ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE WITH g - NATURAL METRIC. PART II

STANISŁAW EWERT-KRZEMIENIEWSKI

(Communicated by Kazım İLARSLAN)

Abstract

The tangent bundle of a Riemannian manifold (M, g) with nondegenerate g - natural metric G that admits a Killing vector field decomposes into four classes. Properties of these classes are investigated. A complete structure of the Lie algebra of Killing vector fields for some subclasses is given.

1. Introduction

In the first part of the paper ([9], see also [10]) we have developed the method by Tanno ([18]) to investigate Killing vector fields on $T M$ with an arbitrary, nondegenerate g - natural metric. The method applied Taylor's formula to components of the vector field that was supposed to be an infinitesimal isometry. It is known that an infinitesimal affine transformation, in particular an infinitesimal isometry, is determined by the values of its components and their first partial derivatives at a point ([14], p. 232). It appears by applying the Taylor's formula there are at most four generators of the infinitesimal isometry: two vectors and two tensors of type $(1,1)$.

We have proved the following
Theorem 1.1. ([9], [10]) Let $(T M, G)$ be a tangent bundle of a Riemannian manifold (M, g), dim $M>2$, with $g-$ natural non-degenerate metric G. Let Z be a Killing vector field on TM with its Taylor series expansion around a point $(x, 0) \in T M$ given by (3.2) and (3.3). Then for each such a point there exists a neighbourhood $U \subset M, x \in U$, that one of the following cases occurs:
(1) $2 b a_{2}-a_{1} b_{2} \neq 0$. Then

$$
\begin{align*}
\nabla_{k} X_{l}+\nabla_{l} X_{k} & =0, \quad \nabla_{k} Y_{l}+\nabla_{l} Y_{k}=0 \tag{1.1}\\
P_{k l}+P_{l k} & =0, \quad K_{k l}+K_{l k}=0 \tag{1.2}
\end{align*}
$$

[^0](2) $2 b a_{2}-a_{1} b_{2}=0$ and either $a_{1} a_{2} b_{2} \neq 0$ or $a_{2} \neq 0$ and $b_{2}=0$. Then
\[

$$
\begin{align*}
P_{k l}+P_{l k}+2\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right) & =0, \tag{1.3}\\
a_{2}\left(\nabla_{k} Y_{l}+\nabla_{l} Y_{k}\right)+A\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right) & =0, \tag{1.4}\\
a_{2}\left(K_{k l}+K_{l k}\right)-a_{1}\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right) & =0 . \tag{1.5}
\end{align*}
$$
\]

(3) $a_{2} b_{2} \neq 0$ and $a_{1}=b_{1}-a_{1}^{\prime}=0$. Then

$$
\begin{align*}
P_{k l}+P_{l k}+2\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right) & =0, \tag{1.6}\\
a_{2}\left(\nabla_{k} Y_{l}+\nabla_{l} Y_{k}\right)+A\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right) & =0, \tag{1.7}\\
K_{k l}+K_{l k} & =0 . \tag{1.8}
\end{align*}
$$

(4) $a_{2}=b_{2}=0$. Then

$$
\begin{equation*}
\nabla_{k} X_{l}+\nabla_{l} X_{k}=0, \quad P_{k l}+P_{l k}=0, \quad A K_{l k}+a_{1} \nabla_{l} Y_{k}=0 . \tag{1.9}
\end{equation*}
$$

In the above theorem we have put $a_{j}=a_{j}\left(r^{2}\right)_{\mid(x, 0) \in T M}, b_{j}=b_{j}\left(r^{2}\right)_{\mid(x, 0) \in T M}$, $a_{j}^{\prime}=a_{j}^{\prime}\left(r^{2}\right)_{\mid(x, 0) \in T M}, A=a_{1}+a_{3}$ and $b=b_{1}-a_{1}^{\prime}$.

Above theorem splits $(T M, G)$ into four classes. In section 4 of the paper for each such class further properties are proved separately. Some restrictions on a number of generators are found (cf. for example 3.5 and Corollary after it). Moreover, a complete structure of Killing vector fields on $T M$ for some subclasses is given (Theorems 4.3 and 4.7). In the next section some classical lifts of some tensor fields from (M, g) to $(T M, G)$ are discussed.

Finally, in the Appendix we collect some known facts and theorems that we use throughout the paper.

Throughout the paper all manifolds under consideration are smooth and Hausdorff ones. The metric g of the base manifold M is always assumed to be Riemannian one.

The computations in local coordinates were partially carried out and checked using MathTensor ${ }^{\text {TM }}$ and Mathematica software.

2. Preliminaries

2.1. Conventions and basic formulas. Let (M, g) be a pseudo-Riemannian manifold of dimension n with metric g. The Riemann curvature tensor R is defined by

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

In a local coordinate neighbourhood $\left(U,\left(x^{1}, \ldots, x^{n}\right)\right)$ its components are given by

$$
R\left(\partial_{i}, \partial_{j}\right) \partial_{k}=R\left(\partial_{i}, \partial_{j}, \partial_{k}\right)=R_{k j i}^{r} \partial_{r}=\begin{aligned}
& \left(\partial_{i} \Gamma_{j k}^{r}-\partial_{j} \Gamma_{i k}^{r}+\Gamma_{i s}^{r} \Gamma_{j k}^{s}-\Gamma_{j s}^{r} \Gamma_{i k}^{s}\right) \partial_{r},
\end{aligned}
$$

where $\partial_{k}=\frac{\partial}{\partial x^{k}}$ and $\Gamma_{j k}^{r}$ are the Christoffel symbols of the Levi-Civita connection ∇. We have

$$
\partial_{l} g_{h k}=g_{h k ; l}=\Gamma_{h l}^{r} g_{r k}+\Gamma_{k l}^{r} g_{r h} .
$$

The Ricci identity is

$$
\begin{equation*}
\nabla_{i} \nabla_{j} X_{k}-\nabla_{j} \nabla_{i} X_{k}=X_{k, j i}-X_{k, i j}=-X^{s} R_{s k j i} \tag{2.1}
\end{equation*}
$$

The Lie derivative of a metric tensor g is given by

$$
\left(L_{X} g\right)(Y, Z)=g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)
$$

for all vector fields X, Y, Z on M. In local coordinates $\left(U,\left(x^{1}, \ldots, x^{n}\right)\right)$ we get

$$
\left(L_{X^{r} \partial_{r}} g\right)_{i j}=\nabla_{i} X_{j}+\nabla_{j} X_{i},
$$

where $X_{k}=g_{k r} X^{r}$.
We shall need the following properties of the Lie derivative

$$
\begin{align*}
& L_{X} \Gamma_{j i}^{h}=\nabla_{j} \nabla_{i} X^{h}+X^{r} R_{r j i s} g^{s h}= \tag{2.2}\\
& \\
& \qquad \frac{1}{2} g^{h r}\left[\nabla_{j}\left(L_{X} g_{i r}\right)+\nabla_{i}\left(L_{X} g_{j r}\right)-\nabla_{r}\left(L_{X} g_{j i}\right)\right]
\end{align*}
$$

If $L_{X} \Gamma_{j i}^{h}=0$, then X is said to be an infinitesimal affine transformation.
The vector field X is said to be the Killing vector field or infinitesimal isometry if $L_{X} g=0,([20]$, p. 23 and 24).
2.2. Tangent bundle. Let x be a point of a Riemannian manifold $(M, g), \operatorname{dim} M=$ n, covered by coordinate neighbourhoods $\left(U,\left(x^{j}\right)\right), j=1, \ldots, n$. Let $T M$ be tangent bundle of M and $\pi: T M \longrightarrow M$ be a natural projection on M. If $x \in U$ and $u=u^{r} \frac{\partial}{\partial x^{r} \mid x} \in T_{x} M$, then $\left(\pi^{-1}(U),\left(\left(x^{r}\right),\left(u^{r}\right)\right), r=1, \ldots, n\right.$, is a coordinate neighbourhood on $T M$.

For all $(x, u) \in T M$ we denote by $V_{(x, u)} T M$ the kernel of the differential at (x, u) of the projection $\pi: T M \longrightarrow M$, i.e.,

$$
V_{(x, u)} T M=\operatorname{Ker}\left(d \pi_{\mid(x, u)}\right)
$$

which is called the vertical subspace of $T_{(x, u)} T M$ at (x, u).
To define the horizontal subspace of $T_{(x, u)} T M$ at (x, u), let $V \subset M$ and $W \subset$ $T_{x} M$ be open neighbourhoods of x and 0 respectively, diffeomorphic under exponential mapping $\exp _{x}: T_{x} M \longrightarrow M$. Furthermore, let $S: \pi^{-1}(V) \longrightarrow T_{x} M$ be a smooth mapping that translates every vector $Z \in \pi^{-1}(V)$ from the point y to the point x in a parallel manner along the unique geodesic connecting y and x. Finally, for a given $u \in T_{x} M$, let $R_{-u}: T_{x} M \longrightarrow T_{x} M$ be a translation by u, i.e. $R_{-u}\left(X_{x}\right)=X_{x}-u$. The connection map

$$
K_{(x, u)}: T_{(x, u)} T M \longrightarrow T_{x} M
$$

of the Levi-Civita connection ∇ is given by

$$
K_{(x, u)}(Z)=d\left(\exp _{p} \circ R_{-u} \circ S\right)(Z)
$$

for any $Z \in T_{(x, u)} T M$.
For any smooth vector field $Z: M \longrightarrow T M$ and $X_{x} \in T_{x} M$ we have

$$
K\left(d Z_{x}\left(X_{x}\right)\right)=\left(\nabla_{X} Z\right)_{x}
$$

Then $H_{(x, u)} T M=\operatorname{Ker}\left(K_{(x, u)}\right)$ is called the horizontal subspace of $T_{(x, u)} T M$ at (x, u).

The space $T_{(x, u)} T M$ tangent to $T M$ at (x, u) splits into direct sum

$$
T_{(x, u)} T M=H_{(x, u)} T M \oplus V_{(x, u)} T M
$$

We have isomorphisms

$$
H_{(x, u)} T M \sim T_{x} M \sim V_{(x, u)} T M
$$

For any vector $X \in T_{x} M$ there exist the unique vectors: X^{h} given by $d \pi\left(X^{h}\right)=$ X and X^{v} given for any function f on M by $X^{v}(d f)=X f$. The vectors X^{h} and
X^{v} are called respectively the horizontal and the vertical lifts of X to the point $(x, u) \in T M$.

The vertical lift of a vector field X on M is a unique vector field X^{v} on $T M$ such that at each point $(x, u) \in T M$ its value is a vertical lift of X_{x} to the point (x, u). The horizontal lift of a vector field is defined similarly.

If $\left(\left(x^{j}\right),\left(u^{j}\right)\right), i=1, \ldots, n$, is a local coordinate system around the point $(x, u) \in$ $T M$ where $u \in T_{x} M$ and $X=X^{j} \frac{\partial}{\partial x^{j}}$, then

$$
X^{h}=X^{j} \frac{\partial}{\partial x^{j}}-u^{r} X^{s} \Gamma_{r s}^{j} \frac{\partial}{\partial u^{j}}, \quad X^{v}=X^{j} \frac{\partial}{\partial u^{j}}
$$

where $\Gamma_{r s}^{j}$ are Christoffel symbols of the Levi-Civita connection ∇ on (M, g). We shall write $\partial_{k}=\frac{\partial}{\partial x^{k}}$ and $\delta_{k}=\frac{\partial}{\partial u^{k}}$. Cf. [8] or [13]. See also [21].

In the paper we shall frequently use the frame $\left(\partial_{k}^{h}, \partial_{l}^{v}\right)=\left(\left(\frac{\partial}{\partial x^{k}}\right)^{h},\left(\frac{\partial}{\partial x^{l}}\right)^{v}\right)$ known as the adapted frame.

Every metric g on M defines a family of metrics on $T M$. Between them a class of so called g - natural metrics is of special interest. The well-known Cheeger-Gromoll and Sasaki metrics are special cases of the g - natural metrics ([15]).
Lemma 2.1. ([4], [5]) Let (M, g) be a Riemannian manifold and G be a $g-n a t u r a l$ metric on $T M$. There exist functions $\left.a_{j}, b_{j}:<0, \infty\right) \longrightarrow R, j=1,2,3$, such that for every $X, Y, u \in T_{x} M$

$$
\begin{align*}
G_{(x, u)}\left(X^{h}, Y^{h}\right) & =\left(a_{1}+a_{3}\right)\left(r^{2}\right) g_{x}(X, Y)+\left(b_{1}+b_{3}\right)\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u), \\
G_{(x, u)}\left(X^{h}, Y^{v}\right) & =a_{2}\left(r^{2}\right) g_{x}(X, Y)+b_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u) \tag{2.3}\\
G_{(x, u)}\left(X^{v}, Y^{h}\right) & =a_{2}\left(r^{2}\right) g_{x}(X, Y)+b_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u) \\
G_{(x, u)}\left(X^{v}, Y^{v}\right) & =a_{1}\left(r^{2}\right) g_{x}(X, Y)+b_{1}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u)
\end{align*}
$$

where $r^{2}=g_{x}(u, u)$. For $\operatorname{dim} M=1$ the same holds for $b_{j}=0, j=1,2,3$.
Following ([4]) we put
(1) $a(t)=a_{1}(t)\left(a_{1}(t)+a_{3}(t)\right)-a_{2}^{2}(t)$,
(2) $F_{j}(t)=a_{j}(t)+t b_{j}(t)$,
(3) $F(t)=F_{1}(t)\left[F_{1}(t)+F_{3}(t)\right]-F_{2}^{2}(t)$

$$
\text { for all } t \in<0, \infty)
$$

We shall often abbreviate: $A=a_{1}+a_{3}, B=b_{1}+b_{3}$.
Lemma 2.2. ([4], Proposition 2.7) The necessary and sufficient conditions for a g - natural metric G on the tangent bundle of a Riemannian manifold (M, g) to be non-degenerate are $a(t) \neq 0$ and $F(t) \neq 0$ for all $t \in<0, \infty)$. If $\operatorname{dim} M=1$ this is equivalent to $a(t) \neq 0$ for all $t \in<0, \infty)$.

