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ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE
WITH ¢g— NATURAL METRIC.
PART II

STANISLAW EWERT-KRZEMIENIEWSKI

(Communicated by Kazim ILARSLAN)

ABSTRACT. The tangent bundle of a Riemannian manifold (M, g) with non-
degenerate g— natural metric G that admits a Killing vector field decomposes
into four classes. Properties of these classes are investigated. A complete
structure of the Lie algebra of Killing vector fields for some subclasses is given.

1. INTRODUCTION

In the first part of the paper (][9], see also [10]) we have developed the method
by Tanno ([18]) to investigate Killing vector fields on TM with an arbitrary, non-
degenerate g— natural metric. The method applied Taylor’s formula to components
of the vector field that was supposed to be an infinitesimal isometry. It is known
that an infinitesimal affine transformation, in particular an infinitesimal isometry,
is determined by the values of its components and their first partial derivatives at a
point ([14], p. 232). It appears by applying the Taylor’s formula there are at most
four generators of the infinitesimal isometry: two vectors and two tensors of type
(1,1).

We have proved the following

Theorem 1.1. (9], [10]) Let (T'M, G) be a tangent bundle of a Riemannian mani-
fold (M, g), dimM > 2, with g— natural non-degenerate metric G. Let Z be a Killing
vector field on TM with its Taylor series expansion around a point (x,0) € TM
given by (3.2) and (3.3). Then for each such a point there exists a neighbourhood
UCM, xeU, that one of the following cases occurs:

(1) 2bas — a1bs # 0. Then

ViXi +ViX, = 0, ViV +V Y, =0,
Pyu+Pr = 0, Kp+ Ky =0.
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(2) 2bas — a1be = 0 and either ajasbs # 0 or ag # 0 and by = 0. Then
(1.3) Pu+ P +2(Vi X0 +ViXg) = 0,
(1.4) ag (Vi1 + ViYy) + A(VeX; + Vi Xy) = 0,
(1.5) as (Kkl + Klk) —ai (Vle + Vle) = 0.
(3) agby #0 and a3 =by —a) =0. Then
(1.6) Pkl-i-Plk-‘r-Q(Vle—l—lek) = 0,
(1.7) az (ViYi + ViYi) + A (VX + ViXy,) = 0,
(1.8) Ky + Ky, =
(4) ag =bgy =0. Then
(1.9) ViX, +ViXp =0, Puy+Ppr=0 AKy+a;V,Yy =0.

In the above theorem we have put a; = aj(r2)‘(z,0)eTM, b, = bj(r2)|($’0)eTM,
ay = a;.(r2)|(l.,o)eTM, A=a;+a3zand b=0b; —aj.

Above theorem splits (T'M, G) into four classes. In section 4 of the paper for each
such class further properties are proved separately. Some restrictions on a number
of generators are found (cf. for example 3.5 and Corollary after it). Moreover,
a complete structure of Killing vector fields on T'M for some subclasses is given
(Theorems 4.3 and 4.7). In the next section some classical lifts of some tensor fields
from (M, g) to (TM,G) are discussed.

Finally, in the Appendix we collect some known facts and theorems that we use
throughout the paper.

Throughout the paper all manifolds under consideration are smooth and Haus-
dorff ones. The metric g of the base manifold M is always assumed to be Riemann-
ian one.

The computations in local coordinates were partially carried out and checked
using MathTensor™ and Mathematica software.

2. PRELIMINARIES

2.1. Conventions and basic formulas. Let (M,g) be a pseudo-Riemannian
manifold of dimension n with metric g. The Riemann curvature tensor R is de-
fined by

R(X,Y)=VxVy —VyVx —Vixy]

In a local coordinate neighbourhood (U, (z?, ...,2™)) its components are given by

R(a'waj)ak = R(aiu aja 8]6) = RZ]'La’P =
(0% — 0,0, + T T5, — T5.I5) Oy,

is— jk js* ik

where 9, = % and I'}; are the Christoffel symbols of the Levi-Civita connection
V. We have

019k = ik = Uygrk + Tiygrn-
The Ricci identity is
(2.1) ViViXi — ViV Xy = X ji — Xiij = —X° R
The Lie derivative of a metric tensor g is given by

(Lxg)(Y,Z)=9(VyX,Z) +g(Y,VzX)
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for all vector fields X, Y, Z on M. In local coordinates (U, (z?,...,2™)) we get
(LXT{)Tg)ij = vin + va’iv

where X = g1 X".
We shall need the following properties of the Lie derivative

(22) LX]-—‘Z = VjVZ-Xh + XTRrjisgs}l =

1
59]” V; (Lxgir) +Vi(Lxgjr) — V. (Lxgji)] -

If L Xl“?i = 0, then X is said to be an infinitesimal affine transformation.
The vector field X is said to be the Killing vector field or infinitesimal isometry
if Lxg =0, ([20], p. 23 and 24).

2.2. Tangent bundle. Let x be a point of a Riemannian manifold (M, g), dimM =
n, covered by coordinate neighbourhoods (U, (27)), j = 1,...,n. Let TM be tan-
gent bundle of M and 7 : TM — M be a natural projection on M. If x € U
and v = UT%‘I € T, M, then (x=Y(U), ((z"), (u")), r = 1,...,n, is a coordinate
neighbourhood on T'M.

For all (z,u) € TM we denote by V(, ,)T'M the kernel of the differential at (z, )
of the projection 7 : TM — M, i.e.,

Vv(l,u)TM = Ker (d7l’|(1,u)) y

which is called the vertical subspace of T(,, ., T'M at (z,u).

To define the horizontal subspace of T(, ., TM at (z,u), let V. C M and W C
T, M be open neighbourhoods of z and 0 respectively, diffeomorphic under expo-
nential mapping exp, : ToM — M. Furthermore, let S : 7= (V) — T, M be
a smooth mapping that translates every vector Z € 7—1(V) from the point y to
the point z in a parallel manner along the unique geodesic connecting y and =z.
Finally, for a given uw € T, M, let R_,, : T, M — T, M be a translation by wu, i.e.
R_,(X,) = X, — u. The connection map

K($7u) : T(x7u)TM — T, M
of the Levi-Civita connection V is given by
K(:E,u)(Z) = d(expp oR_4 o0 S)(Z)

for any Z € T(; )T M.
For any smooth vector field Z : M — TM and X, € T, M we have

K(dZ,(X2)) = (VxZ), -

Then H, .\ TM = Ker(K(,,y)) is called the horizontal subspace of T(, .,T'M at
(z,u).
The space T(,,,)T'M tangent to TM at (x,u) splits into direct sum

T(LU)TM = H(LU)TM () V(LU)TM.
We have isomorphisms
HpuyTM ~ T, M ~ Vi ) TM.

For any vector X € T, M there exist the unique vectors: X" given by dr(X") =
X and X" given for any function f on M by X?(df) = Xf. The vectors X" and
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X7 are called respectively the horizontal and the vertical lifts of X to the point
(x,u) e TM.

The vertical lift of a vector field X on M is a unique vector field X on T'M
such that at each point (z,u) € TM its value is a vertical lift of X, to the point
(z,u). The horizontal lift of a vector field is defined similarly.

