coordinates were partially carried out and checked
using MathTensorTM and Mathematica software.

2. Preliminaries

2.1. Conventions and basic formulas. Let (M, g) be a pseudo-Riemannian
manifold of dimension n with metric g. The Riemann curvature tensor R is de-
fined by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

In a local coordinate neighbourhood (U, (x1, ..., xn)) its components are given by

R(∂i, ∂j)∂k = R(∂i, ∂j , ∂k) = Rrkji∂r = (
∂iΓ

r
jk − ∂jΓrik + ΓrisΓ

s
jk − ΓrjsΓ

s
ik

)
∂r,

where ∂k = ∂
∂xk and Γrjk are the Christoffel symbols of the Levi-Civita connection

∇. We have

∂lghk = ghk;l = Γrhlgrk + Γrklgrh.

The Ricci identity is

(2.1) ∇i∇jXk −∇j∇iXk = Xk,ji −Xk,ij = −XsRskji.

The Lie derivative of a metric tensor g is given by

(LXg) (Y,Z) = g (∇YX,Z) + g (Y,∇ZX)
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for all vector fields X, Y, Z on M. In local coordinates (U, (x1, ..., xn)) we get

(LXr∂rg)ij = ∇iXj +∇jXi,

where Xk = gkrX
r.

We shall need the following properties of the Lie derivative

(2.2) LXΓhji = ∇j∇iXh +XrRrjisg
sh =

1

2
ghr [∇j (LXgir) +∇i (LXgjr)−∇r (LXgji)] .

If LXΓhji = 0, then X is said to be an infinitesimal affine transformation.
The vector field X is said to be the Killing vector field or infinitesimal isometry

if LXg = 0, ([20], p. 23 and 24).

2.2. Tangent bundle. Let x be a point of a Riemannian manifold (M, g), dimM =
n, covered by coordinate neighbourhoods (U, (xj)), j = 1, ..., n. Let TM be tan-
gent bundle of M and π : TM −→ M be a natural projection on M. If x ∈ U
and u = ur ∂

∂xr |x ∈ TxM, then (π−1(U), ((xr), (ur)), r = 1, ..., n, is a coordinate

neighbourhood on TM.
For all (x, u) ∈ TM we denote by V(x,u)TM the kernel of the differential at (x, u)

of the projection π : TM −→M, i.e.,

V(x,u)TM = Ker
(
dπ|(x,u)

)
,

which is called the vertical subspace of T(x,u)TM at (x, u).
To define the horizontal subspace of T(x,u)TM at (x, u), let V ⊂ M and W ⊂

TxM be open neighbourhoods of x and 0 respectively, diffeomorphic under expo-
nential mapping expx : TxM −→ M. Furthermore, let S : π−1(V ) −→ TxM be
a smooth mapping that translates every vector Z ∈ π−1(V ) from the point y to
the point x in a parallel manner along the unique geodesic connecting y and x.
Finally, for a given u ∈ TxM, let R−u : TxM −→ TxM be a translation by u, i.e.
R−u(Xx) = Xx − u. The connection map

K(x,u) : T(x,u)TM −→ TxM

of the Levi-Civita connection ∇ is given by

K(x,u)(Z) = d(expp ◦R−u ◦ S)(Z)

for any Z ∈ T(x,u)TM.
For any smooth vector field Z : M −→ TM and Xx ∈ TxM we have

K(dZx(Xx)) = (∇XZ)x .

Then H(x,u)TM = Ker(K(x,u)) is called the horizontal subspace of T(x,u)TM at
(x, u).

The space T(x,u)TM tangent to TM at (x, u) splits into direct sum

T(x,u)TM = H(x,u)TM ⊕ V(x,u)TM.

We have isomorphisms

H(x,u)TM ∼ TxM ∼ V(x,u)TM.

For any vector X ∈ TxM there exist the unique vectors: Xh given by dπ(Xh) =
X and Xv given for any function f on M by Xv(df) = Xf. The vectors Xh and
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Xv are called respectively the horizontal and the vertical lifts of X to the point
(x, u) ∈ TM .

The vertical lift of a vector field X on M is a unique vector field Xv on TM
such that at each point (x, u) ∈ TM its value is a vertical lift of Xx to the point
(x, u). The horizontal lift of a vector field is defined similarly.

If ((xj), (uj)), i = 1, ..., n, is a local coordinate system around the point (x, u) ∈
TM where u ∈ TxM and X = Xj ∂

∂xj , then

Xh = Xj ∂

∂xj
− urXsΓjrs

∂

∂uj
, Xv = Xj ∂

∂uj
,

where Γjrs are Christoffel symbols of the Levi-Civita connection ∇ on (M, g). We
shall write ∂k = ∂

∂xk and δk = ∂
∂uk . Cf. [8] or [13]. See also [21].

In the paper we shall frequently use the frame (∂hk , ∂
v
l ) =

((
∂
∂xk

)h
,
(
∂
∂xl

)v)
known as the adapted frame.

Every metric g on M defines a family of metrics on TM. Between them a class of
so called g− natural metrics is of special interest. The well-known Cheeger-Gromoll
and Sasaki metrics are special cases of the g− natural metrics ([15]).

Lemma 2.1. ([4], [5]) Let (M, g) be a Riemannian manifold and G be a g− natural
metric on TM. There exist functions aj , bj :< 0,∞) −→ R, j = 1, 2, 3, such that
for every X, Y, u ∈ TxM

G(x,u)(X
h, Y h) = (a1 + a3)(r2)gx(X,Y ) + (b1 + b3)(r2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = a2(r2)gx(X,Y ) + b2(r2)gx(X,u)gx(Y, u),(2.3)

G(x,u)(X
v, Y h) = a2(r2)gx(X,Y ) + b2(r2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = a1(r2)gx(X,Y ) + b1(r2)gx(X,u)gx(Y, u),

where r2 = gx(u, u). For dimM = 1 the same holds for bj = 0, j = 1, 2, 3.

Following ([4]) we put

(1) a(t) = a1(t) (a1(t) + a3(t))− a2
2(t),

(2) Fj(t) = aj(t) + tbj(t),
(3) F (t) = F1(t) [F1(t) + F3(t)]− F 2

2 (t)
for all t ∈< 0,∞).

We shall often abbreviate: A = a1 + a3, B = b1 + b3.

Lemma 2.2. ([4], Proposition 2.7) The necessary and sufficient conditions for a
g− natural metric G on the tangent bundle of a Riemannian manifold (M, g) to be
non-degenerate are a(t) 6= 0 and F (t) 6= 0 for all t ∈< 0,∞). If dimM = 1 this is
equivalent to a(t) 6= 0 for all t ∈< 0,∞).

For a general overview on g− natural metric we refer the reader to ([1]), ([2]).
The components of the Levi-Civita connection of an arbitrary, non-degenerate g−
natural metric G are calculated in ([7]). They are the same as in the Riemannian
case ([1], p. 112-113).

3. Taylor’s formula for Killing vector field and coefficients

Suppose now that

Z = Za∂a + Z̃αδα = Za∂ha + (Z̃α + ZaurΓαar)∂
v
α = Ha∂ha + V α∂vα
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is a vector field on TM. Throughout the paper the following hypothesis will be
used:

(M, g) is a Riemannian manifold of dimension n with metric g, H(3.1)

covered by the coordinate system (U, (xr)).

(TM,G) is the tangent bundle of M with g − natural non-

degenerate metric G, covered by a coordinate system

(π−1(U), (xr, us)), r, s run through the range {1, ..., n}.
Z is a Killing vector field on TM with local components (Zr, Z̃s)

with respect to the local base (∂r, δs).