For a general overview on g - natural metric we refer the reader to ([1]), ([2]). The components of the Levi-Civita connection of an arbitrary, non-degenerate g natural metric G are calculated in ([7]). They are the same as in the Riemannian case ([1], p. 112-113).

3. TAylor's formula for Killing vector field and coefficients

Suppose now that

$$
Z=Z^{a} \partial_{a}+\widetilde{Z}^{\alpha} \delta_{\alpha}=Z^{a} \partial_{a}^{h}+\left(\widetilde{Z}^{\alpha}+Z^{a} u^{r} \Gamma_{a r}^{\alpha}\right) \partial_{\alpha}^{v}=H^{a} \partial_{a}^{h}+V^{\alpha} \partial_{\alpha}^{v}
$$

is a vector field on $T M$. Throughout the paper the following hypothesis will be used:

$$
\begin{equation*}
(M, g) \text { is a Riemannian manifold of dimension } n \text { with metric } g, H \tag{3.1}
\end{equation*}
$$ covered by the coordinate system $\left(U,\left(x^{r}\right)\right)$.

($T M, G$) is the tangent bundle of M with g - natural non-
degenerate metric G, covered by a coordinate system
$\left(\pi^{-1}(U),\left(x^{r}, u^{s}\right)\right), r, s$ run through the range $\{1, \ldots, n\}$.
Z is a Killing vector field on $T M$ with local components $\left(Z^{r}, \widetilde{Z}^{s}\right)$
with respect to the local base $\left(\partial_{r}, \delta_{s}\right)$.
Let

$$
\begin{align*}
& H^{a}=Z^{a}=Z^{a}(x, u)= \tag{3.2}\\
& \quad X^{a}+K_{p}^{a} u^{p}+\frac{1}{2} E_{p q}^{a} u^{p} u^{q}+\frac{1}{3!} F_{p q r}^{a} u^{p} u^{q} u^{r}+\frac{1}{4!} G_{p q r s}^{a} u^{p} u^{q} u^{r} u^{s}+\cdots
\end{align*}
$$

$$
\begin{align*}
& \widetilde{Z}^{a}=\widetilde{Z}^{a}(x, u)= \tag{3.3}\\
& \quad Y^{a}+\widetilde{P}_{p}^{a} u^{p}+\frac{1}{2} Q_{p q}^{a} u^{p} u^{q}+\frac{1}{3!} S_{p q r}^{a} u^{p} u^{q} u^{r}+\frac{1}{4!} V_{p q r s}^{a} u^{p} u^{q} u^{r} u^{s}+\cdots
\end{align*}
$$

be expansions of the components Z^{a} and \widetilde{Z}^{a} by Taylor's formula in a neighbourhood of a point $(x, 0) \in T M$. For each index a the coefficients are values of partial derivatives of Z^{a} and \widetilde{Z}^{a} respectively, taken at a point $(x, 0)$ and therefore are symmetric in all lower indices. For simplicity we have omitted the remainders.

Lemma 3.1. ([18]) The quantities

$$
\begin{aligned}
& X=\left(X^{a}(x)\right)=\left(Z^{a}(x, 0)\right), \quad Y=\left(Y^{a}(x)\right)=\left(\widetilde{Z}^{a}(x, 0)\right) \\
& K=\left(K_{p}^{a}(x)\right)=\left(\delta_{p} Z^{a}(x, 0)\right), \quad E=\left(E_{p q}^{a}(x)\right)=\left(\delta_{p} \delta_{q} Z^{a}(x, 0)\right) \\
& P=\left(P_{p}^{a}(x)\right)=\left(\left(\delta_{p} \widetilde{Z}^{a}\right)(x, 0)-\partial_{p}\left(Z^{a}(x, 0)\right)\right)
\end{aligned}
$$

are tensor fields M.
We shall often use the following definitions and abbreviations:

$$
\begin{gathered}
S_{p}^{a}=P_{p}^{a}+\nabla_{p} X^{a}, \quad S_{k p}=S_{p}^{a} g_{a k}, \quad P_{l k}=P_{k}^{a} g_{a l}, \\
K_{l p}=K_{p}^{a} g_{a l}, \quad E_{k p q}=E_{k q p}=E_{p q}^{a} g_{a k}, \quad T_{l k p}=T_{k p}^{a} g_{a l}, \\
M_{p q r}=T_{p q r}+T_{q r p}+T_{r p q} .
\end{gathered}
$$

Moreover, for any $(0,2)$ tensor T we put

$$
\bar{T}_{a b}=T_{a b}+T_{b a}, \quad \widehat{T}_{a b}=T_{a b}-T_{b a}
$$

Lemmas 3.2-3.9 were proved in ([9], see also [10]). Hereafter, and unless otherwise specified, all the coefficients $a_{j}, b_{j}, a_{j}^{\prime}, b_{j}^{\prime}, A, A^{\prime}, B, B^{\prime}, \ldots$ are considered to be constants, equal to the values at 0 of the corresponding functions.

Lemma 3.2. Under hypothesis (3.1) at a point $(x, 0) \in T M$ we have:

$$
a_{1} T_{l k p}+a_{2} E_{l k p}=a_{1}^{\prime}\left(Y_{l} g_{k p}-Y_{k} g_{l p}-Y_{p} g_{k l}\right)-b_{1} Y_{l} g_{k p}
$$

$$
\begin{equation*}
A E_{l k p}+a_{2} T_{l k p}+a_{2}^{\prime}\left(g_{k l} Y_{p}+g_{p l} Y_{k}\right)+\frac{1}{2} b_{2}\left(2 g_{k p} Y_{l}+g_{l p} Y_{k}+g_{k l} Y_{p}\right)=0 \tag{3.4}
\end{equation*}
$$

If $a \neq 0$, then

$$
\begin{align*}
& a E_{l k m}=\left(a_{2} b_{1}-a_{1} b_{2}-a_{2} a_{1}^{\prime}\right) g_{k m} Y_{l}- \tag{3.5}\\
& \qquad \frac{1}{2}\left(a_{1} b_{2}-2 a_{2} a_{1}^{\prime}+2 a_{1} a_{2}^{\prime}\right)\left(g_{l m} Y_{k}+g_{l k} Y_{m}\right)
\end{align*}
$$

(3.6) $a T_{l k m}=\left(A a_{1}^{\prime}+a_{2} b_{2}-A b_{1}\right) g_{k m} Y_{l}+\frac{1}{2}\left(a_{2} b_{2}-2 A a_{1}^{\prime}+2 a_{2} a_{2}^{\prime}\right)\left(g_{l m} Y_{k}+g_{l k} Y_{m}\right)$,

$$
\begin{equation*}
a M_{l k m}=\left[2 a_{2}\left(b_{2}+a_{2}^{\prime}\right)-A\left(b_{1}+a_{1}^{\prime}\right)\right]\left(g_{k m} Y_{l}+g_{l k} Y_{m}+g_{m l} Y_{k}\right) \tag{3.7}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& a_{2}\left[\nabla_{k}\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right)+\nabla_{l}\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right)-\nabla_{p}\left(\nabla_{l} X_{k}+\nabla_{k} X_{l}\right)\right]+ \tag{3.8}\\
& a_{1}\left(\nabla_{k} \nabla_{l} Y_{p}+\nabla_{l} \nabla_{k} Y_{p}\right)=2 A^{\prime} g_{k l} Y_{p}+B\left(Y_{k} g_{l p}+Y_{l} g_{k p}\right) \\
& a\left(\nabla_{k} K_{l p}+\nabla_{l} K_{k p}\right)+\left(a_{2} b_{2}+2 a_{1} A^{\prime}-2 a_{2} a_{2}^{\prime}\right) Y_{p} g_{k l}+ \tag{3.9}\\
& \frac{1}{2}\left(-a_{2} b_{2}+2 a_{1} B+2 a_{2} a_{2}^{\prime}\right)\left(Y_{k} g_{l p}+Y_{l} g_{k p}\right)=0 .
\end{align*}
$$

Lemma 3.3. Under hypothesis (3.1) we have

$$
\begin{align*}
& 2 a \nabla_{l} K_{k m}=a_{1}^{2} Y^{r} R_{r m k l}-a_{1} B g_{k m} Y_{l}+ \tag{3.10}\\
& \quad\left(-a_{1} B+a_{2} b_{2}-2 a_{2} a_{2}^{\prime}\right) g_{l m} Y_{k}+\left(-a_{2} b_{2}-2 a_{1} A^{\prime}+2 a_{2} a_{2}^{\prime}\right) g_{k l} Y_{m}
\end{align*}
$$

$$
\begin{align*}
& 2 a\left(\nabla_{l} S_{k m}-X^{r} R_{r l k m}\right)+a_{1} a_{2} Y^{r} R_{r m k l}-a_{2} B g_{k m} Y_{l}+ \tag{3.11}\\
& \quad\left[-a_{2} B+A\left(b_{2}-2 a_{2}^{\prime}\right)\right] g_{l m} Y_{k}+\left[-2 a_{2} A^{\prime}-A\left(b_{2}-2 a_{2}^{\prime}\right)\right] g_{k l} Y_{m}=0
\end{align*}
$$

at the point.
Lemma 3.4. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$. Then on $M \times\{0\}$

$$
T_{k l}=T_{l k}=2\left(b_{1}-a_{1}^{\prime}\right) \bar{S}_{k l}+b_{2} \bar{K}_{k l}=0
$$

$$
\begin{aligned}
a_{2} F_{l a b k}+a_{1} W_{l a b k}+\frac{1}{2} b_{2}\left(\widehat{K}_{k l} g_{a b}+\widehat{K}_{b l} g_{a k}+\widehat{K}_{a l} g_{b k}+\bar{K}_{a k} g_{b l}\right)+ \\
b_{1} g_{b l} \bar{S}_{a k}+a_{1}^{\prime}\left(g_{k l} \bar{S}_{a b}+g_{a l} \bar{S}_{b k}\right)=0
\end{aligned}
$$

Lemma 3.5. Under hypothesis (3.1) suppose $\operatorname{dim} M>1$. Then

$$
(n-1) \beta Y_{l}=0
$$

on $M \times\{0\}$ holds, where

$$
\beta=2 A\left(b_{1}^{2}-a_{1}^{\prime 2}-a_{1} b_{1}^{\prime}\right)+\left(a_{1} b_{2}-2 a_{2} b_{1}\right)\left(3 b_{2}+2 a_{2}^{\prime}\right)+2 a_{2}\left[2 a_{1}^{\prime}\left(b_{2}+a_{2}^{\prime}\right)+a_{2} b_{1}^{\prime}\right]
$$

Corollary 3.1. For the Cheeger-Gromoll metric $g^{C G}$ on $T M$, the vector field Y vanishes everywhere on M.

Lemma 3.6. Under hypothesis (3.1) the identities

$$
\begin{gathered}
3 A F_{l k m n}+3 a_{2} W_{l k m n}+B\left(g_{k l} \bar{K}_{m n}+g_{l m} \bar{K}_{k n}+g_{l n} \bar{K}_{k m}\right)+ \\
\left(b_{1}-a_{1}^{\prime}\right)\left(Y_{n, l} g_{k m}+Y_{m, l} g_{k n}+Y_{k, l} g_{m n}\right)+ \\
2\left(b_{2}+a_{2}^{\prime}\right)\left(g_{k l} \bar{S}_{m n}+g_{l m} \bar{S}_{k n}+g_{l n} \bar{S}_{k m}\right)+ \\
2 b_{2}\left[g_{k m}\left(X_{n, l}+S_{l n}\right)+g_{k n}\left(X_{m, l}+S_{l m}\right)+g_{m n}\left(X_{k, l}+S_{l k}\right)\right]=0
\end{gathered}
$$

and

$$
\begin{align*}
& \text { 2) } \quad B\left[g_{k l}\left(K_{m n}-2 K_{n m}\right)+g_{l m}\left(K_{k n}+K_{n k}\right)+g_{l n}\left(K_{m k}-2 K_{k m}\right)\right]+ \tag{3.12}\\
& 2\left(b_{1}-a_{1}^{\prime}\right)\left(2 Y_{m, l} g_{k n}-Y_{n, l} g_{k m}-Y_{k, l} g_{m n}\right)+3 a_{1}\left(K_{n}^{r} R_{r l m k}+K_{k}^{r} R_{r l m n}\right)+ \\
& b_{2}\left[2 g_{k n}\left(X_{m, l}+S_{l m}\right)-g_{k m}\left(X_{n, l}+S_{l n}\right)-g_{m n}\left(X_{k, l}+S_{l k}\right)\right]+ \\
& \left(b_{2}-2 a_{2}^{\prime}\right)\left(2 g_{l m} \bar{S}_{k n}-g_{l n} \bar{S}_{k m}-g_{k l} \bar{S}_{m n}\right) .
\end{align*}
$$

are satisfied at a point $(x, 0) \in T M$.
Lemma 3.7. Under hypothesis (3.1) relation

$$
\begin{align*}
& 3 a_{2}\left[E_{b c}^{p}\left(R_{p k a l}+R_{l a k}^{p}\right)+E_{a c}^{p}\left(R_{p k b l}+R_{l b k}^{p}\right)+E_{a b}^{p}\left(R_{p k c l}+R_{l c k}^{p}\right)\right]+ \tag{3.13}\\
& \quad 6 A^{\prime} g_{k l}\left(T_{a b c}+T_{b c a}+T_{c a b}\right)+g_{b c} K_{k a l}+g_{c a} K_{k b l}+g_{a b} K_{k c l}+ \\
& \quad g_{c l} L_{a b k}+g_{a l} L_{b c k}+g_{b l} L_{c a k}+g_{c k} L_{a b l}+g_{a k} L_{b c l}+g_{b k} L_{c a l}=0
\end{align*}
$$

holds on $M \times\{0\}$, where

$$
\begin{align*}
K_{k a l}= & K_{l a k} \tag{3.14}\\
& = \\
& -2 b_{2}\left(S_{k a, l}+S_{l a, k}+X_{a, k l}+X_{a, l k}\right)-\left(b_{1}-a_{1}^{\prime}\right)\left(Y_{a, k l}+Y_{a, l k}\right)
\end{align*}
$$

(3.15) $L_{a b k}=L_{b a k}=2 B \bar{K}_{a b, k}+3 B T_{k a b}+\left(b_{2}-2 a_{2}^{\prime}\right) \bar{S}_{a b, k}+3 B^{\prime}\left(g_{k a} Y_{b}+g_{k b} Y_{a}\right)$.