If ((#7), (w)),i=1,...,n, is a local coordinate system around the point (x,u) €
TM where u € T, M and X = Xj%, then

.0 .0 .0
X=X — —u' XTI, —, X'=X _—
o5 " " Oud’ oud’
where T'J are Christoffel symbols of the Levi-Civita connection V on (M, g). We
shall write 9y = 32¢ and & = 5%. Cf. [8] or [13]. See also [21].

In the paper we shall frequently use the frame (9@',07) = ((%)h, (%)v)
known as the adapted frame.

Every metric g on M defines a family of metrics on T'M. Between them a class of
so called g— natural metrics is of special interest. The well-known Cheeger-Gromoll
and Sasaki metrics are special cases of the g— natural metrics ([15]).

Lemma 2.1. ([4], [5]) Let (M, g) be a Riemannian manifold and G be a g— natural
metric on TM. There exist functions a;, b; :< 0,00) — R, j = 1,2,3, such that
for every X, Y, ue T, M

= (a1 +a3)(r?) g (X, Y) + (b1 + b3) (r*) g2 (X, ) go (Y, w),
= ax(r?)ge(X,Y) + 02(r) g2 (X, 0) g0 (Y, w),
a(r%)gu (X, Y) + b2 (1) g2 (X, 1) g2 (Y, w),
= a1(r?)g.(X,Y) + b1(r*) g, (X, u)ga (Y, w),
where r? = g, (u,u). For dim M =1 the same holds for b; =0, j =1,2,3.

L
B
£
=
S >
<
>
~— N~— S~—
Il

Following ([4]) we put
(1) a(t) = a1(t) (a1 (t) + as(t)) — a3 (1),
(2) Fj(t) = a;j(t) +tb;(t),
(3) F(t) = Fu(t) [Fi(t) + F3(t)] — F3(t)
for all t €< 0,00).
We shall often abbreviate: A = aj + ag, B = by + bs.

Lemma 2.2. ([4], Proposition 2.7) The necessary and sufficient conditions for a
g— natural metric G on the tangent bundle of a Riemannian manifold (M, g) to be
non-degenerate are a(t) # 0 and F(t) # 0 for allt €< 0,00). If dim M =1 this is
equivalent to a(t) # 0 for all t €< 0,00).

For a general overview on g— natural metric we refer the reader to ([1]), ([2]).
The components of the Levi-Civita connection of an arbitrary, non-degenerate g—
natural metric G are calculated in ([7]). They are the same as in the Riemannian
case ([1], p. 112-113).

3. TAYLOR’S FORMULA FOR KILLING VECTOR FIELD AND COEFFICIENTS

Suppose now that

Z =200 + 2%0 = Z°0F + (2% + Z°u'T%,)05 = HO! + V°0p,
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is a vector field on T'M. Throughout the paper the following hypothesis will be
used:

(3.1) (M, g) is a Riemannian manifold of dimension n with metric g, H
covered by the coordinate system (U, (z")).
(T'M,G) is the tangent bundle of M with g — natural non-
degenerate metric G, covered by a coordinate system
(z=1(U), (z",u*)), r, s run through the range {1,...,n}.
Z is a Killing vector field on T'M with local components (Z", 25)
with respect to the local base (0, ds).

Let
(32) H*=Z7Z°=2Z%z,u)=

1 1
X + Kaup + 2E§qupuq + S'F;qrupuqu + qursupuqurus 4. ,

(3.3) Z%=Z%z,u) =

Yo+ P“up + Q“ uPu? + S“ uPulu” + V“ wPuluu® + - - -

31~ par 41 ' pars

be expansions of the components Z% and Z9 by Taylor’s formula in a neighbourhood
of a point (x,0) € TM. For each index a the coeflicients are values of partial
derivatives of Z% and Z¢ respectively, taken at a point (z,0) and therefore are
symmetric in all lower indices. For simplicity we have omitted the remainders.

Lemma 3.1. ([18]) The quantities
X = (X*(@) = (2°(,0)), ¥ = (V" (@) = (Z°(@,0)),
K = (Kg (¢) = (6,2° (2,0)), Ez(qu< ) = (8,0,2° (2.0)).
P= (P ((5 Z“) 2,0) — 8, (2° (33,0)))

are tensor fields M.
We shall often use the following definitions and abbreviations:
Sy, =Py +VpX*,  Skp=Sp9ak: Pk = Py gal,
Ky = Kjgal,  Ekpg = Erkgp = EpgGak,  Tikp = Tipals
Mpqr = Tpgr + Tyrp + Trpg-
Moreover, for any (0,2) tensor T we put
Tab = Tap + Toay  Tap = Tup — Tpa-

Lemmas 3.2-3.9 were proved in ([9], see also [10]). Hereafter, and unless otherwise
specified, all the coefficients aj, b;, af, b}, A, A’, B, B',... are considered to be
constants, equal to the values at 0 of the corresponding functions.
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Lemma 3.2. Under hypothesis (3.1) at a point (x,0) € TM we have:
a1Tikp + a2 By = ay Yigip — Yigip — Ypgr1) — b1YiGkp,

1
(3.4)  AEup + asTipp + ay(grYp + 9pYe) + 552(29kpyz + 91p Y + grYp) = 0.
If a # 0, then

(3.5)  aEpm = (azby — arby — a2a})gemYi—

1
§(a1b2 — 2aza} + 2a105)(gimYi + 916 Ym),

1
(36) alipm = (Aa’l +agby — Ab1)gkal + 5(&2()2 - QAGII + 2a2a'2)(glek +glkYm);

(3.7) aMipm = [2a2(by + a5) — A(by + @) (gem Y + gixYm + gmi Vi)
Moreover,
(3.8) as [Vk (lep + Vle) +V; (VkXp + VpXk) — Vp (Vle + Vle)] +

ay (ViViY, + ViViY,) = 2A'guY, + B (Yegp + Yigrp) ,

(3.9) a(ViKiyp + ViKyy) + (a2ba + 2a1 A" — 2a205)Y,gr1+

1

5(—02572 + 2a1 B + 2a2a5) (Y gip + Yigrp) = 0.
Lemma 3.3. Under hypothesis (3.1) we have

(3.10) 2V Kgm = aiY" Rymi — a1 Bgem Y1+
(—a1B + asby — 2a2a5)gim Vi + (—azby — 2a1 A’ + 2a2a5)gr1Yom,

(3.11) 2a(ViSkm — X "Ritkem) + a1a2Y" Rypmmis — a2 Bgim Y1+
[—azB + A (by — 2a5)] gim Vi + [~2a2A" — A (by — 2a5)] gri Yy = 0
at the point.
Lemma 3.4. Under hypothesis (3.1) suppose dim M > 2. Then on M x {0}
T = T, = 2(by — ay) Sk + b2 Ky = 0,

a2 Fiapk + a1 Wiapk + %b2 (f{klgab + Kyigar + Kagok + Fakal) +
biguiSak + a4 (k1S ab + garSpr) = 0.
Lemma 3.5. Under hypothesis (3.1) suppose dim M > 1. Then
(n—1)8Y; = 0
on M x {0} holds, where
B =2A(b3 — ai? — arb)) + (a1by — 2a2by ) (3by + 2a%) + 2as [2a] (by + ab) + asb}] .