Let

(3.2) Ha = Za = Za(x, u) =

Xa +Ka
pu

p +
1

2
Eapqu

puq +
1

3!
F apqru

puqur +
1

4!
Gapqrsu

puqurus + · · · ,

(3.3) Z̃a = Z̃a(x, u) =

Y a + P̃ ap u
p +

1

2
Qapqu

puq +
1

3!
Sapqru

puqur +
1

4!
V apqrsu

puqurus + · · ·

be expansions of the components Za and Z̃a by Taylor’s formula in a neighbourhood
of a point (x, 0) ∈ TM. For each index a the coefficients are values of partial

derivatives of Za and Z̃a respectively, taken at a point (x, 0) and therefore are
symmetric in all lower indices. For simplicity we have omitted the remainders.

Lemma 3.1. ([18]) The quantities

X = (Xa(x)) = (Za(x, 0)) , Y = (Y a (x)) =
(
Z̃a (x, 0)

)
,

K =
(
Ka
p (x)

)
= (δpZ

a (x, 0)) , E =
(
Eapq (x)

)
= (δpδqZ

a (x, 0)) ,

P =
(
P ap (x)

)
=
((
δpZ̃

a
)

(x, 0)− ∂p (Za (x, 0))
)

are tensor fields M.

We shall often use the following definitions and abbreviations:

Sap = P ap +∇pXa, Skp = Sapgak, Plk = P ak gal,

Klp = Ka
p gal, Ekpq = Ekqp = Eapqgak, Tlkp = T akpgal,

Mpqr = Tpqr + Tqrp + Trpq.

Moreover, for any (0, 2) tensor T we put

T ab = Tab + Tba, T̂ab = Tab − Tba.

Lemmas 3.2-3.9 were proved in ([9], see also [10]). Hereafter, and unless otherwise
specified, all the coefficients aj , bj , a

′
j , b
′
j , A, A

′, B, B′, ... are considered to be
constants, equal to the values at 0 of the corresponding functions.
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Lemma 3.2. Under hypothesis (3.1) at a point (x, 0) ∈ TM we have:

a1Tlkp + a2Elkp = a′1 (Ylgkp − Ykglp − Ypgkl)− b1Ylgkp,

(3.4) AElkp + a2Tlkp + a′2(gklYp + gplYk) +
1

2
b2(2gkpYl + glpYk + gklYp) = 0.

If a 6= 0, then

(3.5) aElkm = (a2b1 − a1b2 − a2a
′
1)gkmYl−

1

2
(a1b2 − 2a2a

′
1 + 2a1a

′
2)(glmYk + glkYm),

(3.6) aTlkm = (Aa′1 +a2b2−Ab1)gkmYl+
1

2
(a2b2−2Aa′1 +2a2a

′
2)(glmYk+glkYm),

(3.7) aMlkm = [2a2(b2 + a′2)−A(b1 + a′1)](gkmYl + glkYm + gmlYk).

Moreover,

(3.8) a2 [∇k (∇lXp +∇pXl) +∇l (∇kXp +∇pXk)−∇p (∇lXk +∇kXl)] +

a1 (∇k∇lYp +∇l∇kYp) = 2A′gklYp +B (Ykglp + Ylgkp) ,

(3.9) a (∇kKlp +∇lKkp) + (a2b2 + 2a1A
′ − 2a2a

′
2)Ypgkl+

1

2
(−a2b2 + 2a1B + 2a2a

′
2)(Ykglp + Ylgkp) = 0.

Lemma 3.3. Under hypothesis (3.1) we have

(3.10) 2a∇lKkm = a2
1Y

rRrmkl − a1BgkmYl+

(−a1B + a2b2 − 2a2a
′
2)glmYk + (−a2b2 − 2a1A

′ + 2a2a
′
2)gklYm,

(3.11) 2a (∇lSkm −XrRrlkm) + a1a2Y
rRrmkl − a2BgkmYl+

[−a2B +A (b2 − 2a′2)] glmYk + [−2a2A
′ −A (b2 − 2a′2)] gklYm = 0

at the point.

Lemma 3.4. Under hypothesis (3.1) suppose dimM > 2. Then on M × {0}

Tkl = Tlk = 2 (b1 − a′1)Skl + b2Kkl = 0,

a2Flabk + a1Wlabk +
1

2
b2

(
K̂klgab + K̂blgak + K̂algbk +Kakgbl

)
+

b1gblSak + a′1(gklSab + galSbk) = 0.

Lemma 3.5. Under hypothesis (3.1) suppose dimM > 1. Then

(n− 1)βYl = 0

on M × {0} holds, where

β = 2A(b21 − a′21 − a1b
′
1) + (a1b2 − 2a2b1)(3b2 + 2a′2) + 2a2 [2a′1(b2 + a′2) + a2b

′
1] .

Corollary 3.1. For the Cheeger-Gromoll metric gCG on TM, the vector field Y
vanishes everywhere on M .
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Lemma 3.6. Under hypothesis (3.1) the identities

3AFlkmn + 3a2Wlkmn +B
(
gklKmn + glmKkn + glnKkm

)
+

(b1 − a′1) (Yn,lgkm + Ym,lgkn + Yk,lgmn) +

2(b2 + a′2)
(
gklSmn + glmSkn + glnSkm

)
+

2b2 [gkm (Xn,l + Sln) + gkn (Xm,l + Slm) + gmn (Xk,l + Slk)] = 0

and

(3.12) B [gkl (Kmn − 2Knm) + glm (Kkn +Knk) + gln (Kmk − 2Kkm)] +

2(b1 − a′1) (2Ym,lgkn − Yn,lgkm − Yk,lgmn) + 3a1 (Kr
nRrlmk +Kr

kRrlmn) +

b2 [2gkn (Xm,l + Slm)− gkm (Xn,l + Sln)− gmn (Xk,l + Slk)] +

(b2 − 2a′2)
(
2glmSkn − glnSkm − gklSmn

)
.

are satisfied at a point (x, 0) ∈ TM .

Lemma 3.7. Under hypothesis (3.1) relation

(3.13) 3a2 [Epbc (Rpkal +Rplak) + Epac (Rpkbl +Rplbk) + Epab (Rpkcl +Rplck)] +

6A′gkl(Tabc + Tbca + Tcab) + gbcKkal + gcaKkbl + gabKkcl+

gclLabk + galLbck + gblLcak + gckLabl + gakLbcl + gbkLcal = 0

holds on M × {0}, where

(3.14) Kkal = Klak =

− 2b2 (Ska,l + Sla,k +Xa,kl +Xa,lk)− (b1 − a′1)(Ya,kl + Ya,lk),

(3.15) Labk = Lbak = 2BKab,k + 3BTkab + (b2 − 2a′2)Sab,k + 3B′(gkaYb + gkbYa).