Lemma 3.8. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$. Then the relation

$$
\begin{gathered}
a_{1}\left[2 E_{a b}^{p} R_{p l c k}-E_{b k}^{p} R_{p l a c}+E_{b c}^{p} R_{p l a k}-E_{a k}^{p} R_{p l b c}+E_{a c}^{p} R_{p l b k}\right]+ \\
B\left[\left(E_{c k b}-E_{k c b}\right) g_{a l}+\left(E_{c a k}-E_{k a c}\right) g_{b l}+\right. \\
\left.\left(E_{a b k}+E_{b a k}\right) g_{c l}-\left(E_{a b c}+E_{b a c}\right) g_{k l}\right]+ \\
\left(b_{1}-a_{1}^{\prime}\right)\left[\nabla_{l} \bar{S}_{b c} g_{a k}-\nabla_{l} \bar{S}_{b k} g_{a c}\right]+ \\
b_{2}\left[\nabla_{l} \widehat{K}_{k c} g_{a b}+g_{a k}\left(\frac{3}{2} \nabla_{l} K_{b c}+\frac{1}{2} \nabla_{l} K_{c b}\right)-g_{a c}\left(\frac{3}{2} \nabla_{l} K_{b k}+\frac{1}{2} \nabla_{l} K_{k b}\right)\right]+ \\
b_{2}\left(\nabla_{l} K_{a c} g_{b k}-\nabla_{l} K_{a k} g_{b c}\right)+ \\
\left(b_{2}-2 a_{2}^{\prime}\right)\left(M_{a b k} g_{c l}-M_{a b c} g_{k l}\right)+b_{2}\left[g_{b k} T_{l a c}-g_{b c} T_{l a k}+g_{a k} T_{l b c}-g_{a c} T_{l b k}\right]+ \\
2 b_{2}^{\prime}\left[\left(g_{b k} g_{c l}-g_{b c} g_{k l}\right) Y_{a}+\left(g_{a k} g_{c l}-g_{a c} g_{k l}\right) Y_{b}+\right. \\
\left.\left(g_{a l} g_{b k}+g_{a k} g_{b l}\right) Y_{c}-\left(g_{a l} g_{b c}+g_{a c} g_{b l}\right) Y_{k}\right]=0
\end{gathered}
$$

holds on $M \times\{0\}$.

Lemma 3.9. Under hypothesis (3.1) relations

$$
\begin{array}{r}
\text { 3.16) } \begin{array}{r}
\mathbf{A}_{k m}=\left(3 a_{1} B-a_{2} b_{2}\right) \nabla_{k} X_{m}+\left(-2 a_{2} b_{1}+\frac{3}{2} a_{1} b_{2}+2 a_{2} a_{1}^{\prime}-3 a_{1} a_{2}^{\prime}\right) \nabla_{k} Y_{m}+ \\
a_{2} B\left(K_{k m}-2 K_{m k}\right)+\left(3 a_{1} B-2 a_{2} b_{2}+2 a_{2} a_{2}^{\prime}\right) S_{k m}+ \\
\left(-a_{2} b_{2}+2 a_{2} a_{2}^{\prime}\right) S_{m k}=0, \\
\mathbf{F}_{k l}+\mathbf{B}_{k l}=2 a_{2} b_{2}\left(L_{X} g\right)_{k l}+\left(4 a_{2} b_{1}-3 a_{1} b_{2}-4 a_{2} a_{1}^{\prime}\right)\left(L_{Y} g\right)_{k l}+ \\
2\left(3 a_{2} b_{2}+3 a_{1} A^{\prime}-4 a_{2} a_{2}^{\prime}\right) \bar{S}_{k l}+2 a_{2} B \bar{K}_{k l}=0 .
\end{array} \tag{3.16}
\end{array}
$$

hold at a point $(x, 0) \in T M$, where

$$
\begin{gathered}
\mathbf{F}_{m n}=2 a_{2} B \bar{K}_{m n}+2\left(2 a_{2} b_{2}+3 a_{1} A^{\prime}-4 a_{2} a_{2}^{\prime}\right) \bar{S}_{m n} \\
\mathbf{B}_{k l}=2 a_{2} b_{2}\left(L_{X} g\right)_{k l}+\left(4 a_{2} b_{1}-3 a_{1} b_{2}-4 a_{2} a_{1}^{\prime}\right)\left(L_{Y} g\right)_{k l}+2 a_{2} b_{2} \bar{S}_{k l}
\end{gathered}
$$

4. Classification

4.1. Case 1. In this section we study relations between Y component of the Killing vector field on $T M$ and the base manifold M (Theorems 4.1, 4.2). Various conditions for Y to be non-zero and relations between X, Y, P, K are proved. Moreover, Theorem 4.3 establishes isomorphism between algebras of Killing vector fields on M and $T M$ for a large subclass of non-degenerate $g-$ natural metrics.
Lemma 4.1. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2} \neq 0$ at a point $(x, 0) \in T M$. Then

$$
\begin{gather*}
\left(B+A^{\prime}\right) Y_{k}=0, \tag{4.1}\\
2 a \nabla_{l} K_{k m}=\left[2 a_{1} A^{\prime}+a_{2}\left(b_{2}-2 a_{2}^{\prime}\right)\right]\left(g_{l m} Y_{k}-g_{l k} Y_{m}\right), \tag{4.2}\\
2 a \nabla_{l} P_{k m}=-\left[2 a_{2} A^{\prime}+A\left(b_{2}-2 a_{2}^{\prime}\right)\right]\left(g_{l m} Y_{k}-g_{l k} Y_{m}\right), \tag{4.3}\\
a_{1} \nabla_{m} \nabla_{l} Y_{k}=A^{\prime}\left(g_{m l} Y_{k}-g_{m k} Y_{l}\right), \tag{4.4}\\
a_{1} Y^{r} R_{r k l m}=A^{\prime}\left(g_{k m} Y_{l}-g_{k l} Y_{m}\right) \tag{4.5}
\end{gather*}
$$

hold at the point.
Proof. First suppose $a_{1} \neq 0$. Symmetrizing (3.10) in (k, m), making use of the skew-symmetricity of K, then alternating in (k, l) and applying the first Bianchi identity, we get

$$
\begin{equation*}
3 a_{1} Y^{r} R_{r m k l}+\left(B-2 A^{\prime}\right)\left(g_{l m} Y_{k}-g_{k m} Y_{l}\right)=0 \tag{4.6}
\end{equation*}
$$

Applying the last identity to (3.10) we find

$$
\begin{aligned}
6 a \nabla_{l} K_{k m}+2 a_{1}\left(B+A^{\prime}\right) g_{k m} Y_{l}+3 & {\left[2 a_{1} A^{\prime}+a_{2}\left(b_{2}-2 a_{2}^{\prime}\right)\right] g_{l k} Y_{m}+} \\
& {\left[2 a_{1}\left(2 B-A^{\prime}\right)-3 a_{2}\left(b_{2}-2 a_{2}^{\prime}\right)\right] g_{l m} Y_{k}=0 }
\end{aligned}
$$

whence, symmetrizing in (k, m), we obtain (4.1) and, consequently, (4.2).
Suppose now $a_{1}=0$. Substituting in (3.10) we easily state that (4.2) remains true. On the other hand, substituting $a_{1}=0$ into (3.11) and symmetrizing in (k, m) we get

$$
2 a_{2} B g_{k m} Y_{l}+a_{2}\left(B+2 A^{\prime}\right)\left(g_{l m} Y_{k}+g_{l k} Y_{m}\right)=0
$$

whence, by contractions with $g^{k m}$ and $g^{l m}$, we obtain

$$
\begin{equation*}
B Y_{l}=0 \text { and } A^{\prime} Y_{l}=0 \tag{4.7}
\end{equation*}
$$

respectively since $a_{2} \neq 0$ must hold. Thus (4.1) holds good.
Since X is a Killing vector field, (3.11), (2.2), (4.1) and (4.6) in the case $a_{1} \neq 0$ and (3.11) and (4.7) as well in the case $a_{1}=0$ yield (4.3).

Differentiating covariantly (equation $I I_{1},[9]$) and using just obtained identities, we get (4.4). Finally, alternating (4.4) in (l, m), by the use of the Ricci identity (2.1), we obtain (4.5). This completes the proof.

From (4.5) and Theorem 6.1 by Grycak we infer
Theorem 4.1. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2} \neq$ 0 on the set $M \times\{0\} \subset T M$. If the vector field $\frac{A^{\prime}}{a_{1}} Y^{a} \partial_{a}$ does not vanish on a dense subset of M and M is semisymmetric, i.e. $R \cdot R=0$, (resp. the Ricci tensor S is semisymmetric, i.e. $R \cdot S=0$), then M is a space of constant curvature, (resp. M is an Einstein manifold).

Theorem 4.2. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2} \neq$ 0 at a point $(x, 0) \in T M$. Then the Y component of the Killing vector field on $T M$ satisfies

$$
\begin{equation*}
S_{1} Y\left[a_{1} R+\frac{B}{2} g \wedge g\right]=0 \tag{4.8}
\end{equation*}
$$

on M.
Proof. Suppose $a_{1} \neq 0$. By (1.1) and (1.2) we have $\bar{S}_{a b}=0$. Applying this and (1.2), (4.1), (4.2) and (4.7) to Lemma 3.8, after long computations we obtain

$$
\begin{align*}
& S_{1}\left[3\left(R_{b l c k} Y_{a}+R_{a l c k} Y_{b}\right)+\left(R_{b l a k}+R_{a l b k}\right) Y_{c}-\left(R_{b l a c}+R_{a l b c}\right) Y_{k}\right]+ \tag{4.9}\\
& S_{2} g_{a b}\left(g_{k l} Y_{c}-g_{c l} Y_{k}\right)+S_{3}\left[\left(g_{a l} g_{b k}+g_{a k} g_{b l}\right) Y_{c}-\left(g_{a l} g_{b c}+g_{a c} g_{b l}\right) Y_{k}\right]+ \\
& \quad S_{4}\left[\left(g_{b k} g_{c l}-g_{b c} g_{k l}\right) Y_{a}+\left(g_{a k} g_{c l}-g_{a c} g_{k l}\right) Y_{b}\right]=0,
\end{align*}
$$

where

$$
\begin{gathered}
S_{1}=a_{1}\left[2 a_{2} a_{1}^{\prime}-a_{1}\left(b_{2}+2 a_{2}^{\prime}\right)\right] \\
S_{2}=-2\left[b_{2}\left(-A b_{1}+3 a_{2} b_{2}+5 a_{1} A^{\prime}-A a_{1}^{\prime}-4 a_{2} a_{2}^{\prime}\right)+2 b_{1}\left(A a_{2}^{\prime}-a_{2} A^{\prime}\right)+\right. \\
\left.2\left(a_{1} A^{\prime}+A a_{1}^{\prime}-2 a_{2} a_{2^{\prime}}\right) a_{2}^{\prime}\right]= \\
-2\left[b_{2}\left(-A b_{1}+3\left(a_{2} b_{2}+a_{1} A^{\prime}-A a_{1}^{\prime}\right)+2 a^{\prime}\right)+2 b_{1}\left(A a_{2}^{\prime}-a_{2} A^{\prime}\right)+2 a^{\prime} a_{2}^{\prime}\right], \\
S_{3}=-3 a_{1} b_{2} A^{\prime}-2 A b_{2} a_{1}^{\prime}+2 a_{2} A^{\prime} a_{1}^{\prime}+4 a_{2} a_{2}^{\prime} b_{2}-2 a_{1} A^{\prime} a_{2}^{\prime}+4 a b_{2}^{\prime}= \\
2 A^{\prime}\left(a_{2} a_{1}^{\prime}-a_{1} a_{2}^{\prime}\right)-b_{2}\left(2 a^{\prime}+a_{1} A^{\prime}\right)+4 a b_{2}^{\prime}, \\
S_{4}=b_{2}\left(-2 A b_{1}+6 a_{2} b_{2}+7 a_{1} A^{\prime}-4 A a_{1}^{\prime}-4 a_{2} a_{2}^{\prime}\right)-4 a_{2} b_{1} A^{\prime}+2 a_{2} A^{\prime} a_{1}^{\prime}+ \\
a_{2}^{\prime}\left(4 A b_{1}+2 a_{1} A^{\prime}+4 A a_{1}^{\prime}-8 a_{2} a_{2}^{\prime}\right)+4 a b_{2}^{\prime}
\end{gathered}
$$

and

$$
S_{2}-S_{3}+S_{4}=0
$$

identically.