Corollary 3.1. For the Cheeger-Gromoll metric g°¢ on TM, the vector field Y
vanishes everywhere on M.
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Lemma 3.6. Under hypothesis (3.1) the identities

3AFlkmn + 3a2Wlkmn + B (gklfmn + glmfkn + glnfkm) +
(bl - all) (Yn,lgkm + Ym,lgkn + Yk,lgmn) +
2(b2 + a/2) (gklgmn + glmgkn + glngkm) +

2b2 [gkm (Xn,l + Sln) + Gkn (Xm,l + Slm) + Imn (Xk,l + Slk)] =0

and

(312) B [gkl (Kmn - 2Knm) + 9im (Kkn + Knk) + gin (Kmk - 2Kkm)] +
2(b1 - a/1) (2Ym,lgkn — Yp19km — Yk,lgmn) + 3aq (K;,ermk + K]Zermn) +
b2 [291677. (Xm,l + Slm) — Gkm (Xn,l + Sln) — mn (Xk,l + Slk)] +
(bQ - 2&’2) (29lm§kn - glngkm - gklgmn) .
are satisfied at a point (x,0) € TM.

Lemma 3.7. Under hypothesis (3.1) relation

(3~13) 3az [E{:c (Rpkal + Rfak) + Eapc (Rpkbl + bek) + Egb (Rpkcl + Rfck)] +
6A" gri(Tave + Toca + Teab) + GoeKkat + GeaKrbi + gab Krer+
9eiLavk + garLvck + gviLcak + GekLavt + GakLver + gokLcar = 0

holds on M x {0}, where

(3.14) Ky = Kiar =
— 2by (Ska + Siak + Xag + Xaak) — (b1 — a) Yarr + Yair),

(3.15) Lapk = Lpak = 2BK ap o + 3BTkap + (ba — 2a5)Sapr + 3B’ (gkaYs + gkvYa)-

Lemma 3.8. Under hypothesis (3.1) suppose dim M > 2. Then the relation

a1 [2E3, Ryier — Efy Rptac + Ef Rplak — By Rpive + B Rpipe] +
B[(Eckb — Eket) gat + (Ecak — Ekac) goi+
(Eabk + Evak) get — (Eabe + Evac) gra] +
(b1 — a}) [ViSeegak — ViSprgac) +

~ 3 1 3 1
bo [Vlchgab + Gak (2V1Kbc + 2V1ch> — Gac (2V1Kbk + 2V1Kkb>] +

ba (ViKacgok — ViKargye) +
(b — 2a5) (Mapkger — Mabegri) + b2 [90kTiac — GocTiak + GakTive — JacTivr) +
205 [(gvk et — Gvegt) Ya + (9andel — Gacgrt) Yo+
(9argok + gargvr) Ye — (Gargve + Gacgnr) Y] = 0

holds on M x {0}.
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Lemma 3.9. Under hypothesis (3.1) relations

3
(3.16) A, = (30,13 - agbg)kam + (—2a2b1 + ialbg + 2a2a’1 — 3a1a’2)VkYm+
GQB(Kk;m — QKmk) + (30,13 — 2a9by + QaQaQ)Skm—i—
(—agbg + 2a2a'2)5mk =0,

Fii 4+ Bi = 2a0b2(Lx g)i + (4dasby — 3a1be — 4aza’)(Ly g)r+
2 (3agby + 3a1 A’ — 4asal) Sy + 2a2 BK ;= 0.
hold at a point (x,0) € T M, where
Foun = 202 BK y + 2(2a0by + 3a1 A’ — 4a20%) S,
B = 2a2b2(Lxg)x; + (4agby — 3a1by — 4azay)(Ly g)r + 2a2b2Sk.

4. CLASSIFICATION

4.1. Case 1. In this section we study relations between Y component of the Killing
vector field on T'M and the base manifold M (Theorems 4.1, 4.2). Various condi-
tions for Y to be non-zero and relations between X, Y, P, K are proved. Moreover,
Theorem 4.3 establishes isomorphism between algebras of Killing vector fields on
M and T M for a large subclass of non-degenerate g— natural metrics.

Lemma 4.1. Under hypothesis (3.1) suppose dim M > 2 and 2(b; —a))ag—a1by # 0
at a point (x,0) € TM. Then

(4.1) (B+ AY, =0,

(4.2) 20V K = [2a1 A" + az(bs — 2a5)] (gim Y — g Yim),
(4.3) 24V P = — [2as A" + A(by — 205)] (gimYi — g Yin),
(4.4) a1V ViV = A (g Y — 9mi Y1),

(4.5) a1Y" Regim = A'(gem Y1 — graYm)

hold at the point.

Proof. First suppose a; # 0. Symmetrizing (3.10) in (k,m), making use of the
skew-symmetricity of K, then alternating in (k,!) and applying the first Bianchi
identity, we get

(46) 3CL1YTRkal + (B - QA/)(glek- - gkm}/}) = O

Applying the last identity to (3.10) we find

6aV 1 Kim + 2a1(B + A)grm Y1 + 3[2a1 A’ + az(by — 2a5)] gi Yo+
[2a1(2B — A") — 3az(by — 2a5)] gim Yr = 0,

whence, symmetrizing in (k,m), we obtain (4.1) and, consequently, (4.2).

Suppose now a; = 0. Substituting in (3.10) we easily state that (4.2) remains
true. On the other hand, substituting a; = 0 into (3.11) and symmetrizing in (k, m)
we get

202 Bgm Y1 + a2(B + 24") (gim Vi + girYm) = 0,
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whence, by contractions with ¢*™ and ¢'™, we obtain
(4.7) BY, = 0 and A'Y; = 0

respectively since as # 0 must hold. Thus (4.1) holds good.

Since X is a Killing vector field, (3.11), (2.2), (4.1) and (4.6) in the case a; # 0
and (3.11) and (4.7) as well in the case a; = 0 yield (4.3).

Differentiating covariantly (equation I, [9] ) and using just obtained identities,
we get (4.4). Finally, alternating (4.4) in (I,m), by the use of the Ricci identity
(2.1), we obtain (4.5). This completes the proof. O

From (4.5) and Theorem 6.1 by Grycak we infer

Theorem 4.1. Under hypothesis (3.1) suppose dim M > 2 and 2(by—a})az—a1bs #
0 on the set M x {0} C TM. If the vector field %Y“@a does not vanish on a dense
subset of M and M is semisymmetric, i.e. R- R =0, (resp. the Ricci tensor S is
semisymmetric, i.e. R-S =0), then M is a space of constant curvature, (resp. M
is an Einstein manifold).

Theorem 4.2. Under hypothesis (3.1) suppose dim M > 2 and 2(by—a})az—a1bs #
0 at a point (x,0) € TM. Then the Y component of the Killing vector field on T M
satisfies

B
(48) Sly [alR + Eg A g:l =0

on M.

