ZAMAN-UZAYDA SONLU FARKLAR YÖNTEMİN DEZAVANTAJLARI İÇİN GEOMETRİK OPTİK YÖNTEMLERİN KULLANIMI

Mehmet ÇİYDEM*, Sencer KOÇ**

*ENGİTEK Mühendislik Ltd, 06460 Balgat, Ankara, **ODTÜ Elek-Elektronik Müh., 06530 Balgat, Ankara, mehmet.ciydem@engitek.com.tr, skoc@metu.edu.tr

(Geliş/Received: 27.05.2013; Kabul/Accepted: 13.11.2013)

ÖZET

Elektromanyetikte Maxwell denklemleri, kısmi diferansiyel denklemler (KDD) olup, çözümü için uzay-zamanda nümerik yöntemler kullanılmaktadır. En yaygın yöntemlerden biri olan Zaman-Uzayda Sonlu Farklar (ZUSF) yöntemi Maxwell KKD'leri ızgarada doğrudan çözer. ZUSF'de, elektromanyetik alanları yeterli miktarda örnekleyip, katlanmayı önlemek için ızgara aralıkları (Δx , Δy , Δz) seçilir. Maksimum zaman aralığı (Δt) ise nümerik algoritmanın kararlılığını sağlayacak şekilde belirlenir. Nümerik çözümlerde, KDD'lerin ayrıklaştırılmasından dolayı, ZUSF yöntemi, ızgarada farklı hızlarda ve yönbağımlı dalga yayılımına sebep olan nümerik dağılmaya maruzdur. Nümerik dağılma zamansal çözümde ciddi faz hataları yaratmaktadır. Bu hatalar birikimli artmaktadır. Ayrıca ızgaradaki bazı kipler ışık hızının ötesine geçmektedir. Bu çalışmada, Maxwell KDD'lerini doğrudan çözmek yerine, Geometrik Optik yöntemleri kullanarak, zamansal elektromanyetik için Işın Tabanlı Sonlu Farklar (ITSF) adlı bir yöntem önerilmiştir. Elektromanyetik alanların kendisi ve ardışık zaman diferansiyellerindeki süreksizlikler hiperuzayda sadece dalgacepheleri üzerinde olur ve ışınlar üzerinde taşıma denklemleri adı verilen adi diferansiyel denklemler (ADD) ile taşınırlar. Yönbağımsız ortamda, elektromanyetik enerji dalgacephesine dik olan ışınlar doğrultusunda akar. ITSF, hesaplama ızgarası yaratılırken enerjinin akış yönünü (ışınları) dikkate alır, ızgaradaki nümerik hesaplamalar için ADD olan taşıma denklemlerini kullanır ve Taylor serisi açılımdan yararlanarak zamansal elektromanyetik alanı hesaplar. Benzetim sonuçları, ZUSF'nin dezavantajlarını gidermek için ITSF'nin kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Elektromanyetik, Maxwell denklemleri, nümerik yöntemler, nümerik dağılma, geometrik optik.

USE OF GEOMETRICAL OPTIC METHODS FOR DISADVANTAGES OF FDTD METHOD

ABSTRACT

Numerical methods in space-time have long been used to solve Maxwell's partial differential equations (PDEs) accurately. Finite Difference Time Domain (FDTD), one of the most widely used method, solves Maxwell's PDEs directly in computational grid. In FDTD, grid spacings (Δx , Δy , Δz) are selected to properly sample field quantities to avoid aliasing and maximum allowable time-step (Δt) is determined to ensure numerical stability of algorithm. Due to discretization of PDEs, FDTD inherently suffers from numerical dispersion, which results in numerical velocity errors and anisotropy in the grid. Anisotropy and different velocities result in numerical phase errors in the solution and it accumulates within the grid. Moreover, some modes in the grid propagate faster than light. In this study, contrary to FDTD, Geometrical Optic methods have been utilized and a new computational method called as Ray-Based Finite Difference (RBFD) method has been proposed for computational electromagnetics. Discontinuities in the fields and their successive time derivatives can only exist on the wavefronts and propagate along the rays. They are transported in computational domain by transport equations that are ordinary differential equations (ODEs). In isotropic media, energy flows in ray direction, which is perpendicular to the wavefronts. RBFD mainly utilizes directional energy flow property for grid generation and ODE nature of transport equations for numerical computations. Simulation results show that RBFD can be exploited to eliminate disadvantges of FDTD.

Keywords: Electromagnetics, Maxwell's equations, numerical methods, numerical dispersion, geometrical optic.

1. **GİRİŞ** (INTRODUCTION)

Başlangıç değer (initial value) elektromanyetik problemlerde, kısmi diferansiyel denklemler (KDD) olan Maxwell denklemleri uzay-zaman bölgesinde sınır koşulları (boundary conditions) da sağlanarak çözülmelidir. Kaynaksız, yönbağımsız (isotropic), homojen bir ortamda ($\varepsilon_r \varepsilon_0, \mu_0$) Maxwell dönel (curl) denklemleri aşağıdaki gibidir [1]:

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \quad , \quad \nabla \times \mathbf{H} = \varepsilon_r \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \tag{1}$$