Symmetrizing (4.9) in (a, b, l) we get

$$
\left(S_{2}+2 S_{3}\right)\left[\left(g_{a l} g_{b k}+g_{a k} g_{l b}+g_{a b} g_{k l}\right) Y_{c}-\left(g_{a l} g_{b c}+g_{a c} g_{l b}+g_{a b} g_{c l}\right) Y_{k}\right]=0
$$

whence, by contraction with $g^{a l} g^{b k}$, we find $(n-1)(n+2)\left(S_{2}+2 S_{3}\right) Y_{c}=0$. Therefore, symmetrizing (4.9) in (a, b, c) and using the last result, we obtain

$$
Y_{a} T_{b c k l}+Y_{b} T_{c a k l}+Y_{c} T_{a b k l}=0,
$$

where

$$
\begin{aligned}
& T_{b c k l}=T_{c b k l}=T_{k l b c}= \\
& \qquad 2 S_{1}\left(R_{b k c l}+R_{b l c k}\right)-\left(S_{3}+S_{4}\right)\left[g_{b c} g_{k l}-\frac{1}{2}\left(g_{b l} g_{c k}+g_{b k} g_{c l}\right)\right]
\end{aligned}
$$

Hence, by the use of the Walker's Lemma 6.1, we get

$$
\begin{equation*}
Y_{a} T_{b c k l}=0 \tag{4.10}
\end{equation*}
$$

Alternating (4.10) in (l, c) and applying the Bianchi identity we obtain

$$
Y_{a}\left[4 S_{1} R_{b k c l}+\left(S_{3}+S_{4}\right)\left(g_{b l} g_{k c}-g_{b c} g_{k l}\right)\right]=0
$$

Transvecting the last equation with Y^{b}, by the use of (4.7), we easily get

$$
\left[4 B S_{1}+a_{1}\left(S_{3}+S_{4}\right)\right] Y_{a}=0
$$

whence (4.8) results.
On the other hand, from the proof of Lemma 4.1 it follows that $a_{1}(0)=0$ implies $B(0) Y_{a}=0$. Thus, by continuity, (4.8) holds good on M.

Corollary 4.1. Under assumptions of the above theorem we have on M :

$$
\begin{aligned}
\left(S_{2}+2 S_{3}\right) Y & =0 \text { if } a_{1} \neq 0 \\
{\left[4 B S_{1}+a_{1}\left(S_{3}+S_{4}\right)\right] Y } & =0
\end{aligned}
$$

Notice that multiplying the first equation by a_{1} and adding to the second one we obtain

$$
a_{1}\left(b_{2} a^{\prime}-2 a b_{2}^{\prime}\right) Y=0
$$

Lemma 4.2. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2} \neq 0$ at a point $(x, 0) \in T M$.

If $a_{1} a_{2} \neq 0$, then

$$
\begin{align*}
& \text { 1.11) } \mathbf{A}_{k m}=\left[2 a_{2}\left(b_{1}-a_{1}^{\prime}\right)-\frac{3}{2} a_{1}\left(b_{2}-2 a_{2}^{\prime}\right)\right] Y_{k, m}+ \tag{4.11}\\
& \\
& \text { If } a_{2}=0 \text { and } a_{1} b_{2} \neq 0 \text { then }
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{3} \mathbf{A}_{k m}=-\frac{1}{2} a_{1}\left(b_{2}-2 a_{2}^{\prime}\right) Y_{k, m}+a_{1} B P_{k m}=0 \tag{4.12}
\end{equation*}
$$

If $a_{1}=0$ and $\left(b_{1}-a_{1}^{\prime}\right) a_{2} \neq 0$ then

$$
\begin{align*}
(n+1) B K_{k n}-b_{2} P_{k n}+2\left(b_{1}-a_{1}^{\prime}\right) Y_{k, n} & =0 \tag{4.13}\\
3 B K_{l n}-(n-1) b_{2} P_{l n}+2(n-1)\left(b_{1}-a_{1}^{\prime}\right) Y_{l, n} & =0 . \tag{4.14}
\end{align*}
$$

Proof. If $a_{1} a_{2} \neq 0$, we apply (1.1) and (1.2) to (3.16) to obtain (4.11).
If $a_{2}=0$ but $a_{1} \neq 0$, then also there must be $b_{2} \neq 0$. Substituting $a_{2}=0$ into (3.16) and applying (1.1) and (1.2) we get (4.12).

Finally, the last two identities one obtains substituting $a_{1}=0$ into (3.12), contracting with $g^{k m}$ and $g^{l m}$ and making use of (1.1) and (1.2).

Taking into account (4.13) and (4.14) together with the equation (equation $I I_{1}$, [9]) which, in virtue of (1.1), writes

$$
A K_{k m}+a_{2} P_{k m}-a_{1} Y_{k, m}=0
$$

we find that $B \neq 0$ implies $P=K=\nabla Y=0$ on M. We conclude with the following
Theorem 4.3. Let $T M, \operatorname{dim} T M>4$, be endowed with a non-degenerate g - natural metric G, such that $a_{1}=0,\left(b_{1}-a_{1}^{\prime}\right) a_{2} \neq 0$ and $B \neq 0$ on $M \times\{0\} \subset T M$. Let V be an open subset of $T M$ such that $M \times\{0\} \subset V$. If Vadmits a Killing vector field, then it is a complete lift of a Killing vector field on M. Consequently, Lie algebras of Killing vector fields on M and $V \subset T M$ are isomorphic.

Besides, for $B=0$, we have
Theorem 4.4. Let $T M, \operatorname{dimTM}>4$, be endowed with a non-degenerate g - natural metric G, such that $a_{1}=0,\left(b_{1}-a_{1}^{\prime}\right) a_{2} \neq 0$ and $B=0$ on $M \times\{0\} \subset T M$. Then

$$
\begin{array}{r}
a_{2} P+A K=0, \\
b_{2} P-2\left(b_{1}-a_{1}^{\prime}\right) \nabla Y=0
\end{array}
$$

hold on $M \times\{0\} \subset T M$.
Hence, for $B=0, A \neq 0$ and $b_{2} \neq 0$, a theorem similar to the former one can be deduced.

The next theorem gives further restrictions on the vector Y to be non-zero.
Theorem 4.5. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2} \neq$ 0 at a point $(x, 0) \in T M$. If $a_{1} \neq 0$, then the Y component of the Killing vector field on TM satisfies

$$
\begin{gathered}
\left.Q_{2} Y=\left\{a_{1} b_{2}\left[A\left(b_{2}-2 a_{2}^{\prime}\right)-2 a_{2} B\right]-4 a B\left(b_{1}-a_{1}^{\prime}\right)\right)\right\} Y=0, \\
B^{\prime} Y=0, \\
B\left[a_{1} a_{2}\left(b_{2}+2 a_{2}^{\prime}\right)-2 A a_{1} a_{1}^{\prime}+a a_{1}^{\prime}\right] Y=0 .
\end{gathered}
$$

Proof. We apply Lemma 3.7. By the use of (1.1), (1.2), (4.1) - (4.4) and (3.6) the components of the tensors K and L defined by (3.14) and (3.15) can be written as

$$
\begin{gathered}
K_{k a l}=\frac{\left[a B\left(b_{1}-a_{1}^{\prime}\right)+2 a_{1} a_{2} B b_{2}-A a_{1} b_{2}\left(b_{2}-2 a_{2}^{\prime}\right)\right]}{a a_{1}}\left(2 g_{k l} Y_{a}-g_{k a} Y_{l}-g_{l a} Y_{k}\right), \\
L_{a b l}=3 B T_{l a b}+3 B^{\prime}\left(g_{b l} Y_{a}+g_{a l} Y_{b}\right)= \\
-\frac{3 B\left[A\left(b_{1}-a_{1}^{\prime}\right)-a_{2} b_{2}\right]}{a} g_{a b} Y_{l}+ \\
\frac{3\left[B\left(a_{2} b_{2}-2 A a_{1}^{\prime}+2 a_{2} a_{2}^{\prime}\right)+2 a B^{\prime}\right]}{2 a}\left(g_{a l} Y_{b}+g_{b l} Y_{a}\right) .
\end{gathered}
$$

Substituting into (3.13) and applying (3.5), (3.7) and (4.7) we get

$$
\begin{align*}
& Q_{1}\left[\left(R_{b k c l}+R_{b l c k}\right) Y_{a}+\left(R_{c k a l}+R_{c l a k}\right) Y_{b}+\left(R_{a k b l}+R_{a l b k}\right) Y_{c}\right]+ \tag{4.15}\\
& Q_{2}\left[\left(g_{a l} g_{b c}+g_{b l} g_{c a}+g_{c l} g_{a b}\right) Y_{k}+\left(g_{a k} g_{b c}+g_{b k} g_{c a}+g_{c k} g_{a b}\right) Y_{l}\right]+ \\
& \quad Q_{3} g_{k l}\left(g_{b c} Y_{a}+g_{c a} Y_{b}+g_{a b} Y_{c}\right)+ \\
& Q_{4}\left[\left(g_{b l} g_{k c}+g_{b k} g_{l c}\right) Y_{a}+\left(g_{c l} g_{k a}+g_{c k} g_{l a}\right) Y_{b}+\left(g_{a l} g_{k b}+g_{a k} g_{l b}\right) Y_{c}\right]=0
\end{align*}
$$

where

$$
\begin{gathered}
Q_{1}=-\frac{3 a_{2}\left(a_{1} b_{2}-2 a_{2} a_{1}^{\prime}+2 a_{1} a_{2}^{\prime}\right)}{a}, \\
Q_{3}=2 \frac{4 a B\left(b_{1}-a_{1}^{\prime}\right)-a_{1}\left[A\left(b_{2}-2 a_{2}^{\prime}\right)+B\left(a_{2} b_{2}-6 A a_{1}^{\prime}+6 a_{2} a_{2}^{\prime}\right)\right]}{a a_{1}}, \\
Q_{4}=\frac{3\left[B\left(a_{2} b_{2}-2 A a_{1}^{\prime}+2 a_{2} a_{2}^{\prime}\right)+2 a B^{\prime}\right]}{a}
\end{gathered}
$$

Contracting (4.15) with $g^{a b}$, by the use of (4.7), we get

$$
\begin{align*}
& g_{k l}\left(-\frac{4 B Q_{1}}{a_{1}}+(n+2) Q_{3}+2 Q_{4}\right) Y_{c}-2 Q_{1} R_{k l} Y_{c}+ \tag{4.16}\\
&\left(\frac{2 B Q_{1}}{a_{1}}+(n+2) Q_{2}+2 Q_{4}\right)\left(g_{c l} Y_{k}+g_{k c} Y_{l}\right)=0
\end{align*}
$$

Symmetrizing in (c, k, l) we obtain

$$
T_{k l} Y_{c}+T_{l c} Y_{k}+T_{c k} Y_{l}=0
$$

where

$$
\begin{equation*}
T_{k l}=T_{l k}=g_{k l}\left[(n+2)\left(2 Q_{2}+Q_{3}\right)+6 Q_{4}\right]-2 Q_{1} R_{k l} \tag{4.17}
\end{equation*}
$$

Then the Walker lemma yields $T_{k l}=0$ or $Y_{c}=0$. Subtracting (4.17) from (4.16) and contracting with $g^{k l}$ we get

$$
\begin{equation*}
\left[a_{1}\left((n+2) Q_{2}+2 Q_{4}\right)+2 B Q_{1}\right] Y_{c}=0 \tag{4.18}
\end{equation*}
$$

In the same way, by contraction of (4.15) with $g^{c l}$, we find

$$
\begin{equation*}
\left\{g_{b k}\left[(n+5) Q_{2}+3 Q_{3}+2(n+2) Q_{4}\right]+2 Q_{1} R_{b k}\right\} Y_{c}=0 \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[a_{1}\left((n+3) Q_{2}+Q_{3}\right)-2 B Q_{1}\right] Y_{k}=0 \tag{4.20}
\end{equation*}
$$

At last, by contraction of (4.15) with $g^{k l}$, we obtain

$$
\begin{equation*}
\left[g_{b c}\left(2 Q_{2}+n Q_{3}+2 Q_{4}\right)-2 Q_{1} R_{b c}\right] Y_{a}=0 \tag{4.21}
\end{equation*}
$$

Eliminating the Ricci tensor between (4.17), (4.21) and (4.19) we find

$$
\begin{gathered}
{\left[3(n+3) Q_{2}+(n+5)\left(Q_{3}+2 Q_{4}\right)\right] Y_{c}=0} \\
{\left[(n+1) Q_{2}+2 Q_{3}+2 Q_{4}\right] Y_{c}=0}
\end{gathered}
$$

The system consisting of (4.18), (4.20) and the above two equations is undetermined and equivalent to $Y=0$ or $Q_{2}=0$ and $2 B Q_{1}+a_{1} Q_{3}=0$ and $Q_{3}+2 Q_{4}=0$. Hence $2 Q_{2}+Q_{3}+2 Q_{4}$ yields the second identity, while $a_{1}\left(Q_{3}+2 Q_{4}\right)-\left(2 B Q_{1}+a_{1} Q_{3}\right)$ gives the third one.