Proof. Suppose a; # 0. By (1.1) and (1.2) we have S,;, = 0. Applying this and
(1.2), (4.1), (4.2) and (4.7) to Lemma 3.8, after long computations we obtain
(4.9)  S13(RpickYa + RaickYs) + (Roiak + Raivk) Yo — (Rbiac + Raive) Y] +
Sa9ab (gr1Ye — geYi) + S5 [(9argok + garger) Ye — (gargbe + Gacg) Y] +
Sy [(gorget — gvegr)Ya + (Gakgel — Gacgr)Ys]) = 0,

where
Sl = a1 [2@2@’1 — aq (bg + 2&’2)} s

52 =-2 [b2 (—Ab1 + 3&21)2 + 5a1A/ - A(lll - 4a2a'2) + 2b1 (AG/Q — GQA/) +
2(a1 A" + Ady — 2aza9/)ay) =
— 2[by (—Aby + 3 (agby + a1 A" — Ady) + 2a’) + 2b1(Aal — ax A") + 2d’ab],

S3 = —3a1by A" — 2Abyay + 2a2A’a) + dasabby — 2a1 A'al + 4ably =
24" (aza) — arah) — ba(2a’ + a1 A’) + 4abl,

Sy = by (—2Ab1 + 6agby + 70,114/ — 4Aa'1 — 4&2@’2) — 4a2b1A' + 2a2A'a’1—|—
as (4Aby + 2a1 A’ + 4Aa) — 8azal) + 4abl

and
So—8S34+54=0
identically.
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Symmetrizing (4.9) in (a,b,l) we get
(S2 +2553) [(gargok + Gargiv + Gavgr) Ye — (Jaigoe + Jac9iv + gavger) Y] = 0,

whence, by contraction with g* g%, we find (n — 1)(n +2)(Ss +2S53)Y. = 0. There-
fore, symmetrizing (4.9) in (a,b,c) and using the last result, we obtain

YoTyert + YoTear + YeTuprt = 0,

where
Toert = Tevkt = Thipe =

1
251 (Roket + Roter) — (93 + S4) | goegri — 5(91)1901« + gokget) | -

Hence, by the use of the Walker’s Lemma 6.1, we get
(4.10) Y. Tyert = 0.
Alternating (4.10) in (I, ¢) and applying the Bianchi identity we obtain
Y, [4S1 Ryker + (S5 + S4) (gb1gke — Goegr)] = 0.
Transvecting the last equation with Y°, by the use of (4.7), we easily get
[4BSy + a1(S3 4+ S4)] Y, =0,

whence (4.8) results.
On the other hand, from the proof of Lemma 4.1 it follows that a;(0) = 0 implies
B(0)Y, = 0. Thus, by continuity, (4.8) holds good on M. O

Corollary 4.1. Under assumptions of the above theorem we have on M :
(SQ + 253) Y = 0ifa; #0,
[4351 + al(Sg + 54)] Y = 0.

Notice that multiplying the first equation by a1 and adding to the second one we
obtain

ay (baa’ — 2aby)Y = 0.
Lemma 4.2. Under hypothesis (3.1) suppose dim M > 2 and 2(b; —a))ag—a1by # 0
at a point (x,0) € TM.
If ayag # 0, then
3 /
(411) Akm = 202 (bl — al) — ial (b2 — 2(12) Yk,m+

(3(11B — azbg) Pkm + 3a2BKkm =0.
If as = 0 and a1by # 0 then

1 1
(412) gAan == _§a1 (b2 - 2a/2) Yk,m —+ alBPk’m =0.
If a; =0 and (by — a})az # 0 then
(4.13) (n+1)BKpn — bo Py +2(b1 — a}) Y, = 0,

(4.14) 3BK, — (n — )b Py, + 2(n— 1) (by — a'l)Ylm =
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Proof. If ayas # 0, we apply (1.1) and (1.2) to (3.16) to obtain (4.11).

If as = 0 but a; # 0, then also there must be by # 0. Substituting as = 0 into
(3.16) and applying (1.1) and (1.2) we get (4.12).

Finally, the last two identities one obtains substituting a; = 0 into (3.12), con-
tracting with ¢*™ and ¢'™ and making use of (1.1) and (1.2). O

Taking into account (4.13) and (4.14) together with the equation (equation 11,
[9] ) which, in virtue of (1.1), writes
AKkm + a2pkm - alyk,m =0
we find that B # 0 implies P = K = VY = 0 on M. We conclude with the following

Theorem 4.3. Let TM, dimTM > 4, be endowed with a non-degenerate g— natu-
ral metric G, such that a1 =0, (by —a})ag #0 and B#0 on M x {0} C TM. Let
V' be an open subset of TM such that M x {0} C V. If Vadmits a Killing vector
field, then it is a complete lift of a Killing vector field on M. Consequently, Lie
algebras of Killing vector fields on M and V. C TM are isomorphic.

Besides, for B = 0, we have

Theorem 4.4. Let TM, dimTM > 4, be endowed with a non-degenerate g— nat-
ural metric G, such that ap = 0, (by —aj)as # 0 and B =0 on M x {0} C TM.
Then

aP + AK = 0,
bQP — 2(b1 - a’l)VY =
hold on M x {0} C TM.

Hence, for B =0, A # 0 and by # 0, a theorem similar to the former one can be
deduced.
The next theorem gives further restrictions on the vector Y to be non-zero.

Theorem 4.5. Under hypothesis (3.1) suppose dim M > 2 and 2(by—a})az—a1bs #
0 at a point (x,0) € TM. If a1 # 0, then the Y component of the Killing vector
field on TM satisfies

Q2Y = {a1by [A(by — 2a}) — 2a9B] — 4aB(by —a}))} Y =0,
B'Y =0,
B lajag (by + 2a4) — 2Aaya)) + aa}] Y = 0.

Proof. We apply Lemma 3.7. By the use of (1.1), (1.2), (4.1) - (4.4) and (3.6) the
components of the tensors K and L defined by (3.14) and (3.15) can be written as

[aB(bl — a’l) + 2a1a9Bby — Aalbg(bg — 2a’2)]
aay

Kra =

(29klya - gk:ale - glaYk)7

Loy = 3BTiap + 3B (901 Ya + guYs) =

B[A(by —a)) — azb
,3 [A(b1 aal) a22}gab)/l+

3[B(a2bs — 2Ad} + 2a2a%) + 2aB’)
2a

(9t Yy + g Ya) -
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Substituting into (3.13) and applying (3.5), (3.7) and (4.7) we get

(4.15) Q1 [(Roket + Rotck) Yo + (Rekal + Retak) Yo + (Rakbr + Rapk) Ye] +
Q2 [(9arge + gvigea + geigav) Yi + (Gakgoe + gorgea + gergab) Y1) +
Q39k1 (9oeYa + Gea Yo + gabYe) +
Q4 [(g019ke + gorgic) Ya + (gerGra + ger9ia) Yo + (gargrp + gargin) Ye] = 0,

where
0 3ag (a1by — 2aqa] + 2a1ab)
1=— )
a
Q2 _ [albg(A(bl — a’l) — QBGQ) — 4aB(b1 — a’l))]7
aay
Qs = 24aB(b1 —a}) — a1 [A(by — 2a}y) + B(azbs — 6Aa) + 6a2a})]
aay ’
0 3 [B (agby — 2Ad} + 2azah) + 2aB’]
4 = .
a
Contracting (4.15) with g?°, by the use of (4.7), we get
4B
(116) gur (258 4 (0420 + 204 ) Ve - 200 RuYor

2B
( a?l +(n+2)Q2 + 2@4) (9 Yr + greYr) = 0.
Symmetrizing in (¢, k,1) we obtain
TeYe +TiYr + Ter Y = 0,
where
(4.17) Tr = Tk = gra [(n 4 2) (2Q2 + Q3) + 6Q4] — 2Q1 Ry

Then the Walker lemma yields Tj; = 0 or Y. = 0. Subtracting (4.17) from (4.16)
and contracting with ¢*' we get

(4.18) far (1 -+ 2)Qs +2Qu) + 2BQ,] Y, = 0.
In the same way, by contraction of (4.15) with ¢, we find
(4.19) {0k [(n +5)Q2 +3Q3 + 2(n + 2)Qu] + 2Q1 Rpr } Yo =0
and
(4.20) [a1 ((n+3) Q2 + Q3) — 2BQ1] Y = 0.
At last, by contraction of (4.15) with g*, we obtain
(4.21) [gbe (2Q2 +nQ3 + 2Q4) — 2Q1 Rpe] Yo = 0.