Bunları çözmek için pek çok nümerik yöntem literatürde kullanılmaktadır. En yaygın yöntemlerden biri olan Zaman-Uzayda Sonlu Farklar (ZUSF) yönteminde, elektromanyetik alanları (E,H) yeterli miktarda örnekleyip, örnekler arası katlanmayı (aliasing) önlemek ve istenen doğruluk, hassasiyeti elde etmek için hesaplama bölgesindeki ızgara aralıkları (Δx , Δy , Δz) problemdeki en küçük dalgaboyuna (λ_{\min}) göre seçilir [2], örneğin $\Delta x = \Delta y = \Delta z = \Delta = \lambda_{\min} / 10$ vb. Seçilebilecek maksimum zaman aralığı (Δt) ise nümerik algoritmanın kararlılığını garanti etmek için, Δt ile Δx , Δy , Δz arasındaki ilişkiyi ifade eden CFL koşuluna göre belirlenir [2]. $\hat{\mathbf{z}}$ yönünde yayılan, 1-boyutlu, düzlemsel enine elektromanyetik dalga (E_x, H_y) için Maxwell denklemleri ve CFL koşulu şöyledir:

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\varepsilon \cdot \varepsilon_0} \frac{\partial H_y}{\partial z} \quad , \quad \frac{\partial H_y}{\partial t} = -\frac{1}{\mu_0} \frac{\partial E_x}{\partial z} \tag{2}$$

$$\Delta t \le \frac{\Delta z}{\upsilon}$$
, $CFL = \frac{\upsilon \Delta t}{\Delta z}$ (3)

 $v = 1/\sqrt{\varepsilon_r \varepsilon_0 \mu_0}$ ortamın faz hızı olup, boş uzay ortamında (ε_0, μ_0) ışık hızı olmaktadır, $c = 1/\sqrt{\varepsilon_0 \mu_0}$. Nümerik çözümlerde KDD'in hesaplama bölgesinde ayrıklaştırılmasından (discretization) dolayı, ZUSF yöntemi tabiatı gereği nümerik dağılmaya (dispersiyon) maruzdur [2]. Nümerik dağılma, hesaplama bölgesinde, elektromanyetik dalgayı oluşturan her bir kipin (mod) farklı faz hızlarında yayılması ve bu hızların da yönbağımlı (anisotropic) özellik göstermesidir. 2 yönünde yayılan, 1-boyutlu, düzlemsel enine elektromanyetik dalga (E_x, H_y) için ZUSF yönteminden kaynaklı, gerçek dalga sayısı vektörü $\mathbf{k} = k_z \hat{\mathbf{z}}$ 'den farklı olan nümerik dalga sayısı vektörü $\mathbf{k}^* = k_z^* \hat{\mathbf{z}}$ ile $(\Delta z, \Delta t)$ arasındaki nümerik dağılma ilişkisi aşağıda verilmiştir:

$$\cos\left(\omega\Delta t\right) - 1 = \left(\frac{\upsilon\Delta t}{\Delta z}\right)^2 \left(\cos\left(k_z^*\Delta z\right) - 1\right) \tag{4}$$

Hesaplama ızgarasında yönbağımlı farklı hızlarda kiplerin yayılımı, zamansal çözümde ciddi faz hataları yaratır ve bu hatalar ızgara içinde birikimli olarak artmaktadır. Hesaplama ızgarasında mesafe kat edildikçe dalga şeklinde ciddi bozulmalar meydana gelir ve sonuçlar güvenilmez olur. Schneider'in [3] çalışmasına göre de, ızgaradaki bazı kipler ışık hızından bile daha hızlı (superluminal) gitmektedir. Fakat bu kipler, hesaplama bölgesinde yayıldıkça zayıflar ve etkileri kaybolurlar. İdeal durumda tüm kipler boş uzay ortamında ışık hızı (c) ile hareket etmelidir. Fakat ZUSF ızgarasında, çözünürlüğe (1/N₂) bağlı olarak kiplerin ızgaradaki nümerik faz hızları farklılıklar göstermektedir. Şekil 1; ızgara çözünürlüğüne baglı olarak nümerik faz hızının ışık hızına oranını göstermektedir. Izgara çözünürlüğü $(1/N_{\lambda})$, 0,5'ten büyük olduğunda, yüksek frekanslı kipler için elektromanyetik alanlar ızgarada seyrek örneklendigi anlamına gelmektedir, ve bunlar ışık hızının ötesine geçmektedir.

2. ZAMANSAL ELEKTROMANYETİK İÇİN GEOMETRİK OPTİK (GEOMETRIC OPTIC FOR TIME DOMAIN ELECTROMAGNETICS)

ZUSF'nin yukarda bahsedilen dezavantajlarını gidermek için Geometrik Optik (GO) yöntemleri kullanılabilir [4, 5]. Bilindiği üzere GO'nun temel araçları dalgacepheleri (wavefronts) ve ışınlardır (rays). Her çeşit dalga olayını konu alan matematiksel fizik ve KDD teorisinden bilinmektedir ki elektromanyetik alanların (**E**, **H**) kendisi ve ardışık zaman diferansiyellerindeki süreksizlikler hiperuzayda (Δx , Δy , Δz , Δt) sadece $\Psi(x, y, z) = ct$ dalgacepheleri üzerinde olurlar ve şöyle tanımlanırlar [6,10,11]:

$$\mathbf{A}_{\nu}(x, y, z, t) = \left[\frac{\partial^{\nu} \mathbf{E}(x, y, z, t)}{\partial t^{\nu}}\right], \quad \nu = 0, 1, 2, ..$$

$$\mathbf{B}_{\nu}(x, y, z, t) = \left[\frac{\partial^{\nu} \mathbf{H}(x, y, z, t)}{\partial t^{\nu}}\right], \quad \nu = 0, 1, 2, ..$$
(5)