Lemma 3.8. Under hypothesis (3.1) suppose dimM > 2. Then the relation

a1 [2EpabRplck − E
p
bkRplac + EpbcRplak − E

p
akRplbc + EpacRplbk] +

B [(Eckb − Ekcb) gal + (Ecak − Ekac) gbl+
(Eabk + Ebak) gcl − (Eabc + Ebac) gkl] +

(b1 − a′1)
[
∇lSbcgak −∇lSbkgac

]
+

b2

[
∇lK̂kcgab + gak

(
3

2
∇lKbc +

1

2
∇lKcb

)
− gac

(
3

2
∇lKbk +

1

2
∇lKkb

)]
+

b2 (∇lKacgbk −∇lKakgbc) +

(b2 − 2a′2) (Mabkgcl −Mabcgkl) + b2 [gbkTlac − gbcTlak + gakTlbc − gacTlbk] +

2b′2 [(gbkgcl − gbcgkl)Ya + (gakgcl − gacgkl)Yb+
(galgbk + gakgbl)Yc − (galgbc + gacgbl)Yk] = 0

holds on M × {0}.
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Lemma 3.9. Under hypothesis (3.1) relations

(3.16) Akm = (3a1B − a2b2)∇kXm + (−2a2b1 +
3

2
a1b2 + 2a2a

′
1 − 3a1a

′
2)∇kYm+

a2B(Kkm − 2Kmk) + (3a1B − 2a2b2 + 2a2a
′
2)Skm+

(−a2b2 + 2a2a
′
2)Smk = 0,

Fkl + Bkl = 2a2b2(LXg)kl + (4a2b1 − 3a1b2 − 4a2a
′
1)(LY g)kl+

2 (3a2b2 + 3a1A
′ − 4a2a

′
2)Skl + 2a2BKkl = 0.

hold at a point (x, 0) ∈ TM, where

Fmn = 2a2BKmn + 2(2a2b2 + 3a1A
′ − 4a2a

′
2)Smn,

Bkl = 2a2b2(LXg)kl + (4a2b1 − 3a1b2 − 4a2a
′
1)(LY g)kl + 2a2b2Skl.

4. Classification

4.1. Case 1. In this section we study relations between Y component of the Killing
vector field on TM and the base manifold M (Theorems 4.1, 4.2). Various condi-
tions for Y to be non-zero and relations between X, Y, P , K are proved. Moreover,
Theorem 4.3 establishes isomorphism between algebras of Killing vector fields on
M and TM for a large subclass of non-degenerate g− natural metrics.

Lemma 4.1. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 6= 0
at a point (x, 0) ∈ TM. Then

(4.1) (B +A′)Yk = 0,

(4.2) 2a∇lKkm = [2a1A
′ + a2(b2 − 2a′2)] (glmYk − glkYm),

(4.3) 2a∇lPkm = − [2a2A
′ +A(b2 − 2a′2)] (glmYk − glkYm),

(4.4) a1∇m∇lYk = A′(gmlYk − gmkYl),

(4.5) a1Y
rRrklm = A′(gkmYl − gklYm)

hold at the point.

Proof. First suppose a1 6= 0. Symmetrizing (3.10) in (k,m), making use of the
skew-symmetricity of K, then alternating in (k, l) and applying the first Bianchi
identity, we get

(4.6) 3a1Y
rRrmkl + (B − 2A′)(glmYk − gkmYl) = 0.

Applying the last identity to (3.10) we find

6a∇lKkm + 2a1(B +A′)gkmYl + 3 [2a1A
′ + a2(b2 − 2a′2)] glkYm+

[2a1(2B −A′)− 3a2(b2 − 2a′2)] glmYk = 0,

whence, symmetrizing in (k,m), we obtain (4.1) and, consequently, (4.2).
Suppose now a1 = 0. Substituting in (3.10) we easily state that (4.2) remains

true. On the other hand, substituting a1 = 0 into (3.11) and symmetrizing in (k,m)
we get

2a2BgkmYl + a2(B + 2A′)(glmYk + glkYm) = 0,



ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE... 61

whence, by contractions with gkm and glm, we obtain

(4.7) BYl = 0 and A′Yl = 0

respectively since a2 6= 0 must hold. Thus (4.1) holds good.
Since X is a Killing vector field, (3.11), (2.2), (4.1) and (4.6) in the case a1 6= 0

and (3.11) and (4.7) as well in the case a1 = 0 yield (4.3).
Differentiating covariantly (equation II1, [9] ) and using just obtained identities,

we get (4.4). Finally, alternating (4.4) in (l,m), by the use of the Ricci identity
(2.1), we obtain (4.5). This completes the proof. �

From (4.5) and Theorem 6.1 by Grycak we infer

Theorem 4.1. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 6=
0 on the set M ×{0} ⊂ TM. If the vector field A′

a1
Y a∂a does not vanish on a dense

subset of M and M is semisymmetric, i.e. R · R = 0, (resp. the Ricci tensor S is
semisymmetric, i.e. R · S = 0), then M is a space of constant curvature, (resp. M
is an Einstein manifold).

Theorem 4.2. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 6=
0 at a point (x, 0) ∈ TM. Then the Y component of the Killing vector field on TM
satisfies

(4.8) S1Y

[
a1R+

B

2
g ∧ g

]
= 0

on M.

Proof. Suppose a1 6= 0. By (1.1) and (1.2) we have Sab = 0. Applying this and
(1.2), (4.1), (4.2) and (4.7) to Lemma 3.8, after long computations we obtain

(4.9) S1 [3(RblckYa +RalckYb) + (Rblak +Ralbk)Yc − (Rblac +Ralbc)Yk] +

S2gab (gklYc − gclYk) + S3 [(galgbk + gakgbl)Yc − (galgbc + gacgbl)Yk] +

S4 [(gbkgcl − gbcgkl)Ya + (gakgcl − gacgkl)Yb] = 0,

where

S1 = a1 [2a2a
′
1 − a1 (b2 + 2a′2)] ,

S2 = −2 [b2 (−Ab1 + 3a2b2 + 5a1A
′ −Aa′1 − 4a2a

′
2) + 2b1(Aa′2 − a2A

′) +

2(a1A
′ +Aa′1 − 2a2a2′)a′2] =

− 2 [b2 (−Ab1 + 3 (a2b2 + a1A
′ −Aa′1) + 2a′) + 2b1(Aa′2 − a2A

′) + 2a′a′2 ],

S3 = −3a1b2A
′ − 2Ab2a

′
1 + 2a2A

′a′1 + 4a2a
′
2b2 − 2a1A

′a′2 + 4ab′2 =

2A′(a2a
′
1 − a1a

′
2)− b2(2a′ + a1A

′) + 4ab′2,

S4 = b2 (−2Ab1 + 6a2b2 + 7a1A
′ − 4Aa′1 − 4a2a

′
2)− 4a2b1A

′ + 2a2A
′a′1+

a′2 (4Ab1 + 2a1A
′ + 4Aa′1 − 8a2a

′
2) + 4ab′2

and

S2 − S3 + S4 = 0

identically.
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Symmetrizing (4.9) in (a, b, l) we get

(S2 + 2S3) [(galgbk + gakglb + gabgkl)Yc − (galgbc + gacglb + gabgcl)Yk] = 0,

whence, by contraction with galgbk, we find (n− 1)(n+ 2)(S2 + 2S3)Yc = 0. There-
fore, symmetrizing (4.9) in (a, b, c) and using the last result, we obtain

YaTbckl + YbTcakl + YcTabkl = 0,

where

Tbckl = Tcbkl = Tklbc =

2S1(Rbkcl +Rblck)− (S3 + S4)

[
gbcgkl −

1

2
(gblgck + gbkgcl)

]
.

Hence, by the use of the Walker’s Lemma 6.1, we get

(4.10) YaTbckl = 0.

Alternating (4.10) in (l, c) and applying the Bianchi identity we obtain

Ya [4S1Rbkcl + (S3 + S4) (gblgkc − gbcgkl)] = 0.

Transvecting the last equation with Y b, by the use of (4.7), we easily get

[4BS1 + a1(S3 + S4)]Ya = 0,

whence (4.8) results.
On the other hand, from the proof of Lemma 4.1 it follows that a1(0) = 0 implies

B(0)Ya = 0. Thus, by continuity, (4.8) holds good on M. �

Corollary 4.1. Under assumptions of the above theorem we have on M :

(S2 + 2S3)Y = 0 if a1 6= 0,

[4BS1 + a1(S3 + S4)]Y = 0.