Eliminating the Ricci tensor between (4.17), (4.21) and (4.19) we find
B(n+3)Q2 + (n+5)(@s +2Q4)] Ye = 0,

(0 + 1)@ + 203 +2Q4] Y, = 0.

The system consisting of (4.18), (4.20) and the above two equations is undetermined
and equivalent to Y =0 or Q2 = 0 and 2BQ1 +a1(Q3 = 0 and Q3+ 2Q4 = 0. Hence
2Q2 + Qg + 2Q4 yields the second identity, while al(Qg + 2Q4) — (2BQ1 + ang)
gives the third one. O
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Remark 4.1. From (4.15) one can deduce the identity
B
Q1Y |a1 R+ gg/\g =0.

4.2. Case 2. The next theorem partially improves the result of Tanno ([17]) con-
cerned with Killing vector field on (7'M, g¢), where the complete lift g¢ of g is a
g— natural metric with as = 1, all others being zero. (In Tanno’s paper the Killing
vector on (TM, g) is of the form (O] + XC 4+ V¥ + (4" P!)0F, where Y and P
satisfy some additional conditions). Furthermore, we prove in the section some
sufficient conditions for X and Y to be either infinitesimal affine transformation or
infinitesimal isometry.

Theorem 4.6. Let X be an infinitesimal affine vector field on some open U C M.
If

as = const # 0, by = const, all others equal 0
on =Y U) € TM, then 1CX] + X is a Killing vector field on 7= *(U).

Proof. 1t follows from the results of subsection 5.3.3. O

Lemma 4.3. Under hypothesis (3.1) suppose dim M > 2 and 2(b; —a))ag—a1bo =0
at a point (x,0) € TM. Moreover, let either ajasby # 0 or az # 0, ba = 0,
by —a} =0. Then

1
(a1 B — 2azby — 3a1 A’ + 4azal) [(Lxg) — nTr(LXg)g} =0,

1
oaltr ~ ab) | (Lyg) = 2Tr(Era)g] =0
at lay (Lyg) + A" (Lxg)] = 0,
[a1 (B — SA/) + A(bl — (1/1) - 2(12(()2 — 2&’2)} (Lxg) =0.
Proof. First consider the case ajagby # 0. By the use of (1.3) - (1.5) and the equality
a1by = 2a3(b; — o)) Lemma 3.9 yields
F = 2(a1 B — 2a3by — 3a1 A’ + 4azay)(Lxg),
B = —2a3(b1 — a})(Ly9),

whence, by ([9], Lemma 19 or [10], Lemma 54), the first two equalities result.
Moreover, by Lemma 3.9 we have

(4.22) F4+ B = —2as(by — a})(Lyg) +2(a1 B — 2asbs — 3a1 A" + 4azal)(Lx g) = 0,

and

Ay, = 3a2BKj + (3a1B — agbs) Pip + (a1 B — 2a2a5)(Lx g)km~+
[as (b1 — a}) — 3a1ay] Vi Y, = 0.

Symmetrizing in (k, m) and transforming the obtained equation in the same manner
as before we find

(4.23) [az (b1 — a}) — 3a1ab) (Lyg) — (a1 B — 2asby + 4asay)(Lxg) = 0.

Now from (4.22) and (4.23) we easily deduce the third equality. Finally, the last
one is obtained by applying (1.4) to (4.22).

The proof of the second case can be obtained in the same way. The statements
differ only in that by = 0. (]
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Corollary 4.2. If aj(agA’ — abA) #0, then Lxg = 0.

4.3. Case 3. The main result of the section establishes isomorphism between al-
gebras of Killing vector fields on M and T'M for a large subclass of g— metrics
(Theorem 4.7). Furthermore, conditions for ¥ to be non-zero are proved.

Lemma 4.4. Under hypothesis (3.1) suppose that dimM > 2 and the following
conditions on aj;, b; at a point (x,0) € M are satisfied: a1 = 0, by = a, az # 0,
ba # 0. Then the relations

(4.24)  (ba —2ab)Lxg =0, (by—2a5)Tr(VX)=0, (by—2a5)TrP =0,

(4.25) BK =0, Lxg+P=0
hold. Moreover P is symmetric. Finally asK = 0.
Proof. Substituting a; = 0 and a} = by into (3.12), then applying (1.8) and (1.6)
we find
(4.26) b2 [2gkn ((Lx9)pn + Pim) + gmn (Lx )y + Prt) — grem ((Lx 9)y,, + Pin)] +
Gin [=3B K + (b2 — 2a3) (LX) ) +
it [BBK i + (b2 — 2a3) (Lx g),) — 2(b2 — 23)gim (Lx ), = 0.

From (1.6) it follows that P{ + 2X% = 0. Thus contracting (4.26) with g'™ and

then with g*" we get (4.24) in turn. Consequently, contracting (4.26) with ¢g*", by
the use of (1.6), (1.8) and (4.24), we obtain

—3BKiy + (n — 1)b2 [Pin, + (Lx g)im] = 0.
In a similar way, contracting (4.24) with ¢!, we find

—(n 4+ 1)BK s + ba [Prn + (Lx 9)mn] = 0.
The last two equations yield (4.25). The final statement is a consequence of (4.25),
(equation Iy, [9] ) and a; = 0. O
Lemma 4.5. Under assumptions of Lemma 4.4 relations

[(ba — 2a%) (2Aby — 3asby — 2azah) — 2a2Bb1] Y = 0,
[aa Bby + Abiby — 2as (baal, — agby)]Y =0,
(b1ba — agb})Y =0
hold on M x {0}.
Proof. We apply Lemma 3.8. Substituting a} = by, a; = 0, contracting with g® ¢
and applying (1.8) we get
—2by(n+ 2)K"), . +2BE",, — 2BE,", + (n — 1)(by — 2a5)M",, = 0,
whence, by the use of Lemma 3.2 we obtain the first equality. Similarly, contracting
with g% g®¢ we find
—ba(n+2)K" . + B(n+2)E", — B(n+2)E}", — bynT", + boT, ", —
2(n+2)(n—1)Y, =0,

whence the second equation results. Finally, the third one follows from Lemma
3.5. O
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Lemma 4.6. Under assumptions of Lemma 4.4 suppose Lxg = 0. Then
AY =BY =AY =0
at each point (x,0) € TM.
Proof. By (1.7), Y is a Killing vector field on M. Moreover, (3.8) reduces to
24" g1aYy, + B (Yigip + Yigrp) = 0,

whence we easily deduce BY = A’Y = 0. Since an infinitesimal isometry is also an
infinitesimal affine transformation, from (3.11), by the use of (2.2) and the above
properties, we obtain AY = 0. O

Lemma 4.7. Under assumptions of Lemma 4.4 suppose

(4.27) P+ Lyxg=0.

Then VP =0 if and only if BY = A’Y = 0.