 $[g(t)] = g(t^+) - g(t^-)$ anlamındadır. Yönbağımsız ortamda, elektromanyetik enerji E×H dalgacephesine dik olan ışınlar doğrultusunda akar. Bu süreksizlikler de dalgacephelerine dik olan ışınlar doğrultusunda yayılırlar ve hesaplama bölgesinde taşıma (transport) denklemleri adı verilen adi diferansiyel denklemler (ADD) ile taşınırlar [6]. Dolayısıyla ışın çizgileri avnı zamanda elektromanyetik enerjinin akış yönüdür. Örneğin elektrik alan E süreksizlikleri, ortamda ışınlar doğrultusunda aşağıdaki ADD taşıma denklemleri ile taşınırlar. Benzer bir denklem manyetik alan H süreksizlikleri için de vardır [6].

$$2\frac{d\mathbf{A}_{\nu}}{d\tau} + \frac{2}{n} (\mathbf{A}_{\nu} \cdot \nabla n) \nabla \Psi$$

= $-c \nabla \times \nabla \times \mathbf{A}_{\nu-1} - c \nabla ((\nabla \cdot (\varepsilon \mathbf{A}_{\nu-1})) / \varepsilon)$ (6)

(6)'da, n ortamın kırılma indeksi, τ ışın doğrultusunda bir parametre olup yay uzunluğu (arc length) *s* ve zaman *t* ile ilişkisi aşağıdaki gibidir:

$$ds = nd\tau \quad , \quad \tau = ct / n^2 \tag{7}$$

Süreksizlikler ızgarada ışın doğrultusunda herhangi bir konuma (x_0, y_0, z_0) (6)'ya göre taşındıktan sonra, o konumdaki zamansal toplam elektrik alan $\mathbf{E}(x_0, y_0, z_0, t)$ hesaplanabilir. $t < t_0$ için (x_0, y_0, z_0) ' da elektrik alan sıfırdır çünkü herhangi bir süreksizlik henüz o konuma doğal olarak ulaşmamıştır, ancak $t \ge t_0$ sonrasında süreksizlik ışın çizgisinde o konuma ulaşır ve elektrik alan oluşur. Işın çizgisindeki o konumdan aynı zamanda bir dalgacephesi $\Psi(x_0, y_0, z_0)$ geçmektedir ve o konumun zaman referansı t_0 ile dalgacephesi $\Psi(x_0, y_0, z_0)$ arasındaki ilişki şöyledir:

$$\Psi(x_0, y_0, z_0) = ct_0$$
(8)

Zamansal toplam elektrik alanın hesaplanması Taylor serisi açılımı ile yapılır [6].

$$\mathbf{E}(x_{0}, y_{0}, z_{0}, t) = \begin{cases} 0 & t < t_{0} = \frac{\Psi(x_{0}, y_{0}, z_{0})}{c} \\ \sum_{\nu=0}^{\infty} \frac{\mathbf{A}_{\nu}(x_{0}, y_{0}, z_{0}, t_{0})(t - t_{0})^{\nu}}{\nu!} & t \ge t_{0} = \frac{\Psi(x_{0}, y_{0}, z_{0})}{c} \end{cases}$$
(9)

(9) seri açılımdaki ilk terim A_0 , GO terimi olarak adlandırılır. Üst dereceli diğer terimler, GO terim üstüne yapılan iyileştirmelerdir. Üst dereceli diğer terimlerin fiziksel anlamları ve elektromanyetik problemlerin çözümündeki etkileri araştırılmaktadır.

GO araçları kullanarak, bu çalışmada önerilen ITSF yönteminin ZUSF'den temel farklarını şöyle özetleyebiliriz. ITSF ızgara oluşturulmasında enerjinin akış yönünü dikkate alır ve ızgara, dalgacepheleri-ışınlarla örtüşecek şekilde nümerik olarak yaratılır. ZUSF'de ise Kartezyen, silindirik, küresel koordinatlarda ızgara yaratılırken böyle bir mantık gözetilmez, çözülen problemin geometrisi, özellikleri ve istenen doğruluk ve kararlılık koşuluna göre izgara ve zaman aralıkları (Δx , Δy , Δz , Δt) belirlenir. Bu bağlamda pek çok ZUSF yöntemleri geliştirilmiştir [2]. Bir diğer fark ise, ITSF süreksizliklerin ızgaradaki nümerik hesaplamalarını ADD olan taşıma denklemleri ile yapıp, taşınan bu süreksizlikleri Taylor seri açılımında katsayı olarak kullanarak zamansal toplam elektrik alanı $\mathbf{E}(x_0, y_0, z_0, t)$ hesaplar. ZUSF ise, Maxwell dönel (curl) denklemlerin Yee algoritmasına [7] göre uzayayrıklaştırılıp zamanda (discretization), güncellenmesiyle (update) elektromanyetik alanları (E, H) doğrudan hesaplar. Görüldüğü üzere ITSF'de elektrik alan E tek başına hesaplanabilmektedir fakat ZUSF'de elektrik alan E'yi hesaplamak için H, manyetik alan H'i hesaplamak için E değerlerine ihtiyac vardır, tek başlarına hesaplanamazlar. ZUSF problemi KDD'ler elektromanvetik üzerinden cözerken, ITSF süreksizlikler sayesinde ADD'ler üzerinden çözer. ADD'lerin doğruluğu, kararlılığı KDD'lere göre daha kolay ve iyidir [10,11]. Yukarda izah edilen GO prensipleri çerçevesinde, önerilen yöntemin ITSF olarak adlandırılması ve zamansal problemlerin elektromanyetik çözümünde kullanılması beklenmektedir. Bir sonraki bölümde, örnek problemler üzerinde analitik ve nümerik çalışmalar, benzetimler yapılarak uygulama ve sonuçlar gösterilmektedir.

