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Stability and Hopf Bifurcation in Three-Dimensional Predator-Prey Models with 
Allee Effect 

 

İlknur Kuşbeyzi Aybar *1 

 

Abstract 

In this study, we perform the stability and Hopf bifurcation analysis for two population models 
with Allee effect. The population models within the scope of this study are the one prey-two 
predator model with Allee growth in the prey and the two prey-one predator model with Allee 
growth in the preys. Our procedure for investigating each model is as follows. First, we 
investigate the singular points where the system is stable. We provide the necessary parameter 
conditions for the system to be stable at the singular points. Then, we look for Hopf bifurcation 
at each singular point where a family of limit cycles cycle or oscillate. We provide the parameter 
conditions for Hopf bifurcation to occur. We apply the algebraic invariants method to fully 
examine the system. We investigate the algebraic properties of the system by finding all 
algebraic invariants of degree two and three. We give the conditions for the system to have a 
first integral. 

Keywords: predator-prey model, stability, Hopf bifurcation, algebraic invariants 

 

 

1. INTRODUCTION 

Various generalized predator-prey models that 
involve quadratic functions which exhibit logistic 
behaviour [1-3], cubic functions which show 
different rates of reproduction[4,5], Holling type 
II functions which state constant 
consumption[6,7] and Beddington-DeAngelis 
functions which indicate mutual interference and 
extinction[8,9] have been shown to overcome 
some of the biological problems of the original 
Lotka-Volterra model[10,11]. Population 
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carrying capacities are introduced into these 
generalizations by adding the proposed functions 
to the self-interaction and the coupling terms [12]. 
Applications of these generalizations have been 
studied in comparison in order to find suitable 
functional responses for modeling predation [13]. 

One of these generalizations include Allee effect 
which presents a positive relationship between the 
population size and the individual fitness 
particularly for invading species [14] and at low 
population [15-17]. The individual fitness is 
defined as the per capita population growth rate. 
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(1) 

Behaviours such as cooperative predation, 
cooperative defense and environmental and 
seasonal changes may result in the Allee effect. 
W. C. Allee first proposed the Allee effect to 
describe the relationship between the population 
and the mean of the individual population with the 
following cubic model [18]. 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥(1 − 𝑥)(𝑥 − 𝛼) 

Here, x denotes the population density, a denotes 
the population growth rate and 𝛼 is the carrying 
capacity. 

 Allee effect is defined as a positive correlation 
between the individual fitness and the population 
density [19]. Populations with low densities are 
shown to be more likely to extinct [20] in the 
population models with the Allee effect. The 
carrying capacity of the populations may decrease 
below a critical density threshold in the presence 
of the Allee effect. In the models representing the 
spread of the invading organisms, the threshold 
exposed by the Allee effect may increase the 
invasion rate [21]. Population models with the 
Allee effect have various applications in plants 
and animals, hence it is important to understand 
the density thresholds to understand the 
underlying mechanisms of the propagation and 
extinction of these models. In 2008, Courchamp 
et.al suggested that Allee effect may even occur at 
high population levels for some species [22]. 

 The Allee effect can be induced into the system 
in the prey's growth function. Hence there are two 
possible versions of inducing Allee effect into a 
three-dimensional predator-prey system. The 
differences in the dynamical properties of the two 
possible three-dimensional predator-prey 
generalizations with Allee effect have been given 
in this work. In section 2, we investigate the one 
prey-two predator system with Allee growth in 
the prey. In section 3, we investigate the two prey-
one predator system with Allee growth in the 
preys. 

2. THE ONE PREY-TWO PREDATOR 
SYSTEM WITH ALLEE GROWTH IN THE 

PREY 

The one prey- two predator model with Allee 
growth in the prey is given by the following set of 
differential equations. 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥(1 − 𝑥)(𝑥 − 𝛼) − 𝑏𝑥𝑦 − 𝑐𝑥𝑧 

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 + 𝑒𝑥𝑦 

𝑑𝑧

𝑑𝑡
= −𝑓𝑧 + 𝑔𝑥𝑧 

Here x denotes the population density of the prey 
and y and z denote the population densities of the 
predators. The parameter a denotes the population 
growth rate and 𝛼 is the carrying capacity. b and 
c are the consumption rates of the predators y and 
z over the prey. On the other hand, e and g are the 
growth rates of the predators from the 
consumption. d and f are the natural death rates of 
the predators. All parameters are positive since 
they represent physical values. 

Theorem 1. System (1) has at least one stable 
singular point. 