Proof. Substituting into (3.8), symmetrizing in (k,p) and applying (4.27) we get
a2V Prp + BQ2grpY1 + 91p e + g1 Yyp) + 24" (g1 Yp + 91pYe) = 0,

whence the thesis results. O

A complete lift of a Killing vector field on M to (TM,G) is always a Killing
vector field ([9], [10]). Thus we have proved

Theorem 4.7. Let on TM, dimTM > 4, a g— natural metric G

G(m,u) (Xh7yh) = A(r2)gz(X7 Y) +B(T2)gz(Xa u)gx(K ’U,),
Gy (X" Y") = as(r?)gu(X,Y) + ba(r®) 9o (X, u) 9o (Y, w),
G(x,u) (Xva Yh) = a2 (T2)gm (X7 Y) +bo (7‘2)91 (X7 u)gm (}/’ u)7
G(m’,u) (Xva YU) =0

be given, where agsby # 0 everywhere on TM while by — afy and either A or B do not
vanish on a dense subset of TM. If Z is a Killing vector field on T M, then there
exists an open subset U containing M such that Z restricted to U is a complete lift
of a Killing vector field X on M, i.e.

Zy = X°.

4.4. Case 4. The class under consideration contains the Sasaki metric ¢° and the
Cheeger-Gromoll one g©“. In ([18]) Tanno proved the following

Theorem 4.8. Let (M, g) be a Riemannian manifold. Let X be a Killing vector
field on M, P be a (1,1) tensor field on M that is skew-symmetric and parallel and
Y be a vector field on M that satisfies Vi, VY, + ViVY, = 0 and (4.31). Then
the vector field Z on T M defined by

Z=XC4+.P+Y# = (X" -V'Yu)O+ (Y + Siu®)o

is a Killing vector field on (T M, g°). Conversely, any Killing vector field on (T M, g°)
is of this form.
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A similar theorem holds for (7'M, g¢%), ([3]). However, in virtue of Lemma 3.5
and the remark after it, the Y component vanishes.

We shall give a simple sufficient condition for ¢P to be a Killing vector field on
T M. The rest of the section is devoted to investigations on the properties of the Y’
component.

Notice that a # 0 and as = 0 require a; A # 0. From (3.8) we get immediately

(4.28) a1 (ViViY, + ViViY,) = 24" g, + B (Yegip + Yigep) -

Since by = 0, symmetrizing (equation I, [9] ) in (k, p) we get AEjk, = a5(giYp+
g1pYk). Consequently, in virtue of the properties of the Lie derivative (2.2), (3.11)
and (1.9) yield

a1 Vi Pip = a3(gipYe — ik Yp)-
Moreover, because of ay = 0, by = 0, S,, = 0 and V, X, + S, = Py = — Py,
identity (equation I3, [9] ) together with (3.4) yields

BPkp = a’QVkY}j,
whence, since P is skew-symmetric,
(4.29) ayLyg=0and a,Tr(VY) =0

result.
Next, Lemma 3.9 yields

BV Xy — abVi Yy + BPyy = 0,

whence we find
BVX =0.

We conclude with

Lemma 4.8. Suppose (3.1), dimM > 2, and ag =0, by =0 on M x {0}. Ifa =0
on M x {0}, then BP =0 and VP =0 on M x {0}.

By Proposition 5.4 we obtain

Theorem 4.9. Suppose az(r?) = 0, ba(r?) = 0 and B(r?) =0 on (TM,G). If M
admits non-trivial skew-symmetric and parallel (0,2) tensor field P, then its ¢-lift
is a Killing vector field on T M.

Lemma 4.9. Ifas =0, by =0 at (z,0) and a # 0 everywhere on T M, then
(4.30)  3a3 (V'Y Rup + V'Y Rpig) =
a1 B[(2VeYr — ViYq) gpt + (2VpYe — ViYp) g — (VpYq + VeYp) gri] +
2A(br — a/l) (2ViYigpg — ViYogrg — ViYygrp)
and
3a1VY, Ryprufu” =
2A(by — a}) [Viur® — YpuupuP] + a1 B [(2Y5p — Yo k) tr — graYp,qu®] u?
hold at arbitrary point (z,0) € TM.

Proof. To prove the lemma it is enough to put as = 0, by = 0 in (3.12), then
multiply by A and apply (1.9). For convenience indices (k,m) are interchanged
after that. O
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Lemma 4.10. Suppose (3.1), dimM > 2. If neither V,Y,, = 0 nor V,)Y,, =
T
~Gmn, then
(4.31) V'Y4Rriip + VY Roitg =0
if and only if B=1b=0.

Proof. The ”only if ” part is obvious. Put T' =Y, ;¢"*. Suppose that (4.31) holds.
Contracting the right hand side of (4.30) in turn with g¥!, g*'g™" ¢'™ and ¢*", we
get respectively

[24b+ (n — 1)a1B] (Yo + Yom) — 4AVT gy, = 0,
(n—=1)(24b—a1B)T =0,
—[4Ab+ (2n+ 1)a1B] Y + [24b+ (n 4+ 2)a1 B] Yy, 1 + 2AbT i, = 0,
—a1BY;;m +2[(n—1)Ab+ a1 B] Y, — a1 BT g1, = 0.
If Yi p, — Y, # 0, then alternating the last two equations in indices we obtain
24b+ (n+1)asB = 0,
2(n—1)Ab+3a:B = 0,

whence B = b = 0 for n # 2 results.
If Y7y — Yo = 0, then the suitable linear combination of these equations gives

(n — 2) (2Ab — alB) }/l,m + (2Ab — alB) Tglm =0.
By the second equation this yields (24b — a1 B) Y], = 0. Applying the last result
to the first equality completes the proof. O

Lemma 4.11. Let (TM,G) be a tangent bundle of a manifold (M, g), dimM > 2,
with non-degenerate g— natural metric G given by (2.3). Suppose there is given
a Killing vector field Z on TM with Taylor expansion (3.2) and (8.3). If the
coefficients as(t), ba(t) vanish along M then'Y satisfies

(4.32) A'(2by +d,)Y =0,

(4.33) {[2B(B+ A") —3AB'la; + AB(2by +a})}Y = 0.

Proof. Recall that if az(r2) = 0, then necessary a; A # 0 on some neighbourhood
of rg.
From (3.9) we easily get

(434) A(Fab,c + Fbc,a + Fca,b) + 2(3 + Al)(gcha + GeaYsy + gab}/c) =0.

From Lemma 3.7, by the use of the assumptions on as and b, we find

2B [Kab,(691)c + Kve,69)a + Keca,(90p] +
3B [9eTryab + 9aTiyoe + 960 Th)ca) +
6A" griMape — bgar (Yo + Yeur) + goe Yot + Yaur) + Gea Yout + You)] +
6B" [(gargrb + gargiv) Ye + (guigre + gorgic) Ya + (Gargre + gargic) Yo] = 0.
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Applying (3.8), (3.6) and (3.7) we find

(4.35) 2B [Kab, k90 + Kpe,(k90)a + Kca, 9] —
4bB
W [(gargbe + gnigea + gei9ab) Y + (Gakgve + GokGea + JekGas) Y1) —
1
4A"(2by + o 6(B’'a; — Bd/,
M (gabY; + gcha + gca}/b) 9kl + w X
ay ay
[(9argrb + gargw) Ye + (go19kc + gorgic) Ya + (Gaigke + Gakgic) Yo] = 0.