3. NÜMERİK ÇALIŞMALAR (NUMERICAL STUDIES)

Elektromanyetiğin temel olayları dalganın yayılımı (propagasyon), yansıması (reflection) ve kırılmasıdır (refraction). ITSF'nin uygulaması ve ZUSF ile performans karşılaştırması 1-boyutlu düzlemsel enine elektromanyetik dalganın yayılımı, yansıması ve kırılımı probleminde ele alınmıştır. Yayılma örneği boş uzay ortamında (ε_0, μ_0) , yansıma ve kırılma örnekleri sınır oluşturan iki ortamda (ortam-1: boş uzay (ε_0, μ_0), ortam-2: dielektrik ($\varepsilon_r \varepsilon_0, \mu_0, \varepsilon_r = 4$)) incelenmiştir. 1-boyutlu düzlemsel enine dalga için Maxwell denklemleri (2)'de verilmistir. Bu denklemleri nümerik olarak çözen ZUSF cok

olgunlaşmış, bilinen bir yöntemdir ve Yee algoritmasına dayanarak literatürde muhtelif uygulamaları yer almaktadır [2]. Bu nedenle burada Yee algoritması ve ZUSF'nin formulasyon ve uygulama detaylarına girilmemiştir fakat örnek problem için temel ZUSF güncelleme denklemleri aşağıdaki gibidir.

$$E_{x}^{n+1/2}(j) = E_{x}^{n-1/2}(j) -\frac{\Delta t}{\varepsilon_{0}\varepsilon_{r}(j)\Delta z} \left\{ H_{y}^{n}(j+1/2) - H_{y}^{n}(j-1/2) \right\} H_{y}^{n+1}(j+1/2) = H_{y}^{n}(j+1/2) -\frac{\Delta t}{\mu_{0}\Delta z} \left\{ E_{x}^{n+1/2}(j+1) - E_{x}^{n+1/2}(j) \right\}$$
(10)

3.1 Yayılım (Propagation)

Belirtildiği üzere, ITSF yöntemi hesaplama ızgarasının dalgacepheleri-ışınlarla örtüşmesi gerekmekte iken ZUSF'de böyle bir gereklilik yoktur. Fakat seçilen örnek problemde hesaplama ızgarası oldukça basittir ve hem ITSF ızgarası hem de standart Kartezyen ZUSF ızgarası aynıdır, örtüşmektedir. Dalgacepheleri z = sabit düzlem yüzeylerdir ve ışınlar da bu yüzeylere dik doğrusal düz çizgilerdir.

ITSF'nin başlangıç dalgacephesinde $z = z_b = 0$ (ZUSF'nin başlangıç yüzeyinde) sert kaynak (hard source) olarak darbe genişliği $T = 10 \times 10^{-9}$ s, genliği 1(V/m) olan kare darbe olarak verelim, $g(t)=\operatorname{rect}(t/T)$. Böylelikle başlangıç yüzeyinde elektrik alan $E_x(z_b,t) = g(t)$ olarak tanımlanmış olur. ITSF zamansal çözümü başlatmak için $z = z_b = 0$ 'da zamansal sonlu süreksizlikleri belirlenmelidir.

$$\mathbf{A}_{0}(z_{b}) = \left[\mathbf{E}(z_{b}, t)\right]$$
$$= \begin{cases} g(0^{+})\hat{\mathbf{x}} - g(0^{-})\hat{\mathbf{x}} = 1\hat{\mathbf{x}} , & t = 0 \\ g(T^{+})\hat{\mathbf{x}} - g(T^{-})\hat{\mathbf{x}} = -1\hat{\mathbf{x}} , & t = T \end{cases}$$
(11)

Görülmektedir ki başlangıç yüzeyinde A_0 için iki adet zamanda sonlu süreksizlikler vardır, biri t = 0' da diğeri t = T'de olmaktadır. Diğer ardışık diferansiyellerdeki üst dereceli zamansal sonlu süreksizlikler yoktur, sıfırdır. Bunlar A_0 için başlangıç değerleri olup (zaman farkıyla) her ikisi de taşıma denklemleri ile hesaplama ızgarasında taşınır ve yayılırlar. Bu örnekte olduğu gibi, yönbağımsız ve homojen boş uzay ortamında taşıma denklemi (6) A_0 için şöyle olur:

$$\frac{d\mathbf{A}_0(s)}{ds} = \frac{d\mathbf{A}_0(z)}{dz} = 0 \tag{12}$$

(12) \mathbf{A}_0 süreksizliklerinin ışınlar doğrultusunda genliği sabit kalarak taşındıklarını göstermektedir. Işınlar üzerinde, ızgarada herhangi bir konumdaki $\mathbf{R}_0 = z_0 \hat{\mathbf{z}}$, toplam elektrik alanın zamansal ifadesi ise Taylor serisi açılımı (9) kullanarak elde edilir:

$$\mathbf{E}(z_0, t) = \begin{cases} 0 & t < z_0 / c \\ \mathbf{A}_0(z_0) & t \ge z_0 / c \end{cases}$$
(13)