Remark 4.1. From (4.15) one can deduce the identity

$$
Q_{1} Y\left[a_{1} R+\frac{B}{2} g \wedge g\right]=0
$$

4.2. Case 2. The next theorem partially improves the result of Tanno ([17]) concerned with Killing vector field on $\left(T M, g^{C}\right)$, where the complete lift g^{C} of g is a $g-$ natural metric with $a_{2}=1$, all others being zero. (In Tanno's paper the Killing vector on $\left(T M, g^{C}\right)$ is of the form $\iota C^{[X]}+X^{C}+Y^{v}+\left(u^{r} P_{r}^{t}\right) \partial_{t}^{h}$, where Y and P satisfy some additional conditions). Furthermore, we prove in the section some sufficient conditions for X and Y to be either infinitesimal affine transformation or infinitesimal isometry.
Theorem 4.6. Let X be an infinitesimal affine vector field on some open $U \subset M$. If

$$
a_{2}=\text { const } \neq 0, b_{3}=\text { const, all others equal } 0
$$

on $\pi^{-1}(U) \subset T M$, then $\iota C^{[X]}+X^{C}$ is a Killing vector field on $\pi^{-1}(U)$.
Proof. It follows from the results of subsection 5.3.3.
Lemma 4.3. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $2\left(b_{1}-a_{1}^{\prime}\right) a_{2}-a_{1} b_{2}=0$ at a point $(x, 0) \in T M$. Moreover, let either $a_{1} a_{2} b_{2} \neq 0$ or $a_{2} \neq 0, b_{2}=0$, $b_{1}-a_{1}^{\prime}=0$. Then

$$
\begin{gathered}
\left(a_{1} B-2 a_{2} b_{2}-3 a_{1} A^{\prime}+4 a_{2} a_{2}^{\prime}\right)\left[\left(L_{X} g\right)-\frac{1}{n} \operatorname{Tr}\left(L_{X} g\right) g\right]=0 \\
a_{2}\left(b_{1}-a_{1}^{\prime}\right)\left[\left(L_{Y} g\right)-\frac{1}{n} \operatorname{Tr}\left(L_{Y} g\right) g\right]=0 \\
a_{1}\left[a_{2}^{\prime}\left(L_{Y} g\right)+A^{\prime}\left(L_{X} g\right)\right]=0 \\
{\left[a_{1}\left(B-3 A^{\prime}\right)+A\left(b_{1}-a_{1}^{\prime}\right)-2 a_{2}\left(b_{2}-2 a_{2}^{\prime}\right)\right]\left(L_{X} g\right)=0}
\end{gathered}
$$

Proof. First consider the case $a_{1} a_{2} b_{2} \neq 0$. By the use of (1.3) - (1.5) and the equality $a_{1} b_{2}=2 a_{2}\left(b_{1}-a_{1}^{\prime}\right)$ Lemma 3.9 yields

$$
\begin{gathered}
\mathbf{F}=2\left(a_{1} B-2 a_{2} b_{2}-3 a_{1} A^{\prime}+4 a_{2} a_{2}^{\prime}\right)\left(L_{X} g\right) \\
\mathbf{B}=-2 a_{2}\left(b_{1}-a_{1}^{\prime}\right)\left(L_{Y} g\right)
\end{gathered}
$$

whence, by ([9], Lemma 19 or [10], Lemma 54), the first two equalities result. Moreover, by Lemma 3.9 we have

$$
\begin{equation*}
\mathbf{F}+\mathbf{B}=-2 a_{2}\left(b_{1}-a_{1}^{\prime}\right)\left(L_{Y} g\right)+2\left(a_{1} B-2 a_{2} b_{2}-3 a_{1} A^{\prime}+4 a_{2} a_{2}^{\prime}\right)\left(L_{X} g\right)=0 \tag{4.22}
\end{equation*}
$$ and

$$
\begin{aligned}
\mathbf{A}_{k m}=3 a_{2} B K_{k m}+\left(3 a_{1} B-a_{2} b_{2}\right) P_{k m}+ & \left(a_{1} B-2 a_{2} a_{2}^{\prime}\right)\left(L_{X} g\right)_{k m}+ \\
& {\left[a_{2}\left(b_{1}-a_{1}^{\prime}\right)-3 a_{1} a_{2}^{\prime}\right] \nabla_{k} Y_{m}=0 . }
\end{aligned}
$$

Symmetrizing in (k, m) and transforming the obtained equation in the same manner as before we find

$$
\begin{equation*}
\left[a_{2}\left(b_{1}-a_{1}^{\prime}\right)-3 a_{1} a_{2}^{\prime}\right]\left(L_{Y} g\right)-\left(a_{1} B-2 a_{2} b_{2}+4 a_{2} a_{2}^{\prime}\right)\left(L_{X} g\right)=0 \tag{4.23}
\end{equation*}
$$

Now from (4.22) and (4.23) we easily deduce the third equality. Finally, the last one is obtained by applying (1.4) to (4.22).

The proof of the second case can be obtained in the same way. The statements differ only in that $b_{2}=0$.

Corollary 4.2. If $a_{1}\left(a_{2} A^{\prime}-a_{2}^{\prime} A\right) \neq 0$, then $L_{X} g=0$.
4.3. Case 3. The main result of the section establishes isomorphism between algebras of Killing vector fields on M and $T M$ for a large subclass of g - metrics (Theorem 4.7). Furthermore, conditions for Y to be non-zero are proved.

Lemma 4.4. Under hypothesis (3.1) suppose that $\operatorname{dimM}>2$ and the following conditions on a_{j}, b_{j} at a point $(x, 0) \in M$ are satisfied: $a_{1}=0, b_{1}=a_{1}^{\prime}, a_{2} \neq 0$, $b_{2} \neq 0$. Then the relations

$$
\begin{gather*}
\left(b_{2}-2 a_{2}^{\prime}\right) L_{X} g=0, \quad\left(b_{2}-2 a_{2}^{\prime}\right) \operatorname{Tr}(\nabla X)=0, \quad\left(b_{2}-2 a_{2}^{\prime}\right) \operatorname{Tr} P=0 \tag{4.24}\\
B K=0, \quad L_{X} g+P=0 \tag{4.25}
\end{gather*}
$$

hold. Moreover P is symmetric. Finally $a_{3} K=0$.
Proof. Substituting $a_{1}=0$ and $a_{1}^{\prime}=b_{1}$ into (3.12), then applying (1.8) and (1.6) we find

$$
\begin{align*}
& b_{2}\left[2 g_{k n}\left(\left(L_{X} g\right)_{l m}+P_{l m}\right)+g_{m n}\left(\left(L_{X} g\right)_{k l}+P_{k l}\right)-g_{k m}\left(\left(L_{X} g\right)_{l n}+P_{l n}\right)\right]+ \tag{4.26}\\
& g_{l n}\left[-3 B K_{k m}+\left(b_{2}-2 a_{2}^{\prime}\right)\left(L_{X} g\right)_{k m}\right]+ \\
& g_{k l}\left[3 B K_{m n}+\left(b_{2}-2 a_{2}^{\prime}\right)\left(L_{X} g\right)_{m n}\right]-2\left(b_{2}-2 a_{2}^{\prime}\right) g_{l m}\left(L_{X} g\right)_{k n}=0 .
\end{align*}
$$

From (1.6) it follows that $P_{a}^{a}+2 X_{, a}^{a}=0$. Thus contracting (4.26) with $g^{l m}$ and then with $g^{k n}$ we get (4.24) in turn. Consequently, contracting (4.26) with $g^{k n}$, by the use of $(1.6),(1.8)$ and (4.24), we obtain

$$
-3 B K_{l m}+(n-1) b_{2}\left[P_{l m}+\left(L_{X} g\right)_{l m}\right]=0
$$

In a similar way, contracting (4.24) with $g^{k l}$, we find

$$
-(n+1) B K_{m n}+b_{2}\left[P_{m n}+\left(L_{X} g\right)_{m n}\right]=0 .
$$

The last two equations yield (4.25). The final statement is a consequence of (4.25), (equation $I I_{1},[9]$) and $a_{1}=0$.
Lemma 4.5. Under assumptions of Lemma 4.4 relations

$$
\begin{gathered}
{\left[\left(b_{2}-2 a_{2}^{\prime}\right)\left(2 A b_{1}-3 a_{2} b_{2}-2 a_{2} a_{2}^{\prime}\right)-2 a_{2} B b_{1}\right] Y=0,} \\
{\left[a_{2} B b_{1}+A b_{1} b_{2}-2 a_{2}\left(b_{2} a_{2}^{\prime}-a_{2} b_{2}^{\prime}\right)\right] Y=0,} \\
\left(b_{1} b_{2}-a_{2} b_{1}^{\prime}\right) Y=0
\end{gathered}
$$

hold on $M \times\{0\}$.
Proof. We apply Lemma 3.8. Substituting $a_{1}^{\prime}=b_{1}, a_{1}=0$, contracting with $g^{a b} g^{c l}$ and applying (1.8) we get

$$
-2 b_{2}(n+2) K_{k, r}^{r}+2 B E_{k r}^{r}-2 B E_{k}^{r}{ }_{r}+(n-1)\left(b_{2}-2 a_{2}^{\prime}\right) M_{k r}^{r}=0,
$$

whence, by the use of Lemma 3.2 we obtain the first equality. Similarly, contracting with $g^{a l} g^{b c}$ we find

$$
\begin{array}{r}
-b_{2}(n+2) K_{k, r}^{r}+B(n+2) E_{k r}^{r}-B(n+2) E_{k}{ }^{r}{ }_{r}-b_{2} n T_{k r}^{r}+b_{2} T_{k}{ }^{r}{ }_{r}- \\
2(n+2)(n-1) Y_{k}=0
\end{array}
$$

whence the second equation results. Finally, the third one follows from Lemma 3.5.

Lemma 4.6. Under assumptions of Lemma 4.4 suppose $L_{X} g=0$. Then

$$
A Y=B Y=A^{\prime} Y=0
$$

at each point $(x, 0) \in T M$.
Proof. By (1.7), Y is a Killing vector field on M. Moreover, (3.8) reduces to

$$
2 A^{\prime} g_{k l} Y_{p}+B\left(Y_{k} g_{l p}+Y_{l} g_{k p}\right)=0
$$

whence we easily deduce $B Y=A^{\prime} Y=0$. Since an infinitesimal isometry is also an infinitesimal affine transformation, from (3.11), by the use of (2.2) and the above properties, we obtain $A Y=0$.

Lemma 4.7. Under assumptions of Lemma 4.4 suppose

$$
\begin{equation*}
P+L_{X} g=0 \tag{4.27}
\end{equation*}
$$

Then $\nabla P=0$ if and only if $B Y=A^{\prime} Y=0$.
Proof. Substituting into (3.8), symmetrizing in (k, p) and applying (4.27) we get

$$
a_{2} \nabla_{l} P_{k p}+B\left(2 g_{k p} Y_{l}+g_{l p} Y_{k}+g_{k l} Y_{p}\right)+2 A^{\prime}\left(g_{k l} Y_{p}+g_{l p} Y_{k}\right)=0
$$

whence the thesis results.
A complete lift of a Killing vector field on M to $(T M, G)$ is always a Killing vector field ([9], [10]). Thus we have proved

Theorem 4.7. Let on $T M$, $\operatorname{dimTM}>4$, a $g-$ natural metric G

$$
\begin{aligned}
G_{(x, u)}\left(X^{h}, Y^{h}\right) & =A\left(r^{2}\right) g_{x}(X, Y)+B\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u), \\
G_{(x, u)}\left(X^{h}, Y^{v}\right) & =a_{2}\left(r^{2}\right) g_{x}(X, Y)+b_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u), \\
G_{(x, u)}\left(X^{v}, Y^{h}\right) & =a_{2}\left(r^{2}\right) g_{x}(X, Y)+b_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u), \\
G_{(x, u)}\left(X^{v}, Y^{v}\right) & =0
\end{aligned}
$$

be given, where $a_{2} b_{2} \neq 0$ everywhere on $T M$ while $b_{2}-a_{2}^{\prime}$ and either A or B do not vanish on a dense subset of TM. If Z is a Killing vector field on $T M$, then there exists an open subset U containing M such that Z restricted to U is a complete lift of a Killing vector field X on M, i.e.

$$
Z_{\mid U}=X^{C}
$$

4.4. Case 4. The class under consideration contains the Sasaki metric g^{S} and the Cheeger-Gromoll one $g^{C G}$. In ([18]) Tanno proved the following

Theorem 4.8. Let (M, g) be a Riemannian manifold. Let X be a Killing vector field on M, P be $a(1,1)$ tensor field on M that is skew-symmetric and parallel and Y be a vector field on M that satisfies $\nabla_{k} \nabla_{l} Y_{p}+\nabla_{l} \nabla_{k} Y_{p}=0$ and (4.31). Then the vector field Z on $T M$ defined by

$$
Z=X^{C}+\iota P+Y^{\#}=\left(X^{r}-\nabla^{r} Y_{s} u^{s}\right) \partial_{r}^{h}+\left(Y^{r}+S_{s}^{r} u^{s}\right) \partial_{r}^{v}
$$

is a Killing vector field on $\left(T M, g^{S}\right)$. Conversely, any Killing vector field on $\left(T M, g^{S}\right)$ is of this form.

A similar theorem holds for $\left(T M, g^{C G}\right),([3])$. However, in virtue of Lemma 3.5 and the remark after it, the Y component vanishes.

We shall give a simple sufficient condition for ιP to be a Killing vector field on $T M$. The rest of the section is devoted to investigations on the properties of the Y component.