The Jacobian matrix of system (1) is 

J  −𝑏𝑥 −𝑐𝑥
𝑒𝑦 𝑒𝑥 − 𝑑 0
𝑔𝑧 0 𝑔𝑥 − 𝑓

 , 

   𝐽 = 𝑎(𝑥(2 − 3𝑥) + 𝛼(2𝑥 − 1) − 𝑏𝑦 − 𝑐𝑧. 

Singular points and corresponding eigenvalues of 
the Jacobian matrix of system (1) are given in 
Table 1. 

  

(1) 
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Table 1. Singular points and corresponding 
eigenvalues of the one prey-two predator system with 

Allee growth in the prey 

 Singular point Corresponding eigenvalue 
𝑬𝟎 (0,0,0) {−𝑎𝛼, −𝑑, −𝑓} 
𝑬𝟏 (1,0,0) {𝑎(𝛼 − 1), 𝛼𝑒 − 𝑑, 𝛼𝑔 − 𝑓} 
𝑬𝟐 (𝛼,0,0) {−𝑎𝛼(𝛼 − 1), 𝛼𝑒 − 𝑑, 𝛼𝑔 − 𝑓} 
𝑬𝟑 

( ,
( )( )

, 0) {
𝑑𝑔

𝑒
− 𝑓, 𝜆 ±} 

𝑬𝟒 
( , 0,

( )( )
) {

𝑒𝑓

𝑔
− 𝑑, 𝜆 , } 

where 

𝜆 ± =
( ( ) )± ( ( )( ) ( ( ) ) )

  

and 

𝜆 ± =
( ( ) )± ( ( )( ) ( ( ) ) )

  

The eigenvalues of the Jacobian matrix of system 
(1) at 𝐸  are all negative which shows that system 
(1) is always stable at the origin. 

According to the eigenvalues of the Jacobian 
matrix, 𝐸  is a stable singular point when 𝑒 < 𝑑, 
𝑔 < 𝑓 and 𝛼 < 1 are satisfied together. 

According to the eigenvalues of the Jacobian 
matrix, system (1) is stable at 𝐸  when 𝑒 < 𝑑 and 
one of the following cases is satisfied. 

i. 𝑔 ≤  and 1 < 𝛼 <  

ii. < 𝑔 < 𝑓 and 1 < 𝛼 <  

System (1) is stable at 𝐸  if 𝑒 < 2𝑑, 𝑔 <  and 

 𝛼 < − 1. 

𝐸  is a stable singular point of system (1) when 

 𝑒 < 2𝑑, < 𝑔 < 2𝑓 and 𝛼 < − 1. 

Therefore, system (1) is guaranteed to have at 
least one stable singular point which is at the 
origin. 

Theorem 2. Hopf bifurcation occurs in system (1) 
if one of the following conditions is satisfied. 

i. 𝑒 < 𝑑 
ii. 𝑑 < 𝑒 < 2𝑑 
iii. 𝑔 < 𝑓 
iv. 𝑓 < 𝑔 < 2𝑓 

According to the eigenvalues of the Jacobian 
matrix at 𝐸 , system (1) shows Hopf bifurcation 

if 𝛼 = − 1 and one of the cases i or ii is 

satisfied. 

Furthermore, system (1) has Hopf bifurcation at 

𝐸  if 𝛼 = − 1 and one of the cases iii or iv is 

satisfied. 

Remark 1. The Hopf bifurcation at 𝐸  is stable if 

𝑔 <  additionally. 

Remark 2. The Hopf bifurcation at 𝐸  is stable if 
one of the following cases is satisfied 
additionally. 

i. 𝑒 < 𝑑  and < 𝑔 < 𝑓 

ii. 𝑓 < 𝑔 < 2𝑓 

iii. 𝑑 ≤ 𝑒 < 2𝑑 and < 𝑔 < 2𝑓 

Theorem 3. System (1) has a first integral if one 
of the following conditions is satisfied. 

i. 𝑎 = 𝑑 = 𝑓 = 0 
ii. 𝑎 = 𝑏 = 𝑓 = 0 
iii. 𝑎 = 𝑐 = 𝑑 = 0 
iv. 𝑎 = 𝑏 = 𝑐 = 0 
v. 𝑑 = 𝑒 = 0 
vi. 𝑒 + 𝑔 = 𝑑 + 𝑓 = 0 
vii. 𝑓 = 𝑔 = 0 