Buna göre, taşınan iki adet sonlu süreksizliğin ızgarada $z_0 = j\Delta z$ 'de yarattığı ayrı tepkiler zamana göre şöyle yazılabilir:

$$\mathbf{A}_{00} = A_{00} (j\Delta z) \hat{\mathbf{x}} = \begin{cases} 0 \hat{\mathbf{x}} & n\Delta t < j\Delta z / c \\ 1 \hat{\mathbf{x}} & n\Delta t \ge j\Delta z / c \end{cases}$$

$$\mathbf{A}_{01} = A_{01} (j\Delta z) \hat{\mathbf{x}} = \begin{cases} 0 \hat{\mathbf{x}} & n\Delta t < j\Delta z / c + T \\ -1 \hat{\mathbf{x}} & n\Delta t \ge j\Delta z / c + T \end{cases}$$
(14)

Toplam elektrik alanın zamansal ifadesi ise bunların vektörel toplamıdır.

$$\mathbf{E}(j\Delta z, n\Delta t) = \begin{cases} 0\hat{\mathbf{x}}, & n\Delta t < j\Delta z / c \\ A_{00}(j\Delta z)\hat{\mathbf{x}} = 1\hat{\mathbf{x}}, & j\Delta z / c \le n\Delta t \le j\Delta z / c + T \\ A_{00}(j\Delta z)\hat{\mathbf{x}} + A_{01}(j\Delta z)\hat{\mathbf{x}} = 0, & n\Delta t > j\Delta z / c + T \end{cases}$$
(15)

Bu defa ZUSF'nin daha iyi performans göstereceğini beklediğimiz düzgün, yumuşak (örneğin Gauss) bir giriş darbeyi kaynağı olarak verelim $(E_x(z_h,t) = g(t) = e^{-(t-t_0)^2/(\beta \Delta t)^2}).$ Yeterli frekans bileşenlerini içerecek $2n_0$ darbe genişliğindeki Gauss darbeyi nümerik olarak ve $2n_0 + 1$ adet uygun genlikte adım (step) fonksiyonun bindirmesi (superpozisyon) ile üretebiliriz [8]. Bu şekilde üretmek, başlangıç yüzeyinde Δt aralıklarla zamanda oluşan $2n_0 + 1$ adet A₀ sonlu süreksizliklerin kolayca hesaplanmasını da sağlar.

$$\mathbf{A}_{0}(z_{b}) = [\mathbf{E}(z_{b}, t] =$$

$$\begin{cases} A_{01}\hat{\mathbf{x}} = g(0)\hat{\mathbf{x}}, & t = 0 \\ A_{0n}\hat{\mathbf{x}} = g(n\Delta t)\hat{\mathbf{x}} - g((n-1)\Delta t)\hat{\mathbf{x}}, & 0 < t = n\Delta t \le 2n_{0}\Delta t \end{cases}$$
(16)

Bunların hepsi yine aynı taşıma denklemlerine (6) tabidirler ve hesaplama ızgarasında, ışın doğrultusunda sabit genliklerini muhafaza ederek taşınırlar. Herbirinin $z_0 = j\Delta z$ 'de yarattığı ayrı tepkiler zamana göre yazılabilir:

$$\mathbf{A}_{00} = A_{00} (j\Delta z) \hat{\mathbf{x}} = \begin{cases} 0 \hat{\mathbf{x}} & n\Delta t < j\Delta z / c \\ g(0) \hat{\mathbf{x}} & n\Delta t \ge j\Delta z / c \\ \mathbf{A}_{01} = A_{01} (j\Delta z) \hat{\mathbf{x}} = \begin{cases} 0 \hat{\mathbf{x}} & n\Delta t + T < j\Delta z / c \\ g(1) \hat{\mathbf{x}} - g(0) \hat{\mathbf{x}} & n\Delta t + T \ge j\Delta z / c \\ g(1) \hat{\mathbf{x}} - g(0) \hat{\mathbf{x}} & n\Delta t + T \ge j\Delta z / c \\ \end{cases}$$
(17)
$$\begin{cases} 0 \hat{\mathbf{x}} & n\Delta t + 2T < j\Delta z / c \\ g(2) \hat{\mathbf{x}} - g(1) \hat{\mathbf{x}} & n\Delta t + 2T \ge j\Delta z / c \\ \vdots \\ \mathbf{A}_{02n_0} = A_{02n_0} (j\Delta z) \hat{\mathbf{x}} = \\\\ 0 \hat{\mathbf{x}} & n\Delta t + 2n_0 T < j\Delta z / c \\ g(2n_0) \hat{\mathbf{x}} - g(2n_0 - 1) \hat{\mathbf{x}} & n\Delta t + 2n_0 T \ge j\Delta z / c \end{cases}$$

Toplam elektrik alanın zamansal ifadesi ise bunların vektörel toplamıdır (9).

$$\mathbf{E}(j\Delta z, n\Delta t) =
\begin{cases}
0\hat{\mathbf{x}}, & n\Delta t < j\Delta z / c \\
A_{00}(j\Delta z)\hat{\mathbf{x}}, j\Delta z / c \le n\Delta t \le j\Delta z / c + T \\
A_{00}(j\Delta z)\hat{\mathbf{x}} + A_{01}(j\Delta z)\hat{\mathbf{x}}, j\Delta z / c + T \le n\Delta t \le j\Delta z / c + 2T \\
\vdots
\end{cases}$$
(18)

