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Some connections between various classes of analytic functions associated 
with the power series distribution 

 

Serkan Çakmak1, Sibel Yalçın2, Şahsene Altınkaya*3 

 

Abstract 

The primary motivation of the paper is to investigate the power series distribution (Pascal 
model) for the analytic function classes 𝑇𝒢(𝛼), 𝑇𝒢𝒮∗(𝛼, 𝜌) and 𝑇𝒢𝒞(𝛼, 𝜌). Furthermore, we 
give necessary and sufficient conditions for the Pascal distribution series belonging to these 
classes. 
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1. INTRODUCTION 

The power series distribution is very 
useful in multivariate data research fields. This 
family of distributions, particularly is used in 
survival and reliability studies. However, 
nowadays, the elementary distributions such as 
the Poisson, the Pascal, the Logarithmic, the 
Binomial, the Burr-Weibull have been partially 
studied in the Geometric Function Theory from a 
theoretical point of view (see [1], [2], [3], [4]). In 
this paper, we focus on the Pascal power series 
distribution. 

 
Let us consider a non-negative discrete 

random variable 𝒳 with a Pascal probability 
generating function 
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where 𝑝 (0 ≤ 𝑝 ≤ 1), t are called the parameters. 
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Let 𝒜 represent the class of functions 𝑓 of 
the form 
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which are analytic in the open unit disk 𝔘 =
{𝑧: 𝑧 ∈ ℂ and |𝑧| < 1}. Let 𝒮 be the subclass of 𝒜 
consisting of functions which are univalent in 𝔘 
and T be the subclass of 𝒮 consisting of functions 
whose coefficients, from the second on, are non-
negative given by (see [5]) 

              
2

.j
j

j

f z z a z




                  (2)                                      

Furthermore, by 𝒢(𝛼), 𝒢𝒮∗(𝛼, 𝜌) we shall 
denote the class of all functions 𝑓 ∈ 𝒜 which 
satisfy the following conditions 
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respectively. 
 

Let also 𝒢𝒞(𝛼, 𝜌) denote the class of all 
functions 𝑓 ∈ 𝒜 which satisfy the following 
condition 
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We next must write 
 

𝑇𝒢(𝛼) = 𝒢(𝛼) ∩ 𝑇, 
 

𝑇𝒢𝒮∗(𝛼, 𝜌) = 𝒢𝒮∗(𝛼, 𝜌) ∩ 𝑇 
and  

𝑇𝒢𝒞(𝛼, 𝜌) = 𝒢𝒞(𝛼, 𝜌) ∩ 𝑇. 
 
These classes introduced and studied by Ronning 
[6]. 
 

The primary motivation of the paper is to 
investigate the Pascal power series distribution 
for the analytic function classes 𝑇𝒢(𝛼), 
𝑇𝒢𝒮∗(𝛼, 𝜌) and 𝑇𝒢𝒞(𝛼, 𝜌). 
 

 

2. PASCAL POWER SERIES 
DISTRIBUTION 

We start by stating the Pascal power series 
and the basis lemmas for our further 
investigations. 

 
Based upon the Pascal distribution, 

consider the following power series: 
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Note that, by using ratio test we conclude that the 
radius of convergence of the above power series 
is infinity. 

 

Lemma 1. A function 𝑓 ∈ 𝒜 given by (1) 
is in the class 𝒢(𝛼) if it satisfies the following 
condition 
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Lemma 2. A function 𝑓 ∈ 𝒜 given by (1)  

is in the class 𝒢𝒮∗(𝛼, 𝜌) if it satisfies the 
following condition 
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Lemma 3. A function 𝑓 ∈ 𝒜 given by (1)  

is in the class 𝒢𝒞(𝛼, 𝜌) if it satisfies the following 
condition 
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Lemma 4. A function 𝑓 ∈ 𝑇 given by (2) 

is in the class 𝑇𝒢(𝛼) if and only if it satisfies the 
following condition (7). 

 
Lemma 5. A function 𝑓 ∈ 𝑇 given by (2)  

is in the class 𝑇𝒢𝒮∗(𝛼, 𝜌) if and only if it satisfies 
the following condition (8). 

 
Lemma 6. A function 𝑓 ∈ 𝑇 given by (2)  

is in the class 𝑇𝒢𝒞(𝛼, 𝜌) if and only if it satisfies 
the following condition (9). 
 

3. APPLICATION 

By considering above definitions and 
lemmas, we have the following necessary and 
sufficient conditions for the function 𝑃. 

Theorem 1. For 𝑝 ≠ 1, the function 𝑃 
given by (6) is in the class 𝒢𝑇𝒮∗(𝛼, 𝜌) if and only 
if 
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Proof. According to Lemma 2, we must 

show that 
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Therefore, by combining the relation (6) and 
implication (10), we have the equality  
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Thus the proof of Theorem 1 is now completed.  
 
 

Corollary 1. For 𝑝 ≠ 1, the function 𝑃 
given by (6) is in the class 𝑇𝒢(𝛼) if and only if 

 

 
.1

1

2 
 1t
t
p

p
 

 

In what follows, we shall give the results 
for the class 𝑇𝒢𝒞(𝛼, 𝜌). 

 
 

Theorem 2. For 𝑝 ≠ 1, the function 𝑃 
given by (6) is in the class 𝑇𝒢𝒞(𝛼, 𝜌) if and only 
if 
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 Proof. According to Lemma 3, we must 

show that 
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Therefore, by combining the relation (6) and 
implication (12), we have the equality  
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Thus, according to Lemma 3, we conclude that 
𝑓 ∈ 𝑇𝒢𝒞(𝛼, 𝜌). 
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