Notice that multiplying the first equation by a1 and adding to the second one we
obtain

a1 (b2a
′ − 2ab′2)Y = 0.

Lemma 4.2. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 6= 0
at a point (x, 0) ∈ TM.

If a1a2 6= 0, then

(4.11) Akm =

[
2a2 (b1 − a′1)− 3

2
a1 (b2 − 2a′2)

]
Yk,m+

(3a1B − a2b2)Pkm + 3a2BKkm = 0.

If a2 = 0 and a1b2 6= 0 then

(4.12)
1

3
Akm = −1

2
a1 (b2 − 2a′2)Yk,m + a1BPkm = 0.

If a1 = 0 and (b1 − a′1)a2 6= 0 then

(n+ 1)BKkn − b2Pkn + 2(b1 − a′1)Yk,n = 0,(4.13)

3BKln − (n− 1)b2Pln + 2(n− 1)(b1 − a′1)Yl,n = 0.(4.14)
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Proof. If a1a2 6= 0, we apply (1.1) and (1.2) to (3.16) to obtain (4.11).
If a2 = 0 but a1 6= 0, then also there must be b2 6= 0. Substituting a2 = 0 into

(3.16) and applying (1.1) and (1.2) we get (4.12).
Finally, the last two identities one obtains substituting a1 = 0 into (3.12), con-

tracting with gkm and glm and making use of (1.1) and (1.2). �

Taking into account (4.13) and (4.14) together with the equation (equation II1,
[9] ) which, in virtue of (1.1), writes

AKkm + a2Pkm − a1Yk,m = 0

we find that B 6= 0 implies P = K = ∇Y = 0 on M. We conclude with the following

Theorem 4.3. Let TM, dimTM > 4, be endowed with a non-degenerate g− natu-
ral metric G, such that a1 = 0, (b1 − a′1)a2 6= 0 and B 6= 0 on M ×{0} ⊂ TM . Let
V be an open subset of TM such that M × {0} ⊂ V. If V admits a Killing vector
field, then it is a complete lift of a Killing vector field on M. Consequently, Lie
algebras of Killing vector fields on M and V ⊂ TM are isomorphic.

Besides, for B = 0, we have

Theorem 4.4. Let TM, dimTM > 4, be endowed with a non-degenerate g− nat-
ural metric G, such that a1 = 0, (b1 − a′1)a2 6= 0 and B = 0 on M × {0} ⊂ TM .
Then

a2P +AK = 0,

b2P − 2(b1 − a′1)∇Y = 0

hold on M × {0} ⊂ TM .

Hence, for B = 0, A 6= 0 and b2 6= 0, a theorem similar to the former one can be
deduced.

The next theorem gives further restrictions on the vector Y to be non-zero.

Theorem 4.5. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 6=
0 at a point (x, 0) ∈ TM. If a1 6= 0, then the Y component of the Killing vector
field on TM satisfies

Q2Y = {a1b2 [A(b2 − 2a′2)− 2a2B]− 4aB(b1 − a′1))}Y = 0,

B′Y = 0,

B [a1a2 (b2 + 2a′2)− 2Aa1a
′
1 + aa′1]Y = 0.

Proof. We apply Lemma 3.7. By the use of (1.1), (1.2), (4.1) - (4.4) and (3.6) the
components of the tensors K and L defined by (3.14) and (3.15) can be written as

Kkal =
[aB(b1 − a′1) + 2a1a2Bb2 −Aa1b2(b2 − 2a′2)]

aa1
(2gklYa − gkaYl − glaYk),

Labl = 3BTlab + 3B′(gblYa + galYb) =

− 3B [A(b1 − a′1)− a2b2]

a
gabYl+

3 [B(a2b2 − 2Aa′1 + 2a2a
′
2) + 2aB′]

2a
(galYb + gblYa) .
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Substituting into (3.13) and applying (3.5), (3.7) and (4.7) we get

(4.15) Q1 [(Rbkcl +Rblck)Ya + (Rckal +Rclak)Yb + (Rakbl +Ralbk)Yc] +

Q2 [(galgbc + gblgca + gclgab)Yk + (gakgbc + gbkgca + gckgab)Yl] +

Q3gkl (gbcYa + gcaYb + gabYc) +

Q4 [(gblgkc + gbkglc)Ya + (gclgka + gckgla)Yb + (galgkb + gakglb)Yc] = 0,

where

Q1 = −3a2 (a1b2 − 2a2a
′
1 + 2a1a

′
2)

a
,

Q2 =
[a1b2(A(b1 − a′1)− 2Ba2)− 4aB(b1 − a′1))]

aa1
,

Q3 = 2
4aB(b1 − a′1)− a1 [A(b2 − 2a′2) +B(a2b2 − 6Aa′1 + 6a2a

′
2)]

aa1
,

Q4 =
3 [B (a2b2 − 2Aa′1 + 2a2a

′
2) + 2aB′]

a
.

Contracting (4.15) with gab, by the use of (4.7), we get

(4.16) gkl

(
−4BQ1

a1
+ (n+ 2)Q3 + 2Q4

)
Yc − 2Q1RklYc+(

2BQ1

a1
+ (n+ 2)Q2 + 2Q4

)
(gclYk + gkcYl) = 0.

Symmetrizing in (c, k, l) we obtain

TklYc + TlcYk + TckYl = 0,

where

(4.17) Tkl = Tlk = gkl [(n+ 2) (2Q2 +Q3) + 6Q4]− 2Q1Rkl.

Then the Walker lemma yields Tkl = 0 or Yc = 0. Subtracting (4.17) from (4.16)
and contracting with gkl we get

(4.18) [a1 ((n+ 2)Q2 + 2Q4) + 2BQ1]Yc = 0.

In the same way, by contraction of (4.15) with gcl, we find

(4.19) {gbk [(n+ 5)Q2 + 3Q3 + 2(n+ 2)Q4] + 2Q1Rbk}Yc = 0

and

(4.20) [a1 ((n+ 3)Q2 +Q3)− 2BQ1]Yk = 0.

At last, by contraction of (4.15) with gkl, we obtain

(4.21) [gbc (2Q2 + nQ3 + 2Q4)− 2Q1Rbc]Ya = 0.

Eliminating the Ricci tensor between (4.17), (4.21) and (4.19) we find

[3(n+ 3)Q2 + (n+ 5)(Q3 + 2Q4)]Yc = 0,

[(n+ 1)Q2 + 2Q3 + 2Q4]Yc = 0.

The system consisting of (4.18), (4.20) and the above two equations is undetermined
and equivalent to Y = 0 or Q2 = 0 and 2BQ1 +a1Q3 = 0 and Q3 +2Q4 = 0. Hence
2Q2 + Q3 + 2Q4 yields the second identity, while a1(Q3 + 2Q4) − (2BQ1 + a1Q3)
gives the third one. �
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Remark 4.1. From (4.15) one can deduce the identity

Q1Y

[
a1R+

B

2
g ∧ g

]
= 0.

4.2. Case 2. The next theorem partially improves the result of Tanno ([17]) con-
cerned with Killing vector field on (TM, gC), where the complete lift gC of g is a
g− natural metric with a2 = 1, all others being zero. (In Tanno’s paper the Killing
vector on (TM, gC) is of the form ιC [X] + XC + Y v + (urP tr )∂ht , where Y and P
satisfy some additional conditions). Furthermore, we prove in the section some
sufficient conditions for X and Y to be either infinitesimal affine transformation or
infinitesimal isometry.