3.2 Yansıma ve Kırılma (Reflection and Refraction)

ITSF'nin temelini \mathbf{A}_0 süreksizlikleri oluşturmaktadır. \mathbf{A}_0 süreksizlikleri için yansıma-kırılma Snell yasaları ve Fresnel formülleri doğrudan uygulanabilmektedir [6]. Üst dereceli diğer süreksizlikler için bir çalışma [6]'da yapılmıştır ve uygulaması araştırılmaktadır. Gelen (incident) \mathbf{A}_0^i süreksizliklerden hareketle, yansıma (Γ) ve kırılma (iletim, transmisyon, ρ) katsayılarını kullanarak ortamları ayıran arayüzde (interface) yansıyan \mathbf{A}_0^r ve kırılan \mathbf{A}_0^i süreksizlikler şöyle hesaplanır:

$$\mathbf{A}_{0}^{r} = \Gamma \mathbf{A}_{0}^{i} ,$$

$$\Gamma = (Z_{2} - Z_{1}) / (Z_{2} + Z_{1}) = E_{x}^{r} / E_{x}^{i}$$

$$\mathbf{A}_{0}^{t} = \rho \mathbf{A}_{0}^{i} ,$$

$$\rho = 2Z_{2} / (Z_{2} + Z_{1}) = E_{x}^{t} / E_{x}^{i}$$
(19)

Bu hesaplamaları yapmak için öncelikle $\mathbf{A}_0 = \mathbf{A}_0^i$ süreksizlikleri belirlenmelidir, bunlar kare darbe ve Gauss darbe için yukarda yayılma örneğinde tanımlanıp, bulunan vektörlerdir. \mathbf{A}_0^i süreksizliklerini Ortam-1'de gelen ışınlar üzerinde taşıma denklemleri ile taşıyıp, arayüzde (interface) Snell yansıma yasasına göre yansıyan süreksizlikler $\mathbf{A}_0^r = \Gamma \mathbf{A}_0^i$ hesaplanır ve yansıyan süreksizlikler \mathbf{A}_0^r bu kez ortam-1'de ters yönde, yansıyan ışınlar üzerinde taşıma denklemleri ile taşınır. Ortam-1'de gelen A_0^i ve yansıyan \mathbf{A}_{0}^{r} süreksizlikler zaman farkıyla ve birlikte bulunmaktadırlar. Her birine ait gelen Ψ^i , yansıyan Ψ^r dalgacepheleri ve bunlara ait zaman referansları ($t_i = \Psi^i / c$, $t_r = \Psi^r / c$) vardır. Toplam alanın zamansal ifadesi elektrik ise, ilgili süreksizlikler ve zaman referanslarını kullanıp, gelen \mathbf{E}^{i} ve yansıyan \mathbf{E}^{r} elektrik alanlar için Taylor seri açılımlarının toplamlarıyla bulunur. Ortam-1'de dalgacepheleri/ışınlar gelen-yansıyan ızgarada örtüştüğü için toplam elektrik alan zamansal ifadesi ortam-1'de ışınlar üzerinde herhangi bir konumda $\mathbf{R} = z \hat{\mathbf{z}}$ şöyle olur:

$$\mathbf{E}_{1}(z,t) = \begin{cases} 0 & t < z / c \\ \mathbf{E}^{i} = \mathbf{A}_{0}^{i}(z) & t_{i} = z / c \le t \le t_{r} \\ \mathbf{E}^{i} + \mathbf{E}^{r} = \mathbf{A}_{0}^{i}(z) + \mathbf{A}_{0}^{r}(z) & t > t_{r} \end{cases}$$

$$(20)$$

Ortam-2'de sadece kırılan Ψ' dalgacepheleri ve bunlara ait zaman referansları $t_t = \Psi' / c$ vardır. Arayüze taşınıp gelen \mathbf{A}_0^i süreksizlikler, arayüzde Snell kırılma yasasını uygulayarak, kırılan süreksizlikler \mathbf{A}_0^i hesaplanır ve \mathbf{A}_0^i süreksizlikleri ortam-2'de ışınlar üzerinde taşıma denklemlerine göre taşınır. Buna göre ortam-2'de ışınlar üzerinde herhangi bir konumda $\mathbf{R} = z \hat{\mathbf{z}}$ kırılan \mathbf{E}' ve toplam elektrik alanın \mathbf{E}_2 zamansal ifadesi Taylor serisi açılımını kullanarak bulunur.

$$\mathbf{E}_{2}(z,t) = \begin{cases} 0 & t < t_{t} \\ \mathbf{E}^{t} = \mathbf{A}_{0}^{t}(z) & t \ge t_{t} \end{cases}$$
(21)

4. SONUÇLAR (RESULTS)

4.1 Yayılım (Propagation)

450Δt'lik bir gözlem süresinin sonunda boş uzayda (ε_0 , μ_0) analitik ve ZUSF sonuçlar Şekil 2-3'te, analitik ve ITSF benzetim sonuçları da Şekiller-4-5'de gösterilmektedir. ZUSF için CFL = 0,5 alınmıştır. Literatürde çok iyi bilinmektedir ki ZUSF sadece 1-boyutlu dalgalarda CFL = 1 koşulunda ($\Delta t = \Delta z / c$) analitik çözüm ile birebir aynı çözümü vermektedir. Bu nedenle CFL = 1 koşuluna göre seçilen zaman aralığı Δt büyülü zaman aralığı (magic time-step) olarak adlandırılmaktadır. Bu koşul haricindeki tüm durumlarda ZUSF değişen miktarlarda nümerik hatalara ve dağılma hatalarına maruzdur. Örnek problemde dikkat edilmelidir ki