Hence, contracting with ¢, we obtain

(436) B(?ab,c + Fbc,a + ?ca,b)‘f'

(B +nA") (201 + d))
a1

If B # 0, then a linear combination of (4.34) and (4.36) yields ¥Y = 0 where

!/ /
(4.37) wZQB(B+A’)_3AB/+A(B+”A)(2b1 +a1).
ai

3B' - (gcha + GeaYp + gabYc) =0.

On the other hand, contractions of (4.35) with g** and then with g” yield respec-
tively

B [(n + 3)Fbc,l + Fz,rgbl + F;,rgcl} =
2
—[(n+3)bB + A'(2b1 + o) e Yi+
1

1
;1 [QbB + 3(n + 2)(Ba’1 — B’al) + 2A/(2b1 + a’l)] (gbch + gcle)

and

|
2K, = - [4bB +3(n+ 1)(Bdy — B'ay) + 24" (2by + a})] Y.

Hence we find
(4.38) 2(n+3)a1BKpey = 4[(n+ 3)bB + A’ (2b1 + d})] gpeYi+
[B(n + 3)(Bd} — B'ay) + 2A"(2b1 + a})] (g Ye + ga Ys)

and
(n+3)a1B(Kpey + Keip + Kipe)—
[(n +3)(B(2b1 + a}) — 3a1B’) + 4A"(2b1 + a))] (g6 Y: + g Yo + ginYe) = 0

If B # 0, then combining the last relation with (4.36) we obtain (4.32) and, as
a consequence of (4.37), equality (4.33). On the other hand, if B(r3) = 0, then
contractions of (4.38) with ¢g*¢ and g” yield either Y* =0 or B’ = 0 and A’(2b; +
a})) = 0. This completes the proof. O

Lemma 4.12. For an arbitrary B we have

3
a?B(V,V.Y, + ViV,Y.) = —2ABbg,.Y; — 5A(Ba’1 — a1 B (g Ye + gaYs),
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aiB(V V.Y, — VyV|Y,) = —B (a1 B + 2Ab) gy Y1+

1 1
~5 [4A’a1 B + 3A(Ba) — a1 B')| gnYe — 3 [2(1132 + 3A(Bay — a1B')] gaYs.

Proof. We can suppose B # 0. From (113, [9], [10]) we get
Avl?km = —ax (VleYm + VleYk) .

Combining this with (4.38), by the use of (4.32), we find the first equality. Hence,
by the use of (3.8) and (4.32), we get the second one. On the other hand, if BY = 0,
then the previous lemma yields B'Y = 0. This completes the proof. (]

Lemma 4.13. Under hypothesis (3.1) suppose dim M > 2 and az = 0, ba = 0 on
M x {0} Cc TM. Then

(4.39) [Aal (b1 + a}) — 2a1(Bay + Aby)|Y =0,
Bal, + 2AUL

(4.40) Y |aiayR — (‘12272)9 Ag| =o0.

If al, # 0, then

(4.41) WYY =0, (b —d})VY =0.

Proof. For the proof of the first part we apply Lemma 3.8. Substituting as = 0,
by = 0, by the use of (1.9), we get
a [2Eqy Rpick — By Rptac + EpeRptak — Egg Rpive + EfRpwr] +
B[(Eckb — Eket) gat + (Ecak — Ekac) goi+
(Eabk + Evar) get — (Babe + Evac) gri] — 205 (Mabkger — Mabegii) +
205 [(gbkget — Goegit) Ya + (Yakgel — Gacgrt) Yot
(9argok + gargor) Ye — (9aigve + Gacgor) Y] = 0.

Applying (3.5) - (3.7) and the Bianchi identity we find

— a?ab [3Ry1erYa + 3Raier Yy + (Rarvl + Rokar)Ye — (Rachi + Rieal)Yi] —
2a4 [A(by + a}) — a1 B] gab (griYe — g Ya) —
[2Aa5(by + a}) + a1(24b — Bay)] [(gsegri — gorger) Yo + (Jacgrt — Jarger) Yo] +
a1(Bay + 2A6%) (g6 (9arYe = GacYr) + at (966 Ye — gbeY)] = 0.

Symmetrizing the last relation in (a,b,l) we obtain (4.39). Then, symmetrize in
(a,b, k). Since coefficient times Y. vanishes by (4.39), by the use of the the Walker
lemma and (4.39) we get either Y =0 or

a1a5(Racot + Rawve) = (Bag + 2A65)(gargve + Jacgvl — 29avgel),
whence, alternating in (b,1), we easily obtain
a1y Racvr = (Bay + 2Ab3)(gargve — Javget)-
Thus (4.40) is proved.
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Suppose now Y # 0 and afy # 0 on M x {0}. Applying (4.40) to (4.30) and
eliminating B, by the use of (4.29), we obtain

(442) 2(b1 - all) (Yn,lgkm + Y;n,lgkn - 2Yk,lgmn) +

alb’Q /
2 al - bl —ay (Yk,mgln + Yk,nglm)*
2

a1 bl
(4 ;/ 2+ b+ a’1> (Yon,k9in + Yo k9im) = 0.
2

Contracting (4.42) with g™, by the use of (4.29) we get

b/
[(n + )22y — a’l)} Vion = 0.
a5 ’
On the other hand, by contraction with g™ we obtain
alb’
|: a/22 — (TL — 1)(b1 — all):| YkJ = 0.

Hence we easily get either VY = 0 or both b, = 0 and b; — a} =0 on M x {0}.

Remark 4.2. Tf a}, # 0 and Y # 0, then equations (4.41) give a further restriction
on the metric G. Namely, if VY = 0, then from (1.9) we infer K = 0 while from
(4.28) we get A’ =0 and B =0 on M x {0}. Consequently, (4.33) yields B’ = 0.

(]

Remark 4.3. On the other hand, substituting b, = 0 and b; = a} into Lemma 3.5
we get b) =0 on M x {0}.

5. LIFTS PROPERTIES
5.1. Vertical lift X".

Proposition 5.1. The vertical lift XV = X0} of a Killing vector field X = X0,
to (TM,G) with non-degenerate g— natural metrics G is a Killing vector field on
TM if and only if a}; = 0 and b; =0 on T'M.

Proof. Suppose XV is a Killing vector field. Since X is also the Killing one, ([9],
equation 6) yields
bQ(XT’kul =+ Xr’luk)ur + B(ule + ’U,le) + 2’U,TXT(A/gkl + B’ukul) =0,

whence, by contraction with ¢ and u*u! we obtain

2u" X, (B+nA"+1r’B')=0
and

2r%°u" X, (B+ A +1B) =0
since X is a Killing vector field on M. Thus A’ = 0 and the only smooth solution
to B+r?B’'=0on TM is B = 0. In similar manner, from ([9], equation 7 and 8)

we deduce that @] = a, =0 and by = be = 0 on T M. The ”only if” part is obvious.
Thus the proposition is proved. (I



ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE... 73

5.2. V497 = uPV"Y,07. Let Y be a non-parallel Killing vector field on M and
consider its lift u?V"Y,0¢ to (TM,G). Then we have 9PV® = VoY%, OhVe =
uPOy (V?Y,) and from ([9] or [10], equations 6, 7 and 8) we obtain

(LvagyG) (0, 0]') = az(ViViYy + ViViY)u? + B(ViYyuPw + VY uluy),
(LvaagG) (8};,8?) = a2V Y + a1 ViV Ypuf + 0oV Y uPuy,
(Lveoy G) (03, 97) = 0.