Theorem 4.6. Let X be an infinitesimal affine vector field on some open U ⊂M.
If

a2 = const 6= 0, b3 = const, all others equal 0

on π−1(U) ⊂ TM, then ιC [X] +XC is a Killing vector field on π−1(U).

Proof. It follows from the results of subsection 5.3.3. �

Lemma 4.3. Under hypothesis (3.1) suppose dimM > 2 and 2(b1−a′1)a2−a1b2 = 0
at a point (x, 0) ∈ TM. Moreover, let either a1a2b2 6= 0 or a2 6= 0, b2 = 0,
b1 − a′1 = 0. Then

(a1B − 2a2b2 − 3a1A
′ + 4a2a

′
2)

[
(LXg)− 1

n
Tr(LXg)g

]
= 0,

a2(b1 − a′1)

[
(LY g)− 1

n
Tr(LY g)g

]
= 0,

a1 [a′2 (LY g) +A′ (LXg)] = 0,

[a1(B − 3A′) +A(b1 − a′1)− 2a2(b2 − 2a′2)] (LXg) = 0.

Proof. First consider the case a1a2b2 6= 0. By the use of (1.3) - (1.5) and the equality
a1b2 = 2a2(b1 − a′1) Lemma 3.9 yields

F = 2(a1B − 2a2b2 − 3a1A
′ + 4a2a

′
2)(LXg),

B = −2a2(b1 − a′1)(LY g),

whence, by ([9], Lemma 19 or [10], Lemma 54), the first two equalities result.
Moreover, by Lemma 3.9 we have

(4.22) F+B = −2a2(b1− a′1)(LY g) + 2(a1B− 2a2b2− 3a1A
′+ 4a2a

′
2)(LXg) = 0,

and

Akm = 3a2BKkm + (3a1B − a2b2)Pkm + (a1B − 2a2a
′
2)(LXg)km+

[a2 (b1 − a′1)− 3a1a
′
2]∇kYm = 0.

Symmetrizing in (k,m) and transforming the obtained equation in the same manner
as before we find

(4.23) [a2 (b1 − a′1)− 3a1a
′
2] (LY g)− (a1B − 2a2b2 + 4a2a

′
2)(LXg) = 0.

Now from (4.22) and (4.23) we easily deduce the third equality. Finally, the last
one is obtained by applying (1.4) to (4.22).

The proof of the second case can be obtained in the same way. The statements
differ only in that b2 = 0. �
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Corollary 4.2. If a1(a2A
′ − a′2A) 6= 0, then LXg = 0.

4.3. Case 3. The main result of the section establishes isomorphism between al-
gebras of Killing vector fields on M and TM for a large subclass of g− metrics
(Theorem 4.7). Furthermore, conditions for Y to be non-zero are proved.

Lemma 4.4. Under hypothesis (3.1) suppose that dimM > 2 and the following
conditions on aj , bj at a point (x, 0) ∈ M are satisfied: a1 = 0, b1 = a′1, a2 6= 0,
b2 6= 0. Then the relations

(4.24) (b2 − 2a′2)LXg = 0, (b2 − 2a′2)Tr (∇X) = 0, (b2 − 2a′2)TrP = 0,

(4.25) BK = 0, LXg + P = 0

hold. Moreover P is symmetric. Finally a3K = 0.

Proof. Substituting a1 = 0 and a′1 = b1 into (3.12), then applying (1.8) and (1.6)
we find

(4.26) b2 [2gkn ((LXg)lm + Plm) + gmn ((LXg)kl + Pkl)− gkm ((LXg)ln + Pln)] +

gln [−3BKkm + (b2 − 2a′2) (LXg)km] +

gkl [3BKmn + (b2 − 2a′2) (LXg)mn]− 2(b2 − 2a′2)glm (LXg)kn = 0.

From (1.6) it follows that P aa + 2Xa
,a = 0. Thus contracting (4.26) with glm and

then with gkn we get (4.24) in turn. Consequently, contracting (4.26) with gkn, by
the use of (1.6), (1.8) and (4.24), we obtain

−3BKlm + (n− 1)b2 [Plm + (LXg)lm] = 0.

In a similar way, contracting (4.24) with gkl, we find

−(n+ 1)BKmn + b2 [Pmn + (LXg)mn] = 0.

The last two equations yield (4.25). The final statement is a consequence of (4.25),
(equation II1, [9] ) and a1 = 0. �

Lemma 4.5. Under assumptions of Lemma 4.4 relations

[(b2 − 2a′2) (2Ab1 − 3a2b2 − 2a2a
′
2)− 2a2Bb1]Y = 0,

[a2Bb1 +Ab1b2 − 2a2 (b2a
′
2 − a2b

′
2)]Y = 0,

(b1b2 − a2b
′
1)Y = 0

hold on M × {0}.

Proof. We apply Lemma 3.8. Substituting a′1 = b1, a1 = 0, contracting with gabgcl

and applying (1.8) we get

−2b2(n+ 2)Kr
k,r + 2BErkr − 2BE r

k r + (n− 1)(b2 − 2a′2)Mr
kr = 0,

whence, by the use of Lemma 3.2 we obtain the first equality. Similarly, contracting
with galgbc we find

− b2(n+ 2)Kr
k,r +B(n+ 2)Erkr −B(n+ 2)E r

k r − b2nT rkr + b2T
r
k r−

2(n+ 2)(n− 1)Yk = 0,

whence the second equation results. Finally, the third one follows from Lemma
3.5. �
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Lemma 4.6. Under assumptions of Lemma 4.4 suppose LXg = 0. Then

AY = BY = A′Y = 0

at each point (x, 0) ∈ TM.

Proof. By (1.7), Y is a Killing vector field on M. Moreover, (3.8) reduces to

2A′gklYp +B (Ykglp + Ylgkp) = 0,

whence we easily deduce BY = A′Y = 0. Since an infinitesimal isometry is also an
infinitesimal affine transformation, from (3.11), by the use of (2.2) and the above
properties, we obtain AY = 0. �

Lemma 4.7. Under assumptions of Lemma 4.4 suppose

(4.27) P + LXg = 0.

Then ∇P = 0 if and only if BY = A′Y = 0.

Proof. Substituting into (3.8), symmetrizing in (k, p) and applying (4.27) we get

a2∇lPkp +B(2gkpYl + glpYk + gklYp) + 2A′(gklYp + glpYk) = 0,

whence the thesis results. �

A complete lift of a Killing vector field on M to (TM,G) is always a Killing
vector field ([9], [10]). Thus we have proved

Theorem 4.7. Let on TM, dimTM > 4, a g− natural metric G

G(x,u)(X
h, Y h) = A(r2)gx(X,Y ) +B(r2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = a2(r2)gx(X,Y ) + b2(r2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y h) = a2(r2)gx(X,Y ) + b2(r2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = 0

be given, where a2b2 6= 0 everywhere on TM while b2−a′2 and either A or B do not
vanish on a dense subset of TM. If Z is a Killing vector field on TM, then there
exists an open subset U containing M such that Z restricted to U is a complete lift
of a Killing vector field X on M, i.e.

Z|U = XC .

4.4. Case 4. The class under consideration contains the Sasaki metric gS and the
Cheeger-Gromoll one gCG. In ([18]) Tanno proved the following

Theorem 4.8. Let (M, g) be a Riemannian manifold. Let X be a Killing vector
field on M, P be a (1, 1) tensor field on M that is skew-symmetric and parallel and
Y be a vector field on M that satisfies ∇k∇lYp + ∇l∇kYp = 0 and (4.31). Then
the vector field Z on TM defined by

Z = XC + ιP + Y # = (Xr −∇rYsus)∂hr + (Y r + Srsu
s)∂vr

is a Killing vector field on (TM, gS). Conversely, any Killing vector field on (TM, gS)
is of this form.
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A similar theorem holds for (TM, gCG), ([3]). However, in virtue of Lemma 3.5
and the remark after it, the Y component vanishes.