Notice that $a \neq 0$ and $a_{2}=0$ require $a_{1} A \neq 0$. From (3.8) we get immediately

$$
\begin{equation*}
a_{1}\left(\nabla_{k} \nabla_{l} Y_{p}+\nabla_{l} \nabla_{k} Y_{p}\right)=2 A^{\prime} g_{k l} Y_{p}+B\left(Y_{k} g_{l p}+Y_{l} g_{k p}\right) \tag{4.28}
\end{equation*}
$$

Since $b_{2}=0$, symmetrizing (equation $\left.I I_{2},[9]\right)$ in (k, p) we get $A E_{l k p}=a_{2}^{\prime}\left(g_{l k} Y_{p}+\right.$ $g_{l p} Y_{k}$). Consequently, in virtue of the properties of the Lie derivative (2.2), (3.11) and (1.9) yield

$$
a_{1} \nabla_{l} P_{k p}=a_{2}^{\prime}\left(g_{l p} Y_{k}-g_{l k} Y_{p}\right)
$$

Moreover, because of $a_{2}=0, b_{2}=0, \bar{S}_{p q}=0$ and $\nabla_{l} X_{q}+S_{l q}=P_{l q}=-P_{q l}$, identity (equation $I_{3},[9]$) together with (3.4) yields

$$
B P_{k p}=a_{2}^{\prime} \nabla_{k} Y_{p}
$$

whence, since P is skew-symmetric,

$$
\begin{equation*}
a_{2}^{\prime} L_{Y} g=0 \text { and } a_{2}^{\prime} \operatorname{Tr}(\nabla Y)=0 \tag{4.29}
\end{equation*}
$$

result.
Next, Lemma 3.9 yields

$$
B \nabla_{k} X_{m}-a_{2}^{\prime} \nabla_{k} Y_{m}+B P_{k m}=0
$$

whence we find

$$
B \nabla X=0 .
$$

We conclude with
Lemma 4.8. Suppose (3.1), dim $M>2$, and $a_{2}=0, b_{2}=0$ on $M \times\{0\}$. If $a_{2}^{\prime}=0$ on $M \times\{0\}$, then $B P=0$ and $\nabla P=0$ on $M \times\{0\}$.

By Proposition 5.4 we obtain
Theorem 4.9. Suppose $a_{2}\left(r^{2}\right)=0, b_{2}\left(r^{2}\right)=0$ and $B\left(r^{2}\right)=0$ on $(T M, G)$. If M admits non-trivial skew-symmetric and parallel $(0,2)$ tensor field P, then its ι-lift is a Killing vector field on TM.

Lemma 4.9. If $a_{2}=0, b_{2}=0$ at $(x, 0)$ and $a \neq 0$ everywhere on $T M$, then

$$
\begin{align*}
& \quad 3 a_{1}^{2}\left(\nabla^{r} Y_{q} R_{r l k p}+\nabla^{r} Y_{p} R_{r l k q}\right)= \tag{4.30}\\
& a_{1} B\left[\left(2 \nabla_{q} Y_{k}-\nabla_{k} Y_{q}\right) g_{p l}+\left(2 \nabla_{p} Y_{k}-\nabla_{k} Y_{p}\right) g_{q l}-\left(\nabla_{p} Y_{q}+\nabla_{q} Y_{p}\right) g_{k l}\right]+ \\
& \quad 2 A\left(b_{1}-a_{1}^{\prime}\right)\left(2 \nabla_{l} Y_{k} g_{p q}-\nabla_{l} Y_{p} g_{k q}-\nabla_{l} Y_{q} g_{k p}\right)
\end{align*}
$$

and

$$
\begin{aligned}
& 3 a_{1}^{2} \nabla^{q} Y_{p} R_{q l k r} u^{p} u^{r}= \\
& \quad 2 A\left(b_{1}-a_{1}^{\prime}\right)\left[Y_{k, l} r^{2}-Y_{p, l} u_{k} u^{p}\right]+a_{1} B\left[\left(2 Y_{k, p}-Y_{p, k}\right) u_{l}-g_{k l} Y_{p, q} u^{q}\right] u^{p}
\end{aligned}
$$

hold at arbitrary point $(x, 0) \in T M$.
Proof. To prove the lemma it is enough to put $a_{2}=0, b_{2}=0$ in (3.12), then multiply by A and apply (1.9). For convenience indices (k, m) are interchanged after that.

Lemma 4.10. Suppose (3.1), dimM $>$ 2. If neither $\nabla_{n} Y_{m}=0$ nor $\nabla_{n} Y_{m}=$ $\frac{T}{n} g_{m n}$, then

$$
\begin{equation*}
\nabla^{r} Y_{q} R_{r l k p}+\nabla^{r} Y_{p} R_{r l k q}=0 \tag{4.31}
\end{equation*}
$$

if and only if $B=b=0$.
Proof. The "only if" part is obvious. Put $T=Y_{r, s} g^{r s}$. Suppose that (4.31) holds. Contracting the right hand side of (4.30) in turn with $g^{k l}, g^{k l} g^{m n}, g^{l m}$ and $g^{k n}$, we get respectively

$$
\begin{gathered}
{\left[2 A b+(n-1) a_{1} B\right]\left(Y_{m, n}+Y_{n, m}\right)-4 A b T g_{m n}=0,} \\
(n-1)\left(2 A b-a_{1} B\right) T=0, \\
-\left[4 A b+(2 n+1) a_{1} B\right] Y_{k, n}+\left[2 A b+(n+2) a_{1} B\right] Y_{n, k}+2 A b T g_{k n}=0, \\
-a_{1} B Y_{l, m}+2\left[(n-1) A b+a_{1} B\right] Y_{m, l}-a_{1} B T g_{l m}=0 .
\end{gathered}
$$

If $Y_{l, m}-Y_{m, l} \neq 0$, then alternating the last two equations in indices we obtain

$$
\begin{aligned}
2 A b+(n+1) a_{1} B & =0 \\
2(n-1) A b+3 a_{1} B & =0
\end{aligned}
$$

whence $B=b=0$ for $n \neq 2$ results.
If $Y_{l, m}-Y_{m, l}=0$, then the suitable linear combination of these equations gives

$$
(n-2)\left(2 A b-a_{1} B\right) Y_{l, m}+\left(2 A b-a_{1} B\right) T g_{l m}=0 .
$$

By the second equation this yields $\left(2 A b-a_{1} B\right) Y_{l, m}=0$. Applying the last result to the first equality completes the proof.

Lemma 4.11. Let $(T M, G)$ be a tangent bundle of a manifold (M, g), $\operatorname{dim} M>2$, with non-degenerate $g-$ natural metric G given by (2.3). Suppose there is given a Killing vector field Z on $T M$ with Taylor expansion (3.2) and (3.3). If the coefficients $a_{2}(t), b_{2}(t)$ vanish along M then Y satisfies

$$
\begin{gather*}
A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right) Y=0, \tag{4.32}\\
\left\{\left[2 B\left(B+A^{\prime}\right)-3 A B^{\prime}\right] a_{1}+A B\left(2 b_{1}+a_{1}^{\prime}\right)\right\} Y=0 . \tag{4.33}
\end{gather*}
$$

Proof. Recall that if $a_{2}\left(r_{0}^{2}\right)=0$, then necessary $a_{1} A \neq 0$ on some neighbourhood of r_{0}^{2}.

From (3.9) we easily get

$$
\begin{equation*}
A\left(\bar{K}_{a b, c}+\bar{K}_{b c, a}+\bar{K}_{c a, b}\right)+2\left(B+A^{\prime}\right)\left(g_{b c} Y_{a}+g_{c a} Y_{b}+g_{a b} Y_{c}\right)=0 \tag{4.34}
\end{equation*}
$$

From Lemma 3.7, by the use of the assumptions on a_{2} and b_{2}, we find

$$
\begin{aligned}
& 2 B\left[\bar{K}_{a b,(k} g_{l) c}+\bar{K}_{b c,(k} g_{l) a}+\bar{K}_{c a,(k} g_{l) b}\right]+ \\
& 3 B\left[g_{c(l} T_{k) a b}+g_{a(l} T_{k) b c}+g_{b(l} T_{k) c a}\right]+ \\
& 6 A^{\prime} g_{k l} M_{a b c}-b\left[g_{a b}\left(Y_{c, k l}+Y_{c, l k}\right)+g_{b c}\left(Y_{a, k l}+Y_{a, l k}\right)+g_{c a}\left(Y_{b, k l}+Y_{b, l k}\right)\right]+ \\
& 6 B^{\prime}\left[\left(g_{a l} g_{k b}+g_{a k} g_{l b}\right) Y_{c}+\left(g_{b l} g_{k c}+g_{b k} g_{l c}\right) Y_{a}+\left(g_{a l} g_{k c}+g_{a k} g_{l c}\right) Y_{b}\right]=0 .
\end{aligned}
$$

Applying (3.8), (3.6) and (3.7) we find

$$
\begin{align*}
& 2 B\left[\bar{K}_{a b,(k} g_{l) c}+\bar{K}_{b c,(k} g_{l) a}+\bar{K}_{c a,(k} g_{l) b}\right]- \tag{4.35}\\
& \frac{4 b B}{a_{1}}\left[\left(g_{a l} g_{b c}+g_{b l} g_{c a}+g_{c l} g_{a b}\right) Y_{k}+\left(g_{a k} g_{b c}+g_{b k} g_{c a}+g_{c k} g_{a b}\right) Y_{l}\right]- \\
& \quad \frac{4 A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)}{a_{1}}\left(g_{a b} Y_{c}+g_{b c} Y_{a}+g_{c a} Y_{b}\right) g_{k l}+\frac{6\left(B^{\prime} a_{1}-B a_{1}^{\prime}\right)}{a_{1}} \times \\
& \quad\left[\left(g_{a l} g_{k b}+g_{a k} g_{l b}\right) Y_{c}+\left(g_{b l} g_{k c}+g_{b k} g_{l c}\right) Y_{a}+\left(g_{a l} g_{k c}+g_{a k} g_{l c}\right) Y_{b}\right]=0 .
\end{align*}
$$

Hence, contracting with $g^{k l}$, we obtain

$$
\begin{align*}
& B\left(\bar{K}_{a b, c}+\bar{K}_{b c, a}+\bar{K}_{c a, b}\right)+ \tag{4.36}\\
& \quad\left[3 B^{\prime}-\frac{\left(B+n A^{\prime}\right)\left(2 b_{1}+a_{1}^{\prime}\right)}{a_{1}}\right]\left(g_{b c} Y_{a}+g_{c a} Y_{b}+g_{a b} Y_{c}\right)=0
\end{align*}
$$

If $B \neq 0$, then a linear combination of (4.34) and (4.36) yields $\psi Y=0$ where

$$
\begin{equation*}
\psi=2 B\left(B+A^{\prime}\right)-3 A B^{\prime}+\frac{A\left(B+n A^{\prime}\right)\left(2 b_{1}+a_{1}^{\prime}\right)}{a_{1}} \tag{4.37}
\end{equation*}
$$

On the other hand, contractions of (4.35) with $g^{a k}$ and then with $g^{b l}$ yield respectively

$$
\begin{aligned}
& B\left[(n+3) \bar{K}_{b c, l}+\bar{K}_{c, r}^{r} g_{b l}+\bar{K}_{b, r}^{r} g_{c l}\right]= \\
& \frac{2}{a_{1}}\left[(n+3) b B+A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right] g_{b c} Y_{l}+ \\
& \frac{1}{a_{1}}\left[2 b B+3(n+2)\left(B a_{1}^{\prime}-B^{\prime} a_{1}\right)+2 A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right]\left(g_{b l} Y_{c}+g_{c l} Y_{b}\right)
\end{aligned}
$$

and

$$
2 B \bar{K}_{c, r}^{r}=\frac{1}{a_{1}}\left[4 b B+3(n+1)\left(B a_{1}^{\prime}-B^{\prime} a_{1}\right)+2 A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right] Y_{c}
$$

Hence we find
(4.38) $2(n+3) a_{1} B \bar{K}_{b c, l}=4\left[(n+3) b B+A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right] g_{b c} Y_{l}+$

$$
\left[3(n+3)\left(B a_{1}^{\prime}-B^{\prime} a_{1}\right)+2 A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right]\left(g_{b l} Y_{c}+g_{c l} Y_{b}\right)
$$

and

$$
\begin{aligned}
& (n+3) a_{1} B\left(\bar{K}_{b c, l}+\bar{K}_{c l, b}+\bar{K}_{l b, c}\right)- \\
& \quad\left[(n+3)\left(B\left(2 b_{1}+a_{1}^{\prime}\right)-3 a_{1} B^{\prime}\right)+4 A^{\prime}\left(2 b_{1}+a_{1}^{\prime}\right)\right]\left(g_{b c} Y_{l}+g_{c l} Y_{b}+g_{l b} Y_{c}\right)=0
\end{aligned}
$$

If $B \neq 0$, then combining the last relation with (4.36) we obtain (4.32) and, as a consequence of (4.37), equality (4.33). On the other hand, if $B\left(r_{0}^{2}\right)=0$, then contractions of (4.38) with $g^{b c}$ and $g^{b l}$ yield either $Y^{a}=0$ or $B^{\prime}=0$ and $A^{\prime}\left(2 b_{1}+\right.$ $\left.a_{1}^{\prime}\right)=0$. This completes the proof.