Hence we deduce

Proposition 5.2. Let Y be a non-parallel Killing vector field on M satisfying
VVY = 0. Then uPV"Y,0% is a Killing vector field on TM if and only if ag = by =
B=0onTM.

Proposition 5.3. Let Y be a non-parallel Killing vector field on M. If aa = by =
B =0 onTM and uPV"Y,0; is a Killing vector field on TM then VVY =0 on
M.

5.3. LP.
Proposition 5.4. Let P be an arbitrary (0,2)-tensor field on (M,g). Then its ¢ -
lift \P =u"P*0Y to (TM,G) with non-degenerate g— natural metric G satisfies
(LupG) (9%, 01') = asu” (ViPir + ViPry) + bouPu” (Vi Py + ViPprug) +
2(A' g + B'ugw) PpruPu” + Bu” (Pgyuyp + Proug)
(L,pQG) (8};, 8{1) = ag P, + bou" Prpup + a1u” Vi Py + 01 Vi Plugu ug+
2(asgr + bhugur) PpruPu” + byu” (Pryuws + Prrug)
(LopG) 0k, 0)) = a1 (Pr + Pir) + by [0 (Prp + Ppr) wi + u” (Pip + Ppr) ui] +
2(a gr1 + by ugwy) PpruPu’ .
Proof. The Proposition follows from ([9] or [10], equations 6, 7 and 8), where we
have H® = 0, V* = u" P2, OV = P, 9fV® = u? (9 Py — T4, Py ) and 90V +
VIT§, = uPVi Py,
Hence we easily get
Proposition 5.5. Let P be a skew-symmetric (0,2)-tensor field on (M, g). Then its
v - lift 1P =u"PeOY to (TM, Q) with non-degenerate g— natural metric G satisfies
(L.pG) (0, 0]") = a2 (u"Vi Py + u"ViPry) + B (0" Pepuy + u” Pruy)
(L.pG) (0},0]') = az Pk + bau” Pirug + a1u”V,; Py,
(LorG) (07,07) = 0.
5.3.1. «C Put €T = ((CP)]) = (=g" (Lxg),) = (= (V"X + ViX"))
on (M, g). Then its ¢lift O = (0, uk (C[X])Z) = (07 —uF (V”Xk + Vth)) is
a vertical vector field on T'M. In adapted coordinates (8};, 8{‘) we have

WO = % (Vi X, + Vi XM 0p.
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Applying ([9] or [10], equations 6, 7 and 8) , we easily get

(LexG) (01, 0]') =
—aguP [V VX, + ViV X, + ViV X1 + ViV Xy ] —
2bouPu? [V Vp Xou + ViV Xguk] — 4 (A g + Blugw) wPudV, X, —
BuP (Vi X, + YV, X0) w + (ViX, + YV, X1) s

(Lo G) (3};,5)?) =
—ag (VX1 + ViXy) — bauP [2(Vi X, + VX)) w + (ViX, + VX)) ug] —
aru? (ViVi X, + ViV Xy) — 2b1uPu?VV, Xqu,—
4 (aygrr + byupur) uPu?V, X,

(Lcx1G) (8, 07) =
—2a1 (Vi X1+ ViXg) = 2b1uP (Ve Xy + VpXi) w + (ViXp + Vp X)) ug] —
4 (a) grr + biuguy) wPuiV, X,.
5.3.2. Complete lift X of X to (TM, G). We have X¢ = (X"0,)¢ = X"0, +
0X"6, = X"O + uPV,X"0Y. Making use of ([9] or [10], equations 6, 7 and 8) we
obtain
(LxeG) (31}5 alh) -
asu® ViV Xi + X" Rypr + ViV Xt + X" Roppre] +
bouPul [(ViVp Xy + X" Rutipg) t + (ViVp Xy + X" Rutpg) ur] +
A(ViX) + ViXg) + BuP (Vi X, + Vo Xi) u + (ViX, + VpX1) ug] +
2(A'gii + B'ugw) uPuiV,y X,

(LxeG) (8};,8?) =
a1u? [ViVp Xy + X" Ropr] + a2 (Vi Xy + Vi X)) +
bou® (Vi X, + VpXi) w + (ViX, + VX)) ug) +
biuPu? (ViV, X, + X" Ryipg) ur + 2 (abgr + byuguy) uPuiV, X,

(LxcG) (0F,0) =
a1 (Ve Xy + ViXp) + biw? [(ViXp + Vp Xp) u + (ViXp + Vp Xp) up] +
2 (aygrt + byugw) uPutVy X,

5.3.3. «CX1+ X for an infinitesimal affine transformation. Suppose that X is an
infinitesimal affine transformation on M. Then by (2.2) and the definition

Vklep + Vkval = Vklep + XTR,«MP + vkval + XTRrkpl =0

and
wPulVpV,y Xy = —uPul X" Ryppg = 0.
Therefore, applying results of previous subsections, we find
(LLC[X]+XCG) (3,2‘,8?) =A (kal + Vle) -2 (Algkl + B'ukul) upququ,
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(LLC[X]+XCG) (8};,8{74) ==
— 2 (abgw + byugw) uPuIV, X, — bou? (Vi X, + V. Xy) uy,

(LLc[X]_;’_XCG) (8};,8?) = —a1 (Vle + Vle) —
biu? (Vi X, + VpXi) u + (ViXp + V, Xo) ug] — 2 (@) grr + Vjugw) uPufV,y X,

6. APPENDIX

A (0,4) tensor B on a manifold M is said to be a generalized curvature tensor if
B(V,X,Y,Z)+ B(V,Y,Z,X)+ B(V,Z,X,Y)=0
and
B(V,X,Y,Z)=—-B(X,V,Y,Z), B\V,X,Y,Z)=B(Y,Z,V,X)

for all vector fields V, X, Y, Z on M ([16]).
For a (0, k) tensor T, k > 1, we define

(R : T)(le ana Xa Y) = VYVXT’()(D an> - VXVYT(XD 7Xk)

For more details see for example ([6]) or ([11]).
The Kulkarni-Nomizu product of symmetric (0,2) tensors A and B is given by

(AAB) (U, X,Y,V) =
AX,Y)B(U,V) - AX,V)B(U,Y)+ A(U,V)B(X,Y) — A(U,Y)B(X, V).

Theorem 6.1. [12] Let (M,g) be a semi-Riemannian manifold with metric g,
dimM > 2. Let gx be a 1-form associated to g, i.e. gx(Y) = g(Y,X) for any
vector field Y.

If B is generalized curvature tensor having the property R- B = 0 and P is a
one-form on M satisfying

(6.1) (R-V)(X;Y,2) = (P A gx) (Y. 2),

for some 1-form V, then

TrB
P(B———=_ _4Arqg)=0.
( 2n(n —1)7 g)

If A is a symmetric (0,2)-tensor on M having the properties R-A =0 and (6.1)

then
P (A — TrAg) =0.
n

Lemma 6.1. [19] Let A;, By where l,h,k =1,...,n be numbers satisfying

By = Bgn, AiBpk + ApBri + A By = 0.

Then either A; =0 for alll or Bp =0 for all h, k.
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