We shall give a simple sufficient condition for ιP to be a Killing vector field on
TM. The rest of the section is devoted to investigations on the properties of the Y
component.

Notice that a 6= 0 and a2 = 0 require a1A 6= 0. From (3.8) we get immediately

(4.28) a1 (∇k∇lYp +∇l∇kYp) = 2A′gklYp +B (Ykglp + Ylgkp) .

Since b2 = 0, symmetrizing (equation II2, [9] ) in (k, p) we getAElkp = a′2(glkYp+
glpYk). Consequently, in virtue of the properties of the Lie derivative (2.2), (3.11)
and (1.9) yield

a1∇lPkp = a′2(glpYk − glkYp).
Moreover, because of a2 = 0, b2 = 0, Spq = 0 and ∇lXq + Slq = Plq = −Pql,

identity (equation I3, [9] ) together with (3.4) yields

BPkp = a′2∇kYp,
whence, since P is skew-symmetric,

(4.29) a′2LY g = 0 and a′2Tr(∇Y ) = 0

result.
Next, Lemma 3.9 yields

B∇kXm − a′2∇kYm +BPkm = 0,

whence we find

B∇X = 0.

We conclude with

Lemma 4.8. Suppose (3.1), dimM > 2, and a2 = 0, b2 = 0 on M ×{0}. If a′2 = 0
on M × {0}, then BP = 0 and ∇P = 0 on M × {0}.

By Proposition 5.4 we obtain

Theorem 4.9. Suppose a2(r2) = 0, b2(r2) = 0 and B(r2) = 0 on (TM,G). If M
admits non-trivial skew-symmetric and parallel (0, 2) tensor field P, then its ι-lift
is a Killing vector field on TM.

Lemma 4.9. If a2 = 0, b2 = 0 at (x, 0) and a 6= 0 everywhere on TM, then

(4.30) 3a2
1 (∇rYqRrlkp +∇rYpRrlkq) =

a1B [(2∇qYk −∇kYq) gpl + (2∇pYk −∇kYp) gql − (∇pYq +∇qYp) gkl] +

2A(b1 − a′1) (2∇lYkgpq −∇lYpgkq −∇lYqgkp)
and

3a2
1∇qYpRqlkrupur =

2A(b1 − a′1)
[
Yk,lr

2 − Yp,lukup
]

+ a1B [(2Yk,p − Yp,k)ul − gklYp,quq]up

hold at arbitrary point (x, 0) ∈ TM.

Proof. To prove the lemma it is enough to put a2 = 0, b2 = 0 in (3.12), then
multiply by A and apply (1.9). For convenience indices (k,m) are interchanged
after that. �
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Lemma 4.10. Suppose (3.1), dimM > 2. If neither ∇nYm = 0 nor ∇nYm =
T
n gmn, then

(4.31) ∇rYqRrlkp +∇rYpRrlkq = 0

if and only if B = b = 0.

Proof. The ”only if ” part is obvious. Put T = Yr,sg
rs. Suppose that (4.31) holds.

Contracting the right hand side of (4.30) in turn with gkl, gklgmn, glm and gkn, we
get respectively

[2Ab+ (n− 1)a1B] (Ym,n + Yn,m)− 4AbTgmn = 0,

(n− 1) (2Ab− a1B)T = 0,

− [4Ab+ (2n+ 1)a1B]Yk,n + [2Ab+ (n+ 2)a1B]Yn,k + 2AbTgkn = 0,

−a1BYl,m + 2 [(n− 1)Ab+ a1B]Ym,l − a1BTglm = 0.

If Yl,m − Ym,l 6= 0, then alternating the last two equations in indices we obtain

2Ab+ (n+ 1)a1B = 0,

2(n− 1)Ab+ 3a1B = 0,

whence B = b = 0 for n 6= 2 results.
If Yl,m − Ym,l = 0, then the suitable linear combination of these equations gives

(n− 2) (2Ab− a1B)Yl,m + (2Ab− a1B)Tglm = 0.

By the second equation this yields (2Ab− a1B)Yl,m = 0. Applying the last result
to the first equality completes the proof. �

Lemma 4.11. Let (TM,G) be a tangent bundle of a manifold (M, g), dimM > 2,
with non-degenerate g− natural metric G given by (2.3). Suppose there is given
a Killing vector field Z on TM with Taylor expansion (3.2) and (3.3). If the
coefficients a2(t), b2(t) vanish along M then Y satisfies

(4.32) A′(2b1 + a′1)Y = 0,

(4.33) {[2B(B +A′)− 3AB′] a1 +AB(2b1 + a′1)}Y = 0.

Proof. Recall that if a2(r2
0) = 0, then necessary a1A 6= 0 on some neighbourhood

of r2
0.

From (3.9) we easily get

(4.34) A(Kab,c +Kbc,a +Kca,b) + 2(B +A′)(gbcYa + gcaYb + gabYc) = 0.

From Lemma 3.7, by the use of the assumptions on a2 and b2, we find

2B
[
Kab,(kgl)c +Kbc,(kgl)a +Kca,(kgl)b

]
+

3B
[
gc(lTk)ab + ga(lTk)bc + gb(lTk)ca

]
+

6A′gklMabc − b [gab (Yc,kl + Yc,lk) + gbc (Ya,kl + Ya,lk) + gca (Yb,kl + Yb,lk)] +

6B′ [(galgkb + gakglb)Yc + (gblgkc + gbkglc)Ya + (galgkc + gakglc)Yb] = 0.
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Applying (3.8), (3.6) and (3.7) we find

(4.35) 2B
[
Kab,(kgl)c +Kbc,(kgl)a +Kca,(kgl)b

]
−

4bB

a1
[(galgbc + gblgca + gclgab)Yk + (gakgbc + gbkgca + gckgab)Yl]−

4A′(2b1 + a′1)

a1
(gabYc + gbcYa + gcaYb) gkl +

6(B′a1 −Ba′1)

a1
×

[(galgkb + gakglb)Yc + (gblgkc + gbkglc)Ya + (galgkc + gakglc)Yb] = 0.

Hence, contracting with gkl, we obtain

(4.36) B(Kab,c +Kbc,a +Kca,b)+[
3B′ − (B + nA′)(2b1 + a′1)

a1

]
(gbcYa + gcaYb + gabYc) = 0.

If B 6= 0, then a linear combination of (4.34) and (4.36) yields ψY = 0 where

(4.37) ψ = 2B(B +A′)− 3AB′ +
A(B + nA′)(2b1 + a′1)

a1
.

On the other hand, contractions of (4.35) with gak and then with gbl yield respec-
tively

B
[
(n+ 3)Kbc,l +K

r

c,rgbl +K
r

b,rgcl

]
=

2

a1
[(n+ 3)bB +A′(2b1 + a′1)] gbcYl+

1

a1
[2bB + 3(n+ 2)(Ba′1 −B′a1) + 2A′(2b1 + a′1)] (gblYc + gclYb)

and

2BK
r

c,r =
1

a1
[4bB + 3(n+ 1)(Ba′1 −B′a1) + 2A′(2b1 + a′1)]Yc.