Lemma 4.12. For an arbitrary B we have

$$
a_{1}^{2} B\left(\nabla_{l} \nabla_{c} Y_{b}+\nabla_{l} \nabla_{b} Y_{c}\right)=-2 A B b g_{b c} Y_{l}-\frac{3}{2} A\left(B a_{1}^{\prime}-a_{1} B^{\prime}\right)\left(g_{b l} Y_{c}+g_{c l} Y_{b}\right)
$$

$$
\begin{aligned}
& a_{1}^{2} B\left(\nabla_{l} \nabla_{c} Y_{b}-\nabla_{b} \nabla_{l} Y_{c}\right)=-B\left(a_{1} B+2 A b\right) g_{b c} Y_{l}+ \\
& \quad-\frac{1}{2}\left[4 A^{\prime} a_{1} B+3 A\left(B a_{1}^{\prime}-a_{1} B^{\prime}\right)\right] g_{b l} Y_{c}-\frac{1}{2}\left[2 a_{1} B^{2}+3 A\left(B a_{1}^{\prime}-a_{1} B^{\prime}\right)\right] g_{c l} Y_{b}
\end{aligned}
$$

Proof. We can suppose $B \neq 0$. From ($I I_{1},[9],[10]$) we get

$$
A \nabla_{l} \bar{K}_{k m}=-a_{1}\left(\nabla_{l} \nabla_{k} Y_{m}+\nabla_{l} \nabla_{m} Y_{k}\right)
$$

Combining this with (4.38), by the use of (4.32), we find the first equality. Hence, by the use of (3.8) and (4.32), we get the second one. On the other hand, if $B Y=0$, then the previous lemma yields $B^{\prime} Y=0$. This completes the proof.

Lemma 4.13. Under hypothesis (3.1) suppose $\operatorname{dim} M>2$ and $a_{2}=0, b_{2}=0$ on $M \times\{0\} \subset T M$. Then

$$
\begin{gather*}
{\left[A a_{2}^{\prime}\left(b_{1}+a_{1}^{\prime}\right)-2 a_{1}\left(B a_{2}^{\prime}+A b_{2}^{\prime}\right)\right] Y=0} \tag{4.39}\\
Y\left[a_{1} a_{2}^{\prime} R-\frac{\left(B a_{2}^{\prime}+2 A b_{2}^{\prime}\right)}{2} g \wedge g\right]=0 \tag{4.40}
\end{gather*}
$$

If $a_{2}^{\prime} \neq 0$, then

$$
\begin{equation*}
b_{2}^{\prime} \nabla Y=0, \quad\left(b_{1}-a_{1}^{\prime}\right) \nabla Y=0 \tag{4.41}
\end{equation*}
$$

Proof. For the proof of the first part we apply Lemma 3.8. Substituting $a_{2}=0$, $b_{2}=0$, by the use of (1.9), we get

$$
\begin{aligned}
& a_{1}\left[2 E_{a b}^{p} R_{p l c k}-E_{b k}^{p} R_{p l a c}+E_{b c}^{p} R_{p l a k}-E_{a k}^{p} R_{p l b c}+E_{a c}^{p} R_{p l b k}\right]+ \\
& B\left[\left(E_{c k b}-E_{k c b}\right) g_{a l}+\left(E_{c a k}-E_{k a c}\right) g_{b l}+\right. \\
& \left.\left(E_{a b k}+E_{b a k}\right) g_{c l}-\left(E_{a b c}+E_{b a c}\right) g_{k l}\right]-2 a_{2}^{\prime}\left(M_{a b k} g_{c l}-M_{a b c} g_{k l}\right)+ \\
& 2 b_{2}^{\prime}\left[\left(g_{b k} g_{c l}-g_{b c} g_{k l}\right) Y_{a}+\left(g_{a k} g_{c l}-g_{a c} g_{k l}\right) Y_{b}+\right. \\
& \left.\quad\left(g_{a l} g_{b k}+g_{a k} g_{b l}\right) Y_{c}-\left(g_{a l} g_{b c}+g_{a c} g_{b l}\right) Y_{k}\right]=0 .
\end{aligned}
$$

Applying (3.5) - (3.7) and the Bianchi identity we find

$$
\begin{aligned}
&-a_{1}^{2} a_{2}^{\prime}\left[3 R_{b l c k} Y_{a}+3 R_{a l c k} Y_{b}+\left(R_{a k b l}+R_{b k a l}\right) Y_{c}-\left(R_{a c b l}+R_{b c a l}\right) Y_{k}\right]- \\
& 2 a_{2}^{\prime}\left[A\left(b_{1}+a_{1}^{\prime}\right)-a_{1} B\right] g_{a b}\left(g_{k l} Y_{c}-g_{c l} Y_{k}\right)- \\
& {\left[2 A a_{2}^{\prime}\left(b_{1}+a_{1}^{\prime}\right)+\right.}\left.a_{1}\left(2 A b_{2}^{\prime}-B a_{2}^{\prime}\right)\right]\left[\left(g_{b c} g_{k l}-g_{b k} g_{c l}\right) Y_{a}+\left(g_{a c} g_{k l}-g_{a k} g_{c l}\right) Y_{b}\right]+ \\
& a_{1}\left(B a_{2}^{\prime}+2 A b_{2}^{\prime}\right)\left[g_{b l}\left(g_{a k} Y_{c}-g_{a c} Y_{k}\right)+g_{a l}\left(g_{b k} Y_{c}-g_{b c} Y_{k}\right)\right]=0 .
\end{aligned}
$$

Symmetrizing the last relation in (a, b, l) we obtain (4.39). Then, symmetrize in (a, b, k). Since coefficient times Y_{c} vanishes by (4.39), by the use of the the Walker lemma and (4.39) we get either $Y=0$ or

$$
a_{1} a_{2}^{\prime}\left(R_{a c b l}+R_{a l b c}\right)=\left(B a_{2}^{\prime}+2 A b_{2}^{\prime}\right)\left(g_{a l} g_{b c}+g_{a c} g_{b l}-2 g_{a b} g_{c l}\right),
$$

whence, alternating in (b, l), we easily obtain

$$
a_{1} a_{2}^{\prime} R_{a c b l}=\left(B a_{2}^{\prime}+2 A b_{2}^{\prime}\right)\left(g_{a l} g_{b c}-g_{a b} g_{c l}\right)
$$

Thus (4.40) is proved.

Suppose now $Y \neq 0$ and $a_{2}^{\prime} \neq 0$ on $M \times\{0\}$. Applying (4.40) to (4.30) and eliminating B, by the use of (4.29), we obtain

$$
\begin{align*}
& 2\left(b_{1}-a_{1}^{\prime}\right)\left(Y_{n, l} g_{k m}+Y_{m, l} g_{k n}-2 Y_{k, l} g_{m n}\right)+ \tag{4.42}\\
& \left(2 \frac{a_{1} b_{2}^{\prime}}{a_{2}^{\prime}}-b_{1}-a_{1}^{\prime}\right)\left(Y_{k, m} g_{l n}+Y_{k, n} g_{l m}\right)- \\
& \left(4 \frac{a_{1} b_{2}^{\prime}}{a_{2}^{\prime}}+b_{1}+a_{1}^{\prime}\right)\left(Y_{m, k} g_{l n}+Y_{n, k} g_{l m}\right)=0
\end{align*}
$$

Contracting (4.42) with $g^{l m}$, by the use of (4.29) we get

$$
\left[(n+1) \frac{a_{1} b_{2}^{\prime}}{a_{2}^{\prime}}-\left(b_{1}-a_{1}^{\prime}\right)\right] Y_{k, n}=0
$$

On the other hand, by contraction with $g^{m n}$ we obtain

$$
\left[\frac{a_{1} b_{2}^{\prime}}{a_{2}^{\prime}}-(n-1)\left(b_{1}-a_{1}^{\prime}\right)\right] Y_{k, l}=0
$$

Hence we easily get either $\nabla Y=0$ or both $b_{2}^{\prime}=0$ and $b_{1}-a_{1}^{\prime}=0$ on $M \times\{0\}$.
Remark 4.2. If $a_{2}^{\prime} \neq 0$ and $Y \neq 0$, then equations (4.41) give a further restriction on the metric G. Namely, if $\nabla Y=0$, then from (1.9) we infer $K=0$ while from (4.28) we get $A^{\prime}=0$ and $B=0$ on $M \times\{0\}$. Consequently, (4.33) yields $B^{\prime}=0$.

Remark 4.3. On the other hand, substituting $b_{2}^{\prime}=0$ and $b_{1}=a_{1}^{\prime}$ into Lemma 3.5 we get $b_{1}^{\prime}=0$ on $M \times\{0\}$.

5. Lifts properties

5.1. Vertical lift X^{v}.

Proposition 5.1. The vertical lift $X^{v}=X^{r} \partial_{r}^{v}$ of a Killing vector field $X=X^{r} \partial_{r}$ to $(T M, G)$ with non-degenerate g - natural metrics G is a Killing vector field on $T M$ if and only if $a_{j}^{\prime}=0$ and $b_{j}=0$ on $T M$.

Proof. Suppose X^{v} is a Killing vector field. Since X is also the Killing one, ([9], equation 6) yields

$$
b_{2}\left(X_{r, k} u_{l}+X_{r, l} u_{k}\right) u^{r}+B\left(u_{k} X_{l}+u_{l} X_{k}\right)+2 u^{r} X_{r}\left(A^{\prime} g_{k l}+B^{\prime} u_{k} u_{l}\right)=0
$$

whence, by contraction with $g^{k l}$ and $u^{k} u^{l}$ we obtain

$$
2 u^{r} X_{r}\left(B+n A^{\prime}+r^{2} B^{\prime}\right)=0
$$

and

$$
2 r^{2} u^{r} X_{r}\left(B+A^{\prime}+r^{2} B^{\prime}\right)=0
$$

since X is a Killing vector field on M. Thus $A^{\prime}=0$ and the only smooth solution to $B+r^{2} B^{\prime}=0$ on $T M$ is $B=0$. In similar manner, from ([9], equation 7 and 8) we deduce that $a_{1}^{\prime}=a_{2}^{\prime}=0$ and $b_{1}=b_{2}=0$ on $T M$. The "only if" part is obvious. Thus the proposition is proved.
5.2. $V^{a} \partial_{a}^{v}=u^{p} \nabla^{r} Y_{p} \partial_{r}^{v}$. Let Y be a non-parallel Killing vector field on M and consider its lift $u^{p} \nabla^{r} Y_{p} \partial_{r}^{v}$ to $(T M, G)$. Then we have $\partial_{k}^{v} V^{a}=\nabla^{a} Y_{k}, \partial_{k}^{h} V^{a}=$ $u^{p} \Theta_{k}\left(\nabla^{a} Y_{p}\right)$ and from ([9] or [10], equations 6, 7 and 8) we obtain

$$
\begin{aligned}
\left(L_{V^{a}} \partial_{a}^{v} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right) & =a_{2}\left(\nabla_{l} \nabla_{k} Y_{p}+\nabla_{l} \nabla_{k} Y_{p}\right) u^{p}+B\left(\nabla_{k} Y_{p} u^{p} u_{l}+\nabla_{l} Y_{p} u^{p} u_{k}\right), \\
\left(L_{V^{a}} \partial_{a}^{v} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right) & =a_{2} \nabla_{l} Y_{k}+a_{1} \nabla_{l} \nabla_{k} Y_{p} u^{p}+b_{2} \nabla_{l} Y_{p} u^{p} u_{k}, \\
\left(L_{V^{a}} \partial_{a}^{v} G\right)\left(\partial_{k}^{v}, \partial_{l}^{v}\right) & =0 .
\end{aligned}
$$

Hence we deduce
Proposition 5.2. Let Y be a non-parallel Killing vector field on M satisfying $\nabla \nabla Y=0$. Then $u^{p} \nabla^{r} Y_{p} \partial_{r}^{v}$ is a Killing vector field on $T M$ if and only if $a_{2}=b_{2}=$ $B=0$ on $T M$.

Proposition 5.3. Let Y be a non-parallel Killing vector field on M. If $a_{2}=b_{2}=$ $B=0$ on $T M$ and $u^{p} \nabla^{r} Y_{p} \partial_{r}^{v}$ is a Killing vector field on $T M$ then $\nabla \nabla Y=0$ on M.
5.3. \perp.

Proposition 5.4. Let P be an arbitrary (0,2)-tensor field on (M, g). Then its $\iota-$ lift $\iota P=u^{r} P_{r}^{a} \partial_{a}^{v}$ to $(T M, G)$ with non-degenerate $g-$ natural metric G satisfies

$$
\begin{array}{r}
\left(L_{\iota P} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right)=a_{2} u^{r}\left(\nabla_{k} P_{l r}+\nabla_{l} P_{k r}\right)+b_{2} u^{p} u^{r}\left(\nabla_{k} P_{p r} u_{l}+\nabla_{l} P_{p r} u_{k}\right)+ \\
2\left(A^{\prime} g_{k l}+B^{\prime} u_{k} u_{l}\right) P_{p r} u^{p} u^{r}+B u^{r}\left(P_{k r} u_{l}+P_{l r} u_{k}\right), \\
\left(L_{\iota P} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right)=a_{2} P_{l k}+b_{2} u^{r} P_{r k} u_{l}+a_{1} u^{r} \nabla_{l} P_{k r}+b_{1} \nabla_{l} P_{r}^{a} u_{a} u^{r} u_{k}+ \\
2\left(a_{2}^{\prime} g_{k l}+b_{2}^{\prime} u_{k} u_{l}\right) P_{p r} u^{p} u^{r}+b_{2} u^{r}\left(P_{k r} u_{l}+P_{l r} u_{k}\right), \\
\left(L_{\iota P} G\right)\left(\partial_{k}^{v}, \partial_{l}^{v}\right)=a_{1}\left(P_{k l}+P_{l k}\right)+b_{1}\left[u^{p}\left(P_{k p}+P_{p k}\right) u_{l}+u^{p}\left(P_{l p}+P_{p l}\right) u_{k}\right]+ \\
2\left(a_{1}^{\prime} g_{k l}+b_{1}^{\prime} u_{k} u_{l}\right) P_{p r} u^{p} u^{r} .
\end{array}
$$

Proof. The Proposition follows from ([9] or [10], equations 6, 7 and 8), where we have $H^{a}=0, V^{a}=u^{r} P_{r}^{a}, \partial_{k}^{v} V^{a}=P_{k}^{a}, \partial_{k}^{h} V^{a}=u^{p}\left(\partial_{k} P_{p}^{a}-\Gamma_{p k}^{t} P_{t}^{a}\right)$ and $\partial_{k}^{h} V^{a}+$ $V^{r} \Gamma_{k r}^{a}=u^{p} \nabla_{k} P_{p}^{a}$.