Proof. System (1) has the first integral  

𝐼 = 1 + 𝑥 +
𝑏

𝑒
𝑦 +

𝑐

𝑔
𝑧 +

𝑒

2𝑏
𝑥 + 𝑥𝑦 +

𝑏

2𝑒
𝑦

+
𝑐𝑒

𝑏𝑔
𝑥𝑧 +

𝑐

𝑔
𝑦𝑧 +

𝑐 𝑎

2𝑏𝑔
𝑧  

when case i holds. System (1) has the first 
integrals 𝐼 = 1 + 𝑦, 𝐼 = 1 + 𝑧 and  
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(2) 

𝐼 = 1 + 𝑥 +
𝑔

2𝑐
𝑥 +

𝑐

𝑔
𝑧 + 𝑥𝑧 +

𝑐

2𝑔
𝑧  

when case ii is satisfied. For case iii, system has 
the first integral  

𝐼 = 1 + 𝑥 +
𝑒

2𝑏
𝑥 +

𝑏

𝑒
𝑦 + 𝑥𝑦 +

𝑏

2𝑒
𝑦 . 

The first integrals of the system is  

𝐼 = 1 + 𝑥 + 𝑥   for case iv and 𝐼 = 1 + 𝑦 + 𝑦  
for case v. System has the first integral 𝐼 = 1 +
𝑦𝑧 for case vi and 𝐼 = 1 + 𝑧 + 𝑧  for case vii. 

3. THE TWO PREY-ONE PREDATOR 
SYSTEM WITH ALLEE GROWTH IN THE 

PREYS 

The two prey-one predator system with Allee 
effect in the preys’ growth functions’ is given by 
the following set of equations where x and y 
denote the population densities of the prey species 
and z denotes the population density of the 
predator species. 

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥(1 − 𝑥)(𝑥 − 𝛼) − 𝑏𝑥𝑦 

𝑑𝑦

𝑑𝑡
= −𝑑𝑦(1 − 𝑦)(𝑦 − 𝛽) − 𝑒𝑦𝑧 

𝑑𝑧

𝑑𝑡
= −𝑓𝑧 + 𝑔𝑥𝑧 + ℎ𝑦𝑧 

The parameters a and 𝑑 denote the population 
growth rates and 𝛼 and 𝛽 are the carrying 
capacities of the prey population densities. 𝑏 and 
𝑒 are the consumption rates of the predator z over 
the preys. On the other hand, 𝑔 and ℎ are the 
growth rates of the predator from the 
consumption. 𝑓 is the natural death rate of the 
predator. All parameters are positive since they 
represent physical values. 

Theorem 4. System (2) can be stable at given 
singular points. 

Proof. The Jacobian matrix of system (2) is 

J  0 −𝑏𝑥

0 𝑑𝑦(2 − 3𝑦) + 𝛽𝑑(2𝑦 − 1) − 𝑒𝑧 −𝑒𝑦
𝑔𝑧 ℎ𝑧 ℎ𝑦 − 𝑓

 , 

   𝐽 = 𝑎(𝑥(2 − 3𝑥) + 𝛼(2𝑥 − 1) − 𝑏𝑧. 

The singular points and corresponding 
eigenvalues of the Jacobian matrix of system (2) 
is given in Table 2. 

Table 2. Singular points and corresponding 
eigenvalues of the two prey-one predator system with 

Allee growth in the preys 

 Singular point Corresponding eigenvalue 
𝑬𝟎 (0,0,0) {−𝑎𝛼, −𝑑𝛽, −𝑓} 
𝑬𝟏 (1,0,0) {𝑎(𝛼 − 1), −𝑑𝛽, 𝑔 − 𝑓} 
𝑬𝟐 (0,1,0) {−𝑎𝛼, 𝑑(𝛽 − 1), ℎ − 𝑓} 
𝑬𝟑 

(1,1,0) 
{𝑎(𝛼 − 1), 𝑑(𝛽 − 1), 𝑔 + ℎ

− 𝑓} 
𝑬𝟒 (𝛼,0,0) {𝑎𝛼(1 − 𝛼), −𝑑𝛽, 𝑔𝛼 − 𝑓} 
𝑬𝟓 

(𝛼,1,0) 
{𝑎𝛼(1 − 𝛼), 𝑑(𝛽 − 1), 𝑔𝛼 + ℎ

− 𝑓} 
𝑬𝟔 (0, 𝛽,0) {−𝑎𝛼, 𝑑𝛽(1 − 𝛽), ℎ𝛽 − 𝑓} 
𝑬𝟕 

(1, 𝛽,0) 
{𝑎(𝛼 − 1), 𝑑𝛽(1 − 𝛽), 𝑔 + ℎ𝛽

− 𝑓} 
𝑬𝟖 

(𝛼, 𝛽,0) 
{𝑎𝛼(1 − 𝛼), 𝑑𝛽(1 − 𝛽), 𝑔𝛼

+ ℎ𝛽 − 𝑓} 
𝑬𝟗 ( , 0,

( )( )
) {

( )( )
− 𝑑𝛽, 𝜆 ±} 

𝑬𝟏𝟎 ( , 0,
( )( )