Hence we find

(4.38) 2(n+ 3)a1BKbc,l = 4 [(n+ 3)bB +A′(2b1 + a′1)] gbcYl+

[3(n+ 3)(Ba′1 −B′a1) + 2A′(2b1 + a′1)] (gblYc + gclYb)

and

(n+ 3)a1B(Kbc,l +Kcl,b +Klb,c)−
[(n+ 3)(B(2b1 + a′1)− 3a1B

′) + 4A′(2b1 + a′1)] (gbcYl + gclYb + glbYc) = 0

If B 6= 0, then combining the last relation with (4.36) we obtain (4.32) and, as
a consequence of (4.37), equality (4.33). On the other hand, if B(r2

0) = 0, then
contractions of (4.38) with gbc and gbl yield either Y a = 0 or B′ = 0 and A′(2b1 +
a′1) = 0. This completes the proof. �

Lemma 4.12. For an arbitrary B we have

a2
1B(∇l∇cYb +∇l∇bYc) = −2ABbgbcYl −

3

2
A(Ba′1 − a1B

′)(gblYc + gclYb),
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a2
1B(∇l∇cYb −∇b∇lYc) = −B (a1B + 2Ab) gbcYl+

− 1

2
[4A′a1B + 3A(Ba′1 − a1B

′)] gblYc −
1

2

[
2a1B

2 + 3A(Ba′1 − a1B
′)
]
gclYb.

Proof. We can suppose B 6= 0. From (II1, [9], [10]) we get

A∇lKkm = −a1 (∇l∇kYm +∇l∇mYk) .

Combining this with (4.38), by the use of (4.32), we find the first equality. Hence,
by the use of (3.8) and (4.32), we get the second one. On the other hand, if BY = 0,
then the previous lemma yields B′Y = 0. This completes the proof. �

Lemma 4.13. Under hypothesis (3.1) suppose dimM > 2 and a2 = 0, b2 = 0 on
M × {0} ⊂ TM. Then

(4.39) [Aa′2(b1 + a′1)− 2a1(Ba′2 +Ab′2)]Y = 0,

(4.40) Y

[
a1a
′
2R−

(Ba′2 + 2Ab′2)

2
g ∧ g

]
= 0.

If a′2 6= 0, then

(4.41) b′2∇Y = 0, (b1 − a′1)∇Y = 0.

Proof. For the proof of the first part we apply Lemma 3.8. Substituting a2 = 0,
b2 = 0, by the use of (1.9), we get

a1 [2EpabRplck − E
p
bkRplac + EpbcRplak − E

p
akRplbc + EpacRplbk] +

B [(Eckb − Ekcb) gal + (Ecak − Ekac) gbl+
(Eabk + Ebak) gcl − (Eabc + Ebac) gkl]− 2a′2 (Mabkgcl −Mabcgkl) +

2b′2 [(gbkgcl − gbcgkl)Ya + (gakgcl − gacgkl)Yb+
(galgbk + gakgbl)Yc − (galgbc + gacgbl)Yk] = 0.

Applying (3.5) - (3.7) and the Bianchi identity we find

− a2
1a
′
2 [3RblckYa + 3RalckYb + (Rakbl +Rbkal)Yc − (Racbl +Rbcal)Yk]−

2a′2 [A(b1 + a′1)− a1B] gab (gklYc − gclYk)−
[2Aa′2(b1 + a′1) + a1(2Ab′2 −Ba′2)] [(gbcgkl − gbkgcl)Ya + (gacgkl − gakgcl)Yb] +

a1(Ba′2 + 2Ab′2) [gbl (gakYc − gacYk) + gal (gbkYc − gbcYk)] = 0.

Symmetrizing the last relation in (a, b, l) we obtain (4.39). Then, symmetrize in
(a, b, k). Since coefficient times Yc vanishes by (4.39), by the use of the the Walker
lemma and (4.39) we get either Y = 0 or

a1a
′
2(Racbl +Ralbc) = (Ba′2 + 2Ab′2)(galgbc + gacgbl − 2gabgcl),

whence, alternating in (b, l), we easily obtain

a1a
′
2Racbl = (Ba′2 + 2Ab′2)(galgbc − gabgcl).

Thus (4.40) is proved.



72 STANIS LAW EWERT-KRZEMIENIEWSKI

Suppose now Y 6= 0 and a′2 6= 0 on M × {0}. Applying (4.40) to (4.30) and
eliminating B, by the use of (4.29), we obtain

(4.42) 2(b1 − a′1) (Yn,lgkm + Ym,lgkn − 2Yk,lgmn) +(
2
a1b
′
2

a′2
− b1 − a′1

)
(Yk,mgln + Yk,nglm)−(

4
a1b
′
2

a′2
+ b1 + a′1

)
(Ym,kgln + Yn,kglm) = 0.

Contracting (4.42) with glm, by the use of (4.29) we get[
(n+ 1)

a1b
′
2

a′2
− (b1 − a′1)

]
Yk,n = 0.

On the other hand, by contraction with gmn we obtain[
a1b
′
2

a′2
− (n− 1)(b1 − a′1)

]
Yk,l = 0.

Hence we easily get either ∇Y = 0 or both b′2 = 0 and b1 − a′1 = 0 on M × {0}.

Remark 4.2. If a′2 6= 0 and Y 6= 0, then equations (4.41) give a further restriction
on the metric G. Namely, if ∇Y = 0, then from (1.9) we infer K = 0 while from
(4.28) we get A′ = 0 and B = 0 on M × {0}. Consequently, (4.33) yields B′ = 0.

�

Remark 4.3. On the other hand, substituting b′2 = 0 and b1 = a′1 into Lemma 3.5
we get b′1 = 0 on M × {0}.

5. Lifts properties

5.1. Vertical lift Xv.

Proposition 5.1. The vertical lift Xv = Xr∂vr of a Killing vector field X = Xr∂r
to (TM,G) with non-degenerate g− natural metrics G is a Killing vector field on
TM if and only if a′j = 0 and bj = 0 on TM.

Proof. Suppose Xv is a Killing vector field. Since X is also the Killing one, ([9],
equation 6) yields

b2(Xr,kul +Xr,luk)ur +B(ukXl + ulXk) + 2urXr(A
′gkl +B′ukul) = 0,

whence, by contraction with gkl and ukul we obtain

2urXr(B + nA′ + r2B′) = 0

and

2r2urXr(B +A′ + r2B′) = 0

since X is a Killing vector field on M. Thus A′ = 0 and the only smooth solution
to B + r2B′ = 0 on TM is B = 0. In similar manner, from ([9], equation 7 and 8)
we deduce that a′1 = a′2 = 0 and b1 = b2 = 0 on TM. The ”only if” part is obvious.
Thus the proposition is proved. �
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5.2. V a∂va = up∇rYp∂vr . Let Y be a non-parallel Killing vector field on M and
consider its lift up∇rYp∂vr to (TM,G). Then we have ∂vkV

a = ∇aYk, ∂hkV a =
upΘk (∇aYp) and from ([9] or [10], equations 6, 7 and 8) we obtain

(
LV a∂v

a
G
) (
∂hk , ∂

h
l

)
= a2(∇l∇kYp +∇l∇kYp)up +B(∇kYpupul +∇lYpupuk),(

LV a∂v
a
G
) (
∂vk , ∂

h
l

)
= a2∇lYk + a1∇l∇kYpup + b2∇lYpupuk,(

LV a∂v
a
G
)

(∂vk , ∂
v
l ) = 0.

Hence we deduce

Proposition 5.2. Let Y be a non-parallel Killing vector field on M satisfying
∇∇Y = 0. Then up∇rYp∂vr is a Killing vector field on TM if and only if a2 = b2 =
B = 0 on TM.

Proposition 5.3. Let Y be a non-parallel Killing vector field on M. If a2 = b2 =
B = 0 on TM and up∇rYp∂vr is a Killing vector field on TM then ∇∇Y = 0 on
M .