Hence we easily get
Proposition 5.5. Let P be a skew-symmetric (0,2)-tensor field on (M, g). Then its ι - lift $\iota P=u^{r} P_{r}^{a} \partial_{a}^{v}$ to $(T M, G)$ with non-degenerate g - natural metric G satisfies

$$
\begin{aligned}
& \left(L_{\iota P} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right)=a_{2}\left(u^{r} \nabla_{k} P_{l r}+u^{r} \nabla_{l} P_{k r}\right)+B\left(u^{r} P_{k r} u_{l}+u^{r} P_{l r} u_{k}\right) \\
& \left(L_{\iota P} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right)=a_{2} P_{l k}+b_{2} u^{r} P_{l r} u_{k}+a_{1} u^{r} \nabla_{l} P_{k r} \\
& \quad\left(L_{\iota P} G\right)\left(\partial_{k}^{v}, \partial_{l}^{v}\right)=0 .
\end{aligned}
$$

5.3.1. $\iota C^{[X]}$. Put $C^{[X]}=\left(\left(C^{[X]}\right)_{k}^{h}\right)=\left(-g^{h r}\left(L_{X} g\right)_{r k}\right)=\left(-\left(\nabla^{h} X_{k}+\nabla_{k} X^{h}\right)\right)$ on (M, g). Then its ι-lift $\iota C^{[X]}=\left(0, u^{k}\left(C^{[X]}\right)_{k}^{h}\right)=\left(0,-u^{k}\left(\nabla^{h} X_{k}+\nabla_{k} X^{h}\right)\right)$ is a vertical vector field on $T M$. In adapted coordinates $\left(\partial_{k}^{v}, \partial_{l}^{h}\right)$ we have

$$
\iota C^{[X]}=-u^{k}\left(\nabla^{h} X_{k}+\nabla_{k} X^{h}\right) \partial_{h}^{v}
$$

Applying ([9] or [10], equations 6, 7 and 8), we easily get

$$
\begin{aligned}
& \left(L_{\iota C}\left[X_{]} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right)=\right. \\
& \quad-a_{2} u^{p}\left[\nabla_{k} \nabla_{l} X_{p}+\nabla_{l} \nabla_{k} X_{p}+\nabla_{k} \nabla_{p} X_{l}+\nabla_{l} \nabla_{p} X_{k}\right]- \\
& 2 b_{2} u^{p} u^{q}\left[\nabla_{k} \nabla_{p} X_{q} u_{l}+\nabla_{l} \nabla_{p} X_{q} u_{k}\right]-4\left(A^{\prime} g_{k l}+B^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q}- \\
& B u^{p}\left[\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right], \\
& \left(L_{\iota C}{ }^{[X]} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right)= \\
& -a_{2}\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)-b_{2} u^{p}\left[2\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right]- \\
& a_{1} u^{p}\left(\nabla_{l} \nabla_{k} X_{p}+\nabla_{l} \nabla_{p} X_{k}\right)-2 b_{1} u^{p} u^{q} \nabla_{l} \nabla_{p} X_{q} u_{k}- \\
& 4\left(a_{2}^{\prime} g_{k l}+b_{2}^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q}, \\
& \begin{array}{r}
\left(L_{\iota C}^{[X]} G\right)\left(\partial_{k}^{v}, \partial_{l}^{v}\right)= \\
-2 a_{1}\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)-2 b_{1} u^{p}\left[\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right]- \\
4\left(a_{1}^{\prime} g_{k l}+b_{1}^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q} .
\end{array}
\end{aligned}
$$

5.3.2. Complete lift X^{C} of X to (TM, G). We have $X^{C}=\left(X^{r} \partial_{r}\right)^{C}=X^{r} \partial_{r}+$ $\partial X^{r} \delta_{r}=X^{r} \partial_{r}^{h}+u^{p} \nabla_{p} X^{r} \partial_{r}^{v}$. Making use of ([9] or [10], equations 6,7 and 8) we obtain

$$
\begin{aligned}
& \left(L_{X^{C}} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right)= \\
& a_{2} u^{p}\left[\nabla_{k} \nabla_{p} X_{l}+X^{r} R_{r k p l}+\nabla_{l} \nabla_{p} X_{k}+X^{r} R_{r l p k}\right]+ \\
& b_{2} u^{p} u^{q}\left[\left(\nabla_{k} \nabla_{p} X_{q}+X^{r} R_{r k p q}\right) u_{l}+\left(\nabla_{l} \nabla_{p} X_{q}+X^{r} R_{r l p q}\right) u_{k}\right]+ \\
& A\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)+B u^{p}\left[\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right]+ \\
& 2\left(A^{\prime} g_{k l}+B^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q}, \\
& \left(L_{X^{C}} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right)= \\
& a_{1} u^{p}\left[\nabla_{l} \nabla_{p} X_{k}+X^{r} R_{r l p k}\right]+a_{2}\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)+ \\
& b_{2} u^{p}\left[\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right]+ \\
& b_{1} u^{p} u^{q}\left(\nabla_{l} \nabla_{p} X_{q}+X^{r} R_{r l p q}\right) u_{k}+2\left(a_{2}^{\prime} g_{k l}+b_{2}^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q}, \\
& \left(L_{X^{C}} G\right)\left(\partial_{k}^{v}, \partial_{l}^{v}\right)= \\
& a_{1}\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)+b_{1} u^{p}\left[\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l}+\left(\nabla_{l} X_{p}+\nabla_{p} X_{l}\right) u_{k}\right]+ \\
& 2\left(a_{1}^{\prime} g_{k l}+b_{1}^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q} .
\end{aligned}
$$

5.3.3. $\iota C^{[X]}+X^{C}$ for an infinitesimal affine transformation. Suppose that X is an infinitesimal affine transformation on M. Then by (2.2) and the definition

$$
\nabla_{k} \nabla_{l} X_{p}+\nabla_{k} \nabla_{p} X_{l}=\nabla_{k} \nabla_{l} X_{p}+X^{r} R_{r k l p}+\nabla_{k} \nabla_{p} X_{l}+X^{r} R_{r k p l}=0
$$

and

$$
u^{p} u^{q} \nabla_{k} \nabla_{p} X_{q}=-u^{p} u^{q} X^{r} R_{r k p q}=0
$$

Therefore, applying results of previous subsections, we find

$$
\left(L_{\iota C}{ }^{[X]}+X^{C} G\right)\left(\partial_{k}^{h}, \partial_{l}^{h}\right)=A\left(\nabla_{k} X_{l}+\nabla_{l} X_{k}\right)-2\left(A^{\prime} g_{k l}+B^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q},
$$

$$
\begin{aligned}
& \left(L_{\iota C}{ }^{[X]}+X^{C} G\right)\left(\partial_{k}^{v}, \partial_{l}^{h}\right)= \\
& \quad-2\left(a_{2}^{\prime} g_{k l}+b_{2}^{\prime} u_{k} u_{l}\right) u^{p} u^{q} \nabla_{p} X_{q}-b_{2} u^{p}\left(\nabla_{k} X_{p}+\nabla_{p} X_{k}\right) u_{l} \\
& \left(L_{\iota C}\right.
\end{aligned}
$$

6. Appendix

A $(0,4)$ tensor B on a manifold M is said to be a generalized curvature tensor if

$$
B(V, X, Y, Z)+B(V, Y, Z, X)+B(V, Z, X, Y)=0
$$

and

$$
B(V, X, Y, Z)=-B(X, V, Y, Z), \quad B(V, X, Y, Z)=B(Y, Z, V, X)
$$

for all vector fields V, X, Y, Z on M ([16]).
For a $(0, k)$ tensor $T, k \geq 1$, we define

$$
(R \cdot T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=\nabla_{Y} \nabla_{X} T\left(X_{1}, \ldots, X_{k}\right)-\nabla_{X} \nabla_{Y} T\left(X_{1}, \ldots, X_{k}\right)
$$

For more details see for example ([6]) or ([11]).
The Kulkarni-Nomizu product of symmetric $(0,2)$ tensors A and B is given by

$$
\begin{aligned}
& (A \wedge B)(U, X, Y, V)= \\
& \quad A(X, Y) B(U, V)-A(X, V) B(U, Y)+A(U, V) B(X, Y)-A(U, Y) B(X, V)
\end{aligned}
$$

Theorem 6.1. [12] Let (M, g) be a semi-Riemannian manifold with metric g, $\operatorname{dim} M>2$. Let g_{X} be a 1-form associated to g, i.e. $g_{X}(Y)=g(Y, X)$ for any vector field Y.

If B is generalized curvature tensor having the property $R \cdot B=0$ and P is a one-form on M satisfying

$$
\begin{equation*}
(R \cdot V)(X ; Y, Z)=\left(P \wedge g_{X}\right)(Y, Z) \tag{6.1}
\end{equation*}
$$

for some 1-form V, then

$$
P\left(B-\frac{\operatorname{Tr} B}{2 n(n-1)} g \wedge g\right)=0
$$

If A is a symmetric (0,2 -tensor on M having the properties $R \cdot A=0$ and (6.1) then

$$
P\left(A-\frac{\operatorname{Tr} A}{n} g\right)=0
$$

Lemma 6.1. [19] Let $A_{l}, B_{h k}$ where $l, h, k=1, \ldots, n$ be numbers satisfying

$$
B_{h k}=B_{k h}, \quad A_{l} B_{h k}+A_{h} B_{k l}+A_{k} B_{l h}=0 .
$$

Then either $A_{l}=0$ for all l or $B_{h k}=0$ for all h, k.

References

[1] Abbassi, M. T. K., Métriques Naturelles Riemanniennes sur la Fibré tangent une variété Riemannienne, Editions Universitaires Européénnes, Saarbrücken, Germany, 2012.
[2] Abbassi, M. T. K., g- natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds, Note di Matematica, 1 (2008), suppl. n. 1, 6-35.
[3] Abbassi, M. T. K., Sarih, M., Killing vector fields on tangent bundle with Cheeger-Gromoll metric, Tsukuba J. Math., 27 no. 2, (2003), 295-306.
[4] Abbassi, M. T. K., Sarih, Maâti, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), no. 1, 71-92.
[5] Abbassi, M. T. K., Sarih, Maâti, On some hereditary properties of Riemannian g - natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), no. 1, 19-47.
[6] Belkhelfa, M., Deszcz, R., Głogowska, M., Hotloś, M., Kowalczyk, D., Verstraelen, L., On some type of curvature conditions, in: PDEs, Submanifolds and Affine Differential Geometry, Banach Center Publ. 57, Inst. Math., Polish Acad. Sci., 2002, 179-194.
[7] Degla, S., Ezin, J. P., Todjihounde, L., On g - natural metrics of constant sectional curvature on tangent bundles, Int. Electronic J. Geom., 2 (1) (2009), 74-94.
[8] Dombrowski, P., On the Geometry of Tangent Bundle, J. Reine Angew. Math., 210 (1962), 73-88.
[9] Ewert-Krzemieniewski, S., On Killing vector fields on a tangent bundle with g - natural metric, Part I. Note Mat., 34 no.2, (2014), 107-133.
[10] Ewert-Krzemieniewski, S., On a classification of Killing vector fields on a tangent bundle with $g-$ natural metric, arXiv:1305:3817v1.
[11] Ewert-Krzemieniewski, S., Totally umbilical submanifolds in some semi-Riemannian manifolds, Coll. Math., 119 no. 2, (2010), 269-299.
[12] Grycak, W., On generalized curvature tensors and symmetric (0,2)-tensors with symmetry condition imposed on the second derivative, Tensor N.S., 33 no. 2, (1979), 150-152.
[13] Gudmundsson, S., Kappos, E., On the Geometry of Tangent Bundles, Expo. Math., 20 (2002), 1-41.
[14] Kobayashi, S., Nomizu, K., Fundations of Differential Geometry, Vol. I, 1963.
[15] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, A classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1-29.
[16] Nomizu, K., On the decomposition of generalized curvature tensor fields, Differential geometry in honor of K. Yano, Kinokuniya, Tokyo, (1972), 335-345.
[17] Tanno, S., Infinitesimal isometries on the tangent bundles with complete lift metric, Tensor, N.S., 28 (1974), 139-144.
[18] Tanno, S., Killing vectors and geodesic flow vectors on tangent bundle, J. Reine Angew. Math, 238 (1976), 162-171.
[19] Walker, A. G., On Ruse's spaces of recurrent curvature, Proc. Lond. Math. Soc., 52 (1950), 36-64.
[20] Yano, K., Integrals Formulas in Riemannian Geometry, Marcel Dekker, Inc. New York, 1970.
[21] Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, Inc. New York, 1973.
West Pomeranian University of Technology Szczecin, School of Mathematics, Al.
Piastów 17, 70-310 Szczecin, Poland,
E-mail address: ewert@zut.edu.pl

[^0]: Date: Received: April 11, 2014 and Accepted: November 20, 2014.
 2010 Mathematics Subject Classification. Primary 53B20, 53C07, secondary 53B21, 55C25.
 Key words and phrases. Riemannian manifold, tangent bundle, g - natural metric, Killing vector field, non-degenerate metric.