) {
( )( )

− 𝑎𝛼, 𝜆 ±} 

𝑬𝟏𝟏 (𝑥 , 𝑦 , 𝑧 ) ({𝐴, 𝐵 ± 𝑖𝐶} 
𝑬𝟏𝟐 (�̅� , 𝑦 , 𝑧̅ ) {𝐴, 𝐵 ± 𝑖𝐶} 

where 

𝜆 ±

=
1

2𝑔
(𝑎𝑓(𝑔(1 + 𝛼) − 2𝑓)

± 𝑎𝑓 4𝑔 (𝑓 − 𝑔)(𝑓 − 𝑔𝛼) + 𝑎𝑓(𝑔(1 + 𝛼) − 2𝑓) )  

𝜆 ±

=
1

2ℎ
(𝑑𝑓(ℎ(1 + 𝛽) − 2𝑓)

± 𝑑𝑓 4ℎ (𝑓 − ℎ)(𝑓 − ℎ𝛽) + 𝑑𝑓(ℎ(1 + 𝛽) − 2𝑓) )  

𝑥 =
1

2(𝑏𝑑𝑔 − 𝑎𝑒ℎ )
𝑏𝑑𝑔 2𝑓 − ℎ(1 + 𝛽)

− 𝑎𝑒ℎ (1 + 𝛼) − Δ , 
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𝑦 =
1

2ℎ(𝑏𝑑𝑔 − 𝑎𝑒ℎ )
(ℎ 𝑏𝑑𝑔 (1 + 𝛽)

+ 𝑎𝑒ℎ(𝑔(1 + 𝛼) − 2𝑓) + 𝑔 Δ  

𝑧 =
𝑎𝑑

2(𝑏𝑑𝑔 − 𝑎𝑒ℎ )
(𝑏𝑑𝑔 2(𝑔 − 𝑓)(𝑓

− 𝛼𝑔)

− ℎ 1 + 𝛽(𝑔(1 + 𝛼) − 2𝑓)

− ℎ (1 + 𝛽 )

− 𝑔(𝑔(1 + 𝛼) + ℎ(1 + 𝛽)

− 2𝑓) Δ + 𝑎𝑒ℎ (2𝑓(𝑔(1 + 𝛼)

+ ℎ(1 + 𝛽) − 2𝑓 − 𝑔 (1 + 𝛼 )
− 𝑔ℎ(1 + 𝛼)(1 + 𝛽) − 2𝛽ℎ ) 

Δ = 𝑎𝑒ℎ (1 + 𝛼) + 𝑏𝑑𝑔(ℎ(1 + 𝛽) − 2𝑓)

− 4(𝑏𝑑𝑔
− 𝑎𝑒ℎ )(𝑏𝑑(𝑓 − ℎ)(𝑓 − 𝛽ℎ)
− 𝑎𝛼𝑒ℎ ),  

Δ = ℎ (𝑏𝑑(𝑏𝑑𝑔 (𝛽 − 1)
+ 4𝑎𝑒(𝑓 − 𝑔)(𝑓 − 𝛼𝑔)

− 2𝑎𝑏𝑑𝑒ℎ(1 + 𝛽) 2𝑓 − 𝑔(1𝛼)

+ 𝑎𝑒(4𝑏𝛽𝑑 + 𝑎𝑒ℎ (𝛼 − 1) )) 

𝐸  is a stable singular point of system (2) when 
one of the following set of conditions are satisfied 

in addition to 𝛽 < − 1. 

i. ℎ < 𝑓, 𝛼 ≤
( )

 

and −
( )

< 𝛽 

ii. ℎ < 𝑓  and 𝛼 >
( )

 

iii. 𝑓 ≤ ℎ < 2𝑓 

System (2) is stable at 𝐸   when 𝑔 < 𝑓 and 𝛼 < 1 
both hold. 