5.3. ιP .

Proposition 5.4. Let P be an arbitrary (0,2)-tensor field on (M, g). Then its ι -
lift ιP = urP ar ∂

v
a to (TM,G) with non-degenerate g− natural metric G satisfies

(LιPG)
(
∂hk , ∂

h
l

)
= a2u

r (∇kPlr +∇lPkr) + b2u
pur (∇kPprul +∇lPpruk) +

2(A′gkl +B′ukul)Ppru
pur +Bur (Pkrul + Plruk) ,

(LιPG)
(
∂vk , ∂

h
l

)
= a2Plk + b2u

rPrkul + a1u
r∇lPkr + b1∇lP ar uauruk+

2(a′2gkl + b′2ukul)Ppru
pur + b2u

r (Pkrul + Plruk) ,

(LιPG) (∂vk , ∂
v
l ) = a1 (Pkl + Plk) + b1 [up (Pkp + Ppk)ul + up (Plp + Ppl)uk] +

2(a′1gkl + b′1ukul)Ppru
pur.

Proof. The Proposition follows from ([9] or [10], equations 6, 7 and 8), where we

have Ha = 0, V a = urP ar , ∂
v
kV

a = P ak , ∂
h
kV

a = up
(
∂kP

a
p − ΓtpkP

a
t

)
and ∂hkV

a +

V rΓakr = up∇kP ap . �

Hence we easily get

Proposition 5.5. Let P be a skew-symmetric (0,2)-tensor field on (M, g). Then its
ι - lift ιP = urP ar ∂

v
a to (TM,G) with non-degenerate g− natural metric G satisfies

(LιPG)
(
∂hk , ∂

h
l

)
= a2 (ur∇kPlr + ur∇lPkr) +B (urPkrul + urPlruk) ,

(LιPG)
(
∂vk , ∂

h
l

)
= a2Plk + b2u

rPlruk + a1u
r∇lPkr,
(LιPG) (∂vk , ∂

v
l ) = 0.

5.3.1. ιC [X]. Put C [X] =
((
C [X]

)h
k

)
=
(
−ghr (LXg)rk

)
=
(
−
(
∇hXk +∇kXh

))
on (M, g). Then its ι-lift ιC [X] =

(
0, uk

(
C [X]

)h
k

)
=
(
0, −uk

(
∇hXk +∇kXh

))
is

a vertical vector field on TM. In adapted coordinates
(
∂vk , ∂

h
l

)
we have

ιC [X] = −uk
(
∇hXk +∇kXh

)
∂vh.
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Applying ([9] or [10], equations 6, 7 and 8) , we easily get

(LιC[X]G)
(
∂hk , ∂

h
l

)
=

− a2u
p [∇k∇lXp +∇l∇kXp +∇k∇pXl +∇l∇pXk]−

2b2u
puq [∇k∇pXqul +∇l∇pXquk]− 4 (A′gkl +B′ukul)u

puq∇pXq−
Bup [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk] ,

(LιC[X]G)
(
∂vk , ∂

h
l

)
=

− a2 (∇kXl +∇lXk)− b2up [2 (∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk]−
a1u

p (∇l∇kXp +∇l∇pXk)− 2b1u
puq∇l∇pXquk−
4 (a′2gkl + b′2ukul)u

puq∇pXq,

(LιC[X]G) (∂vk , ∂
v
l ) =

− 2a1 (∇kXl +∇lXk)− 2b1u
p [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk]−

4 (a′1gkl + b′1ukul)u
puq∇pXq.

5.3.2. Complete lift XC of X to (TM, G). We have XC = (Xr∂r)
C = Xr∂r +

∂Xrδr = Xr∂hr + up∇pXr∂vr . Making use of ([9] or [10], equations 6, 7 and 8) we
obtain

(LXCG)
(
∂hk , ∂

h
l

)
=

a2u
p [∇k∇pXl +XrRrkpl +∇l∇pXk +XrRrlpk] +

b2u
puq [(∇k∇pXq +XrRrkpq)ul + (∇l∇pXq +XrRrlpq)uk] +

A (∇kXl +∇lXk) +Bup [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk] +

2 (A′gkl +B′ukul)u
puq∇pXq,

(LXCG)
(
∂vk , ∂

h
l

)
=

a1u
p [∇l∇pXk +XrRrlpk] + a2 (∇kXl +∇lXk) +

b2u
p [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk] +

b1u
puq (∇l∇pXq +XrRrlpq)uk + 2 (a′2gkl + b′2ukul)u

puq∇pXq,

(LXCG) (∂vk , ∂
v
l ) =

a1 (∇kXl +∇lXk) + b1u
p [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk] +

2 (a′1gkl + b′1ukul)u
puq∇pXq.

5.3.3. ιC [X] +XC for an infinitesimal affine transformation. Suppose that X is an
infinitesimal affine transformation on M. Then by (2.2) and the definition

∇k∇lXp +∇k∇pXl = ∇k∇lXp +XrRrklp +∇k∇pXl +XrRrkpl = 0

and
upuq∇k∇pXq = −upuqXrRrkpq = 0.

Therefore, applying results of previous subsections, we find(
LιC[X]+XCG

) (
∂hk , ∂

h
l

)
= A (∇kXl +∇lXk)− 2 (A′gkl +B′ukul)u

puq∇pXq,
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LιC[X]+XCG

) (
∂vk , ∂

h
l

)
=

− 2 (a′2gkl + b′2ukul)u
puq∇pXq − b2up (∇kXp +∇pXk)ul,

(
LιC[X]+XCG

)
(∂vk , ∂

v
l ) = −a1 (∇kXl +∇lXk)−

b1u
p [(∇kXp +∇pXk)ul + (∇lXp +∇pXl)uk]− 2 (a′1gkl + b′1ukul)u

puq∇pXq.

6. Appendix

A (0, 4) tensor B on a manifold M is said to be a generalized curvature tensor if

B(V,X, Y, Z) +B(V, Y, Z,X) +B(V,Z,X, Y ) = 0

and

B(V,X, Y, Z) = −B(X,V, Y, Z), B(V,X, Y, Z) = B(Y,Z, V,X)

for all vector fields V, X, Y, Z on M ([16]).
For a (0, k) tensor T, k ≥ 1, we define

(R · T )(X1, ..., Xk;X,Y ) = ∇Y∇XT (X1, ..., Xk)−∇X∇Y T (X1, ..., Xk).

For more details see for example ([6]) or ([11]).
The Kulkarni-Nomizu product of symmetric (0, 2) tensors A and B is given by

(A ∧B) (U,X, Y, V ) =

A(X,Y )B(U, V )−A(X,V )B(U, Y ) +A(U, V )B(X,Y )−A(U, Y )B(X,V ).

Theorem 6.1. [12] Let (M, g) be a semi-Riemannian manifold with metric g,
dimM > 2. Let gX be a 1-form associated to g, i.e. gX(Y ) = g(Y,X) for any
vector field Y.

If B is generalized curvature tensor having the property R · B = 0 and P is a
one-form on M satisfying

(6.1) (R · V ) (X;Y, Z) = (P ∧ gX) (Y,Z) ,

for some 1-form V, then

P

(
B − TrB

2n(n− 1)
g ∧ g

)
= 0.

If A is a symmetric (0, 2)-tensor on M having the properties R ·A = 0 and (6.1)
then

P

(
A− TrA

n
g

)
= 0.

Lemma 6.1. [19] Let Al, Bhk where l, h, k = 1, ..., n be numbers satisfying

Bhk = Bkh, AlBhk +AhBkl +AkBlh = 0.

Then either Al = 0 for all l or Bhk = 0 for all h, k.
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