hesaplama ızgaraları ZUSF ve ITSF için aynıdır, ortaktır ve elektromanyetik enerji ızgarada zaten $\hat{\mathbf{z}}$ yönünde akmaktadır. Izgara ile örtüşmeyen, yönbağımlı, farklı yönde bir enerji akışı olsaydı (2/3boyutlu problemlerde olduğu gibi) ZUSF'nin sonuçları daha kötü olurdu [2]. Yine Şekil 2 açıkça göstermektedir ki ZUSF kesinti, süreksizlik olan dalga şekillerini sadakatle takip edememektedir ve daha yumuşak, düzgün dalga şekilleri istemektedir. Bununla beraber ITSF yöntemi bu örnek için her durumda analitik çözüm ile aynı sonucu vermektedir (Şekil 4). ZUSF'de görülen bozulmalar, hatalar ITSF'de görülmemektedir. Şekil 3 göstermektedir ki ZUSF Gauss darbesi için hala nümerik dağılma (dispersiyon) yaratmaktadır. Fakat dalga şeklinde bozulma ve hata kare darbedeki kadar ciddi değildir. Dağılmadan kaynaklı faz hataları birikimli olarak arttığı için, hesaplama ızgarasında uzun mesafe kat edildikçe dalga şeklindeki bozulma da daha fazla olacaktır.

ITSF açısından Şekil 4-5 birlikte değerlen-dirildiğinde ($\Delta z = \lambda_{min}/5$), görülmektedir ki sonlu süreksizlikler örnekler için doğru taşınmış ve toplam elektrik alanın zamansal ifadesi de doğru olarak hesaplanmıştır, analitik çözüm ile örtüşmektedir. Nümerik dağılma yoktur. ZUSF'de olduğu gibi ışık hızı üzerinde (superluminal) yayılan herhangi bir kip yoktur. ITSF'nin bu performansı uzamsal (spatial) çözünürlük Δz , zaman aralığı Δt seçiminden ve hesaplama ızgarasında ne kadar mesafe kat edildiğinden bağımsızdır.

4.2 Yansıma ve Kırılma (Reflection and Refraction)

Bu örnekte ortam-1 boş uzay (ε_0, μ_0) ve ortam-2 dielektrik $(\varepsilon_r \varepsilon_0, \mu_0, \varepsilon_r = 4)$ alınmış ve ortam-2 $z = z_d = 500\Delta z$ 'de başlamaktadır. ZUSF benzetimleri için ortam-1'e göre CFL = 1 seçilmiştir. Bu CFL sayısı ortam-2 de CFL = 0,5'e karşılık gelmektedir çünkü faz hızı ortam-2'de yarıya düşmüştür. Gözlem süresi 900 Δt alınmıştır.

Şekil 6-7-8-9'da ZUSF ve ITSF yöntemleriyle ($\Delta z = \lambda_{min}/5$), yayılma örneğinde olduğu gibi kare darbe ve Gauss darbe için yansıyan ve kırılan elektrik alanlar verilmektedir. ZUSF için ortam-1'de CFL = 1 seçilmesine rağmen, yansımadan dolayı yansıyan dalga şeklinde hala bozulmalar vardır. Ortam-1'e göre seçilen CFL = 1, faz hızının yarıya düşmesinden dolayı ortam-2'de CFL = 0,5'e karşılık gelmektedir

Şekil 9. Yansıyan ve kırılan Gauss darbe (Reflected and refracted Gaussian pulse)

ve bunun doğal sonucu olarak dalga şeklinde daha fazla bozulma olması beklenmektedir. Dalga şekli ortam-2'de, z-ekseninde ortam-1'de kapladığı mesafenin yarısını kaplamaktadır ve daralmış gibi gözükmektedir. Bu, ortam-1'de CFL = 1, ortam-2'de CFL = 0,5 olmasındandır. ITSF'de ise dalga şekli bozulması, ışık hızının üzerinde kipler olması vb. kusurlar gözükmemektedir. Analitik çözümler ile birebir uyum göstermektedir.

5. SONUÇ VE TARTIŞMA (CONCLUSION AND DISCUSSION)

ZUSF'nin nümerik dağılma, ızgarada yönbağımlı farklı hızlarda yayılım ve ışık hızı ötesinde kipler olması dezavantajlarını gidermek için GO yöntemlerini ve özel hesaplama tekniklerini kullanarak ITSF yöntemi önerilmiştir. Elektromanyetiğin yayılma, yansıma, kırılma olaylarında 1boyutlu düzemsel enine dalga için örnek olaylar incelenmiş ve benzetimler yapılmıştır. Örneklerin basit seçilmesine ve ZUSF ile ITSF ızgarasının örtüşmesine rağmen, ki bunlar ZUSF'nin lehine olan hususlardır, ITSF'nin ZUSF'den daha iyi performans gösterdiği ve dezavantajları vok ettiği görülmüstür. ITSF'nin ZUSF'den daha iyi sonuçlar verdiği ve ZUSF'nin dezavantajlarını gidermek için kullanılabileceği anlaşılmıştır.

2/3-boyutlu problemlerde, homojen olmayan ve yönbağımlı (anisotropic) ortamlarda ZUSF daha kötü performans gösterir. Bununla beraber ITSF'nin de, sonuçları iyi olsa bile uygulamasının daha zor olacağı beklenmektedir. ITSF her problem için enerjinin akış yönünü dikkate alan dalgacepheleri/ışınlarla örtüşen ızgara yaratılmasını gerekli kılmaktadır. Bu ızgara ne kadar doğru yaratılırsa ITSF sonuçlarının doğruluğu da yüksek olacaktır. Fakat özellikle homojen olmayan ortamlarda böyle bir ızgara oluşturulması zorlaşacaktır. Olayın içine gelen, yansıyan ve kırılan dalgacepheleri/ışınlar da girince karmaşıklık artacaktır. Yönbağımlı ortamlarda ise enerjinin akış yönü $\mathbf{E} \times \mathbf{H}$, ışınlar doğrultusunda olmayacaktır. Bu da ITSF'nin temel unsurlarından birinin ortadan kalkması demektir. Bu nedenle yönbağımlı ortamlarda dalgacepheleri/ışınlarla örtüşen ızgara'nın işe yarayıp yaramayacağı, nasıl bir ızgara yaratılması gerektiği, süreksizliklerin nasıl taşınacağı hususları soru işaretleridir. Bu çalışmada elektromanyetiğin temel olaylarından biri olan kırınım (difraksiyon) ele alınmamıştır. ITSF'de toplam elektrik alanı zamansal olarak Taylor serisi açılımı ile oluştururken, bu seride ilk GO terimden sonraki üst dereceği diğer terimlerin, GO çözüme yapılan iyileştirmeler olduğunu ifade etmiştik. Buradan hareketle, üst dereceli diğer süreksizliklerin ve serideki üst dereceli diğer olayında terimlerin kırınım etkili olacağı değerlendirilmektedir. Yukarda izah edilen tüm hususlar araştırma konusu olup, bunlara yönelik geliştirilen çözümler ve uygulamalar gelecekteki makalelerde ele alınacaktır.

6. SEMBOLLER VE KISALTMALAR (SYMBOLS AND ABBREVIATIONS)

ADD: Adi Diferansiyel Denklem CFL: Courant Friedrichs Levy GO: Geometrik Optik ZUSF: Zaman Uzayda Sonlu Farklar ITSF: Işın Tabanlı Sonlu Farklar RBFD: Ray Based Finite Difference KDD: Kısmi Diferansiyel Denklem PDE: Partial Differential Equation $\mathbf{R} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$: Konum vektörü

 $\mathbf{E} = E_x \hat{\mathbf{x}} + E_y \hat{\mathbf{y}} + E_z \hat{\mathbf{z}}$: Elektrik alan (V/m),

 $\mathbf{H} = H_x \hat{\mathbf{x}} + H_y \hat{\mathbf{y}} + H_z \hat{\mathbf{z}}$: Manyetik alan (A/m)

 $\mathbf{k} = k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}} + k_z \hat{\mathbf{z}}$: Dalga sayısı vektörü (rad/m)

 $\mathbf{k}^* = k_x^* \hat{\mathbf{x}} + k_y^* \hat{\mathbf{y}} + k_z^* \hat{\mathbf{z}}$ Nümerik dalga sayısı vektörü (rad/m)

c : Işık hızı, 3×10^{-8} (m/s),

v: Faz hızı (m/s)

 ε_0 : Boş uzay elektrik geçirgenliği, dielektrik sabiti,

 $(1/36\pi)$ x10⁻⁹ (F/m)

 μ_0 : Boş uzay manyetik geçirgenliği, $4\pi x 10^{-7}$ (H/m)

- $\omega = 2\pi f$: Açısal hız (rad/s),
- λ : Dalgaboyu (m)
- Γ : Yansıma katsayısı,
- ρ : Kırılma katsayısı,

n = $\sqrt{\varepsilon_r}$: Kırılma indeksi $Z_1 = \sqrt{\mu_0 / \varepsilon_0}$: dalga empedansı-1 (Ω), $Z_2 = \sqrt{\mu_0 / \varepsilon_r \varepsilon_0}$: dalga empedansı-2 (Ω)

KAYNAKLAR (REFERENCES)

- 1. Stratton, J.A., Electromagnetic Theory, McGraw-Hill, NY, 1964.
- Taflove, A. ve Hagness, S.C., Computational Electrodynamics-The Finite Difference Time Domain Method, Artech House, MA, 2005.
- **3.** Schneider, J.B. ve Wagner, C.L., "FDTD dispersion revisited: faster than light propagation", **IEEE Microwave and Guided Wave Letters**, Cilt 9, No 2, 54-56, 1999
- Çiydem, M., Ray Based Finite Difference Method For Time Domain Electro-magnetics, Doktora tezi, ODTÜ, Ankara, Türkiye, 2005.
- 5. Çiydem, M. ve Koç, S., "Elimination of FDTD numerical dispersion by using geometrical optic",

IEEE APS/URSI Symp., Albequerque, USA, 3817-3820, July, 2006.

- 6. Klein, M. ve Kay, I.W., Electromagnetic Theory and Geometrical Optics, Interscience Publisher, NY, 1965.
- 7. Yee, K.S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. AP, Cilt 14, No 3, 302-307, 1966
- 8. Courant, R., Friedrichs, K., ve Levy, H., "On the partial differential equations of mathematical physics", IBM Journal, Cilt 11, 215-237, 1967
- **9.** Shin, C-S. ve Nevels, R., "Optimizing the Gaussian excitation function in finite different time domain method", **IEEE Trans. Education**, Cilt 45, No 1, 54-56, 2002
- **10.** Sommerfeld A., **Partial Differential Equations in Physics**, Academic Press, NY, 1949
- Courant, R. ve Hilbert, D., Methods of Mathematical Physics, Interscience Publisher, NY, 1964.