At  𝐸  system (2) is stable when < 𝑓 , ℎ < 𝑓 − 𝑔 

, 1 < 𝛼 <  and  𝛽 < 1 hold. 

𝐸  is a stable singular point if 𝑔 < 𝑓 , ℎ < 𝑓 − 𝑔, 
𝛼 < 1 and  𝛽 < 1 hold. 

𝐸  is a stable singular point if  𝑔 < 𝑓 and  1 <

𝛼 <  hold. 

System (2) is stable at 𝐸   when < 𝑓 , ℎ < 𝑓 − 𝑔 

, 1 < 𝛼 <   and  𝛽 < 1 hold. 

The singular point 𝐸  is stable when ℎ < 𝑓 and 
𝛽 < 1 hold. 

𝐸  is a stable singular point when 𝑔 < 𝑓, ℎ < 𝑓 −

𝑔 , 𝛼 < 1 and 1 < 𝛽 <  hold. 

System (2) is stable at 𝐸  when 𝑔 < 𝑓, ℎ < 𝑓 −

𝑔,  1 < 𝛼 <   and 1 < 𝛽 <  are satisfied. 

System (2) is stable at 𝐸  when one of the 
following cases holds. 

i. 𝑔 < 𝑓 , 𝛼 ≤  and  

𝛽 >
𝑎𝑒𝑓(𝑓 − 𝑔) − 𝑎𝛼𝑒𝑔(𝑓 + 𝑔)

𝑏𝑑𝑔
 

ii. 𝑔 < 𝑓 and < 𝛼 < − 1 

iii. 𝑓 ≤ 𝑔 < 2𝑓  and 𝛼 < − 1 

System (2) is stable at 𝐸  when ℎ < 𝑓 and 1 <

𝛽 <  hold. 

Since the expressions of system (2) at  
𝐸  and 𝐸  are complex, it is not possible to 
calculate the eigenvalues of the Jacobian matrix at 
these singular points. In order to analyse the 
system at these points, the method of algebraic 
invariants can be applied.[23,24] 

Theorem 5. Hopf bifurcation at  
𝐸  is stable if it exists. 

Proof. System (2) has Hopf bifurcation at  

𝐸  when 𝛽 = − 1 and one of the following 

conditions is satisfied. 

i. ℎ < 𝑓 
ii. 𝑓 < ℎ < 2𝑓 

These conditions coincide with the stability of 
Hopf bifurcation. 

Theorem 6. System (2) has a first integral when 
one of the following holds. 
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i. 𝑎 = 𝑑 = 𝑓 = 0 
ii. 𝑎 = 𝑓 = ℎ = 0 
iii. 𝑑 = 𝑓 = 𝑔 = 0 
iv. 𝑓 = 𝑔 = ℎ = 0 

Proof. For case i, system (2) has the first integral 

𝐼 = 1 + 𝑥 + 𝑦 + 𝑧.  

The first integral of system (2) for case ii is  𝐼 =

1 + 𝑥 + 𝑧.  

System (2) has the first integral 𝐼 = 1 + 𝑦 + 𝑧 

for case iii. When case iv holds, the first integral 
of system (2) is  𝐼 = 1 + 𝑧. 

Theorem 7. System (2) has an algebraic invariant 
when 𝑏 = 0 or 𝑒 = 0 holds. 

Proof. We look for an algebraic invariant of the 
form 

𝐿 = 𝑎 + 𝑎 𝑥 + 𝑎 𝑦 + 𝑎 𝑧 

with the corresponding cofactor 

𝑘 = 𝑠 + 𝑠 𝑥 + 𝑠 𝑦 + 𝑠 𝑧 + 𝑠 𝑥 + 𝑠 𝑦
+ 𝑠 𝑧 + 𝑠 𝑥𝑦 + 𝑠 𝑥𝑧 + 𝑠 𝑦𝑧 

When 𝑏 = 0 holds, system (2) has the algebraic 
invariants 𝑙 = 1 − 𝑥 with the cofactor 𝑘 =

𝑎𝛼𝑥 − 𝑎𝑥  and 𝑙 = 1 −  with the cofactor 𝑘 =

𝑎𝑥 − 𝑎𝑥 . When 𝑒 = 0, The algebraic invariants 
of system (2) are 𝑙 = 1 − 𝑦 with the cofactor 
𝑘 = 𝛽𝑑𝑦 − 𝑑𝑦  and 𝑙 = 1 −  with the 

cofactor 𝑘 = 𝑑𝑦 − 𝑑𝑦 